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1. Introduction

Systems of nonlinear ordinary differential and in-
tegral equations make up a significant class of
nonlinear equations because they have been dis-
covered to be effective at simulating challenging
real-world issues that come up in various branches
of science, technology, and engineering [1–10]. We
will emphasize that a variety of differential op-
erators, including the most recent one proposed
in the literature, piecewise derivatives, fractional
derivatives, and classical derivatives, have been
employed to reflect the intricacies of nature. In
fact, no viable analytical solution that can be
solved analytically has been proposed in recent
years. Therefore, to arrive at numerical solu-
tions to these nonlinear systems of equations, re-
searchers frequently used numerical techniques.
Conditions do exist, nevertheless, in which they

acknowledge the need for exact solutions. How-
ever, it was also recently reported that certain
of these differential equations may not be able
to accurately depict complicated processes with
crossover tendencies when only utilizing a sin-
gle differential operator. A notion known as the
piecewise differential operator was proposed as a
solution and successfully applied in various signifi-
cant applications [11,12]. In this study, we intend
to investigate a model that has been studied in
a number of significant works a modified system
of nonlinear equations. Following that, we’ll use
various differential operator types and offer some
numerical and stability analyses.

2. Definitions of derivatives

In this section, we summarized some basic frac-
tional order definitions in the next section [11,13,
14].
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Definition 1. Caputo fractional derivative of or-
der γ > 0 of a function f : (0,∞) → R, according
to Caputo, the fractional derivative of a continu-
ous and differentiable function f is given as :

CDγ
t f(t) =

1

Γ(1− γ)

t∫
0

(t−x)−γ d

dx
f(x)dx, (1)

where 0 < γ ≤ 1.

Definition 2. Let f be differentiable, then a
piece-wise derivative with classical and fractional
derivative with power-law kernel is given as

PC
0 Dγ

t f(t) =

{
f

′
(t), if 0 ≤ t ≤ t1

C
t1D

γ
t f(t), if t1 ≤ t ≤ T

(2)

where PC
0 Dγ

t represents classical derivative on
0 ≤ t ≤ t1 and Caputo fractional derivative on
t1 ≤ t ≤ T.

Definition 3. The Riemann-Liouville fractional
integral of order γ > 0 of a function f : (0,∞) →
R, according to Riemann-Liouville, the fractional
integral is considered as anti-fractional derivative
of a function f is :

Iγt f(t) =
1

Γ(γ)

t∫
0

(t− x)γ−1f(x)dx, x > 0. (3)

Definition 4. Let f be continuous and γ > 0
then a piece-wise integral of f is given as

PPLJγ
t f(t) =


t∫
0

f(τ)dτ, if 0 ≤ t ≤ t1

1
Γ(γ)

t∫
t1

(t− τ)γ−1f(τ)dτ, if t1 ≤ t ≤ T

.

(4)

where PPLJγ
t f(t) represents classical integral on

0 ≤ t ≤ t1 and the integral with power-law kernel
on t1 ≤ t ≤ T.

3. Model derivation

Fractional order models are very important for
studying natural problems. It is well known that
the nature of the trajectory of the fractional or-
der derivatives is non-local, which describes that
the fractional order derivative has a memory ef-
fect, meaning that the future states depend on the
present as well as the past states. With this mo-
tivation in 2012, Ozalp and Koca have considered
Barley and Cherifs deterministic model as frac-
tional order dynamic [15, 16]. In this work, we

extended the fractional-order nonlinear model by
adding λx22 and λx21 factors where λ is 1 or 0. We
find these components sufficient to make relevant
practical conclusions. The model can be more
complex later, once that is shown to be necessary.
With these assumptions, the complete model is
given as

C
t1D

α
t x1(t) = −α1x1 + β1x2 − β1εx

3
2

+ λx22, 0 < α ≤ 1

C
t1D

α
t x2(t) = −α2x2 + β2x1 − β2εx

3
1 + λx21,

x1(0) = 0 , x2(0) = 0.

(5)

Positive values for the model show positive con-
scious experience, while negative values show neg-
ative conscious experience. Other parameters are
oblivion, reaction, and attraction constants. Sto-
chastic modeling is used in many places, from sta-
tistics to biology, from economics to physics. We
know that deterministic modeling is predictable,
so we know the future for sure, while stochastic
modeling is random, so we cannot predict the fu-
ture for sure. So we say that stochastic models
can give rise to deterministic behavior. In par-
ticular, we can construct a sequence of models
with a decreasing level of detail, from a determin-
istic model to a stochastic model or vice versa.
Stochastic modeling is random in nature, and un-
certain factors are included in the model. So in
this paper with a numerical part, we will con-
sider the fractional-order deterministic interac-
tion model as a fractional order stochastic model
with an added noise piece.

dx1(t) =
(
−α1x1 + β1x2 − β1εx

3
2 + λx22

)
dt

+ σ1x1dB1(t),

dx2(t) =
(
−α2x2 + β2x1 − β2εx

3
1 + λx21

)
dt

+ σ2x2dB2(t),

(6)

We believe that this nonlinear stochastic model
will explain the stochastic rates and factors (eco-
logical, historical, cultural and community condi-
tions) better than its deterministic version

4. Chaotic number for modified
nonlinear model

The concept of mathematical modeling is used to
analyze the between at least two variables. Peo-
ple who are in communication are aware of each
other, and their connection with each other is con-
scious. In this section, we search for the chaotic
number (C0), which has been worked on by some
researchers recently [17]. So we can have an idea
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about the future of communication. The function
F will be obtained from the nonlinear part of the
model, and the function V will be obtained from
the linear part of the model. Here we recall our
nonlinear model including classical derivative.

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + λx22,

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + λx21,

(7)

with initial conditions x1(0) = 0 and x2(0) = 0.
We note that in analysis we take λ = 1.

To begin, we divide the system into two sections.

[ ′
x1
′
x2

]
= f − v. (8)

Here f is given as

f =

[
−β1εx

3
2 + x22

−β2εx
3
1 + x21

]
(9)

and v is given as

v =

[
α1x1 − β1x2
α2x2 − β2x1

]
. (10)

Let us take partial derivatives of f and v then we
get F and V which are given as below

F =

[
0 −3β1εx

2
2 + 2x2

−3β2εx
2
1 + 2x1 0

]
,

(11)

and

V =

[
α1 −β1
−β2 α2

]
. (12)

To obtain Chaotic number (C0), we have to cal-
culate NG = F.V −1 matrice which is named as
Next-Generation matrix of the system. Then (C0)
will be obtained from the spectral radius of the
matrix of NG.

First, we need to calculate V −1. If V is

V =

[
α1 −β1
−β2 α2

]
, (13)

then

V −1 =
1

α1α2 − β1β2

[
α2 β1
β2 α1

]
. (14)

So we get

F.V −1 =

[
0 −3β1εx

2
2 + 2x2

−3β2εx
2
1 + 2x1 0

]
×

[
α2

α1α2−β1β2

β1

α1α2−β1β2
β2

α1α2−β1β2

α1
α1α2−β1β2

]
(15)

F.V −1 =

 β2(−3β1εx2
2+2x2)

α1α2−β1β2

α1(−3β1εx2
2+2x2)

α1α2−β1β2

α2(−3β2εx2
1+2x1)

α1α2−β1β2

β1(−3β2εx2
1+2x1)

α1α2−β1β2

 .

Now we calculate the eigenvalues by solving

det
(
F.V −1 − λI

)
= 0, (16)

so we get

det
(
F.V −1 − λI

)
= det

∣∣∣∣∣∣
β2(−3β1εx2

2+2x2)
α1α2−β1β2

− λ
α1(−3β1εx2

2+2x2)
α1α2−β1β2

α2(−3β2εx2
1+2x1)

α1α2−β1β2

β1(−3β2εx2
1+2x1)

α1α2−β1β2
− λ

∣∣∣∣∣∣ .
(17)

Here we need simplification as

l1 = −3β2εx
2
1 + 2x1,

l2 = −3β1εx
2
2 + 2x2, (18)

k = α1α2 − β1β2.

So start from forming a new matrix by subtract-
ing λ from the diagonal entries of the given matrix
we have

det
(
F.V −1 − λI

)
= det

∣∣∣∣ β2l2
k − λα1l2

k
α2l1
k

β1l1
k − λ

∣∣∣∣ = 0,

=

(
β2l2
k

− λ

)(
β1l1
k

− λ

)
− α1α2l2l1

k2
= 0,

= λ2 − λ

(
β2l2
k

+
β1l1
k

)
− l2l1

k2
(α1α2 − β1β2) = 0.

(19)

We can have two roots from the last equality

λ1 =
β1l1+β2l2+

√
β2
1 l

2
1−2l2l1β1β2+4α1α2l2l1+β2

2 l
2
2

2α1α2−β1β2

(20)

and

λ2 =
β1l1+β2l2−

√
β2
1 l

2
1−2l2l1β1β2+4α1α2l2l1+β2

2 l
2
2

2α1α2−β1β2
.

(21)

We know that the maximum eigenvalue is the
spectral radius of the matrix, so the chaotic num-
ber is found for this model as
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C0 =
β1l1+β2l2+

√
β2
1 l

2
1−2l2l1β1β2+4α1α2l2l1+β2

2 l
2
2

2α1α2−β1β2
.

(22)

5. Global stability results for nonlinear
model

Explicit solutions to a given differential equation
are often difficult to find. In such cases, trying to
understand how the solutions of the system be-
have as time goes to infinity can give a lot of in-
formation about the system. Equilibrium points
are very important for systems because all solu-
tions converge on these fixed points. To achieve
this, we can use the Lyapunov method, which was
introduced by Aleksandr Mikhailovich Lyapunov
in 1982. So here, the Lyapunov function theory
will be used to investigate the global stability of
the system. Let us consider the model again.

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + x22,

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + x21,

(23)

with initial conditions x1(0) = 0 and x2(0) = 0.

Theorem 1. If C0 ≥ 1, the equilibrium point of
model E∗(x∗1, x

∗
2) is globally asymptotically stable.

Proof. We prove this using the idea of the Lya-
punov function. We start by defining the Lya-
punov function associated with the system as be-
low:

L(E∗(x∗1, x
∗
2)) =

(
x1 − x∗1 + x∗1 log

x∗1
x1

)
+

(
x2 − x∗2 + x∗2 log

x∗2
x2

)
.

(24)

By the derivative of Lyapunov function with re-
spect to t, we get

dL(t)
dt =

(
x1−x∗

1
x1

)
dx1(t)
dt +

(
x2−x∗

2
x2

)
dx2(t)
dt .

(25)

Now we put values in the above equation for
derivatives

dL(t)

dt
=

(
1− x∗1

x1

)(
−α1x1 + β1x2 − β1εx

3
2 + x22

)
+

(
1− x∗2

x2

)(
−α2x2 + β2x1 − β2εx

3
1 + x21

)
.

(26)

Now we divide all items into positive and negative
parts,

dL(t)

dt
= L1 − L2, (27)

Here

L1 = β1x2 + x22 + x∗1α1 +
x∗1β1εx

3
2

x1
+ β2x1 + x21

+ x∗2α2 +
x∗2β2εx

3
1

x2
,

L2 = α1x1 + β1εx
3
2 +

x∗1β1x2
x1

+
x∗1x

2
2

x1
+ α2x2 + β2εx

3
1 +

x∗2β2x1
x2

+
x∗2x

2
1

x2
.

(28)

Therefore if

L1 − L2 > 0 then
dL(t)

dt
> 0,

L1 − L2 = 0 then
dL(t)

dt
= 0,

L1 − L2 < 0 then
dL(t)

dt
< 0.

(29)

□

5.1. Second derivative of Lyapunov

The Lyapunov function is used for reporting the
global stability of systems. The sign of the first
derivative of the Lyapunov function may not be
enough to say whether we are talking about the
local maximum or the local minimum. So we can
proceed with analysis to determine the sign of the
second derivative of the Lyapunov function. With
the following inequality, we obtain the second de-
rivative of the Lyapunov function for our model:

d

dt

(
dL(t)

dt

)
=

d

dt

((
x1 − x∗1

x1

)
dx1(t)

dt
+

(
x2 − x∗2

x2

)
dx2(t)

dt

)
,

=

 ′
x1
x1

2

x∗1+

 ′
x2
x2

2

x∗2+

(
x1 − x∗1

x1

)
d2x1(t)

dt2

+

(
x2 − x∗2

x2

)
d2x2(t)

dt2

(30)

Here we need first and second-order derivative
counterparts of equations.

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + x22,

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + x21,

d2x1(t)

dt2
= −α1

dx1(t)

dt
+ β1

dx2(t)

dt
− 3β1εx

2
2

dx2(t)

dt
+ 2x2

dx2(t)

dt
,

d2x2(t)

dt2
= −α2

dx2(t)

dt
+ β2

dx1(t)

dt
− 3β2εx

2
1

dx1(t)

dt
+ 2x1

dx1(t)

dt
.

(31)
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If we arrange the last two derivatives

d2x1(t)

dt2
= α2

1x1 + α1β1εx
3
2 + β1β2x1 + β1x

2
1 + 3β1εα2x

3
2

+ 3β1β2ε
2x22x

3
1 + 2β2x1x2 + 2x2x

2
1

− (α1β1x2 + α1x
2
2 + β1α2x2 + β1β2εx

3
1 + 3β1β2εx

2
2x1

+ 3β1εx
2
2x

2
1 + 2α2x

2
2 + 2x2β2εx

3
1),

(32)

and

d2x2(t)

dt2
= α2

2x2 + α2β2εx
3
1 + β1β2x2 + β2x

2
2 + 3β2εα1x

3
1

+ 3β1β2ε
2x21x

3
2 + 2x2x1β1 + 2x1x

2
2

− (α2β2x1 + α2x
2
1 + β2α1x1 + β1β2εx

3
2 + 3β1β2εx

2
1x2

+ 3β2εx
2
2x

2
1 + 2α1x

2
1 + 2x1β1εx

3
2).

(33)

Let us consider

d2x1(t)

dt2
= A1 +A2, (34)

d2x2(t)

dt2
= B1 +B2.

Here A1 and B1 are positive part and taken as

A1 = α2
1x1 + α1β1εx

3
2 + β1β2x1 + β1x

2
1 + 3β1εα2x

3
2

+3β1β2ε
2x22x

3
1 + 2β2x1x2 + 2x2x

2
1,

B1 = α2
2x2 + α2β2εx

3
1 + β1β2x2 + β2x

2
2 + 3β2εα1x

3
1

+3β1β2ε
2x21x

3
2 + 2x2x1β1 + 2x1x

2
2

(35)

and A2 and B2 are negative part and taken as

A2 = −(α2β2x1 + α2x
2
1 + β2α1x1 + β1β2εx

3
2 + 3β1β2εx

2
1x2

+3β1εx
2
2x

2
1 + 2α2x

2
2 + 2x2β2εx

3
1),

B2 = −(α2β2x1 + α2x
2
1 + β2α1x1 + β1β2εx

3
2 + 3β1β2εx

2
1x2

+3β2εx
2
2x

2
1 + 2α1x

2
1 + 2x1β1εx

3
2).

(36)

So we have

d2L(t)

dt2
=

 ′
x1
x1

2

x∗1 +

 ′
x2
x2

2

x∗2 (37)

+A1 +A2 −
x∗1
x1

A1 −
x∗1
x1

A2

+B1 +B2 −
x∗2
x2

B1 −
x∗2
x2

B2.

Now we divide normalsize all items with positive
and negative parts

d2L(t)

dt2
= Φ1 − Φ2, (38)

Here the positive part of equality is given as

Φ1 =

( ′
x1
x1

)2

x∗1 +

( ′
x2
x2

)2

x∗2 +A1 +B1 +
x∗
1

x1
A2 +

x∗
2

x2
B2,

(39)

and the negative part of equality is given as

Φ2 = A2 +B2 −
x∗1
x1

A1 −
x∗2
x2

B1. (40)

Therefore if

Φ1 − Φ2 > 0 then
d2L(t)

dt2
> 0,

Φ1 − Φ2 = 0 then
d2L(t)

dt2
= 0,

Φ1 − Φ2 < 0 then
d2L(t)

dt2
< 0.

(41)

6. Existence and uniqueness of system
solution

In the last past years, several authors have de-
voted their attention to developing conditions un-
der which nonlinear differential equations admit
unique solutions, in particular for the case of clas-
sical derivatives. Several extensions have been
done within the framework of fractional deriva-
tion with singular and non-singular kernels. We
shall state one of the important on here, which
will be used.

Theorem 2. Let IT = [0, T ] , the function f :
I ×R
(t,y)→

→ R
f(t,y)

is such that, f(t, y) is measurable

for y ∈ R and y → f(t, y) is continuous for each
t ∈ IT . If there exists on M ∈ L2 [IT , R] such that

|f(t, y)|2 ≤ M
(
1 + |y|2

)
, ∀(t, y) ∈ IT ×R (42)

then there exists a continuous u(t) such that

u(t) =

t∫
0

f (τ, u(τ)) dτ. (43)

If in addition, one have

|f(t, y)− f(t, y)| < K |y − y|2 , ∀y, y ∈ R (44)

then the solution is unique.

Indeed the existence can be achieved via se-
quence by constructing the Picard, Tonelli other
sequences [18, 19]. The main task is to show
that under the above condition, the sequence is
equicontinuous uniformly and bounded uniformly.
The Peano-Cauchy theorem helps us to secure the
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existence [20]. The Gronwall inequality helps us
obtain uniqueness within the framework of frac-
tional calculus, there is an extra condition on the
fractional order. It’s required that α > 1

2 since

∣∣∣∣∣∣ 1

Γ (α)

t∫
0

(t− τ)α−1 f (τ, y(τ)) dτ

∣∣∣∣∣∣
2

(45)

≤ 1

Γ2 (α)

t∫
0

(t− τ)2α−2 |f (τ, y(τ))|2 dτ

≤ 1

Γ2 (α)

t∫
0

(t− τ)2α−2 dτ

t∫
0

|f (τ, y(τ))|2 dτ

≤ t2α−1

(2α− 1) Γ2 (α)
∥f (., y (.))∥2L2[0,T ]

Thus α > 1
2 .

The existence and uniqueness of the solution of a
differential equation are the most important parts
of the theory of differential equations. There are
various proofs on this subject. Here we will do our
proof by obtaining the necessary conditions via
Linear growth and Lipschitz for our model [21].

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + x22, (46)

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + x21,

with initial conditions x1(0) = 0 and x2(0) = 0.

Let us find the necessary conditions for the exis-
tence and uniqueness, we must prove that ∀ [0, T1]
and fi(x1, x2) for i = 1, 2 satisfy

1)Linear growth condition

|fi(xi, t)|2 ≤ si(1 + |xi|2) for i = 1, 2. (47)

2)The Lipschitz condition

|fi(xi, t)− fi(xi, t)|2 ≤ si |xi − xi|2 for i = 1, 2.
(48)

Now we define the norm ∥φ∥∞ = sup
t∈Dφ

|φ(t)| . Now

we put the existence and uniqueness of the solu-
tion for [0, T1] . For [0, T1], there exist 2 positive
constant M1 and M2 < ∞ such that

∥x1∥∞ < M1, (49)

∥x2∥∞ < M2.

Let us write the system as below:

{ .
x1 = f1 (x1, x2) ,
.
x2 = f2 (x1, x2) ,

if 0 ≤ t ≤ T1. (50)

For proof, we consider the function

|f1 (x1, x2)|2 =
∣∣−α1x1 + β1x2 − β1εx

3
2 + x22

∣∣2 ,
≤ 4α2

1 |x1|
2 + 4β2

1 |x2|
2

+ 4β2
1ε

2
∣∣x32∣∣2 + 4

∣∣x22∣∣2
≤ 4α2

1 |x1|
2 + 4β2

1 sup
t∈[0,T1]

|x2|2

+ 4β2
1ε

2 sup
t∈[0,T1]

∣∣x32∣∣2 + 4 sup
t∈[0,T1]

∣∣x22∣∣2
≤ 4α2

1 |x1|
2 + 4β2

1 ∥x2∥
2
∞ + 4β2

1ε
2
∥∥x32∥∥2∞

+ 4
∥∥x22∥∥2∞ ,

≤ 4β2
1 ∥x2∥

2
∞+4β2

1ε
2
∥∥x32∥∥2∞

+4
∥∥x22∥∥2∞×(
1 +

4α2
1 |x1|

2

4β2
1 ∥x2∥

2
∞ + 4β2

1ε
2
∥∥x32∥∥2∞ + 4

∥∥x22∥∥2∞
)

≤ s1(1 + |x1(t)|2)
(51)

Here

s1 = 4β2
1 ∥x2∥

2
∞ + 4β2

1ε
2
∥∥x32∥∥2∞ + 4

∥∥x22∥∥2∞ (52)

and under the condition that

α2
1

β2
1 ∥x2∥

2
∞ + β2

1ε
2
∥∥x32∥∥2∞ +

∥∥x22∥∥2∞ < 1, (53)

then we have

|f1 (x1, x2)|2 ≤ s1(1 + |x1(t)|2). (54)

Using the same routine

|f2 (x1, x2)|2 =
∣∣−α2x2 + β2x1 − β2εx

3
1 + x21

∣∣2 ,
≤ 4α2

2 |x2|
2 + 4β2

2 |x1|
2 + 4β2

2ε
2
∣∣x31∣∣2 + 4

∣∣x21∣∣2 ,
≤ 4α2

2 |x2|
2 + 4β2

2 sup
t∈[0,T1]

|x1|2

+ 4β2
2ε

2 sup
t∈[0,T1]

∣∣x31∣∣2 + 4 sup
t∈[0,T1]

∣∣x21∣∣2
≤ 4α2

1 |x2|
2 + 4β2

2 ∥x1∥
2
∞ + 4β2

1ε
2
∥∥x31∥∥2∞

+ 4
∥∥x21∥∥2∞ ,

≤4β2
2 ∥x1∥

2
∞+4β2

1ε
2
∥∥x31∥∥2∞+4

∥∥x21∥∥2∞×(
1 +

4α2
1 |x2|

2

4β2
2 ∥x1∥

2
∞ + 4β2

1ε
2
∥∥x31∥∥2∞ + 4

∥∥x21∥∥2∞
)

≤ s2(1 + |x2(t)|2)
(55)

Here
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s2 = 4β2
2 ∥x1∥

2
∞ + 4β2

1ε
2
∥∥x31∥∥2∞ + 4

∥∥x21∥∥2∞ (56)

and under the condition

α2
1

β2
2 ∥x1∥

2
∞ + β2

1ε
2
∥∥x31∥∥2∞ +

∥∥x21∥∥2∞ < 1 (57)

Therefore the condition of linear growth is verified
if

max


α2
1

β2
1∥x2∥2∞+β2

1ε
2∥x3

2∥
2

∞+∥x2
2∥

2

∞

,

α2
1

β2
2∥x1∥2∞+β2

1ε
2∥x3

1∥
2

∞+∥x2
1∥

2

∞

,

 < 1. (58)

The first part of proof is completed. Now we have
to verify Lipschitz condition for equations. If we
have ∀x1, x1 ∈ R2 and t ∈ [0, T1] , for the function
f1 (x1, x2) ,

|f1 (x1, x2)− f1 (x1, x2)| ≤ α2
1 |x1 − x1| , (59)

≤ s1 |x1 − x1| .

If we have ∀x2, x2 ∈ R2 and t ∈ [0, T1] for the
function f2 (x1, x2) ,

|f2 (x1, x2)− f2 (x1, x2)| ≤ α2
2 |x2 − x2| , (60)

≤ s2 |x2 − x2| .

We verified the Lipschitz condition, which com-
pletes the proof.

Finally, we consider the following fractional order
model as below;

C
t0D

α
t x1(t) = f1 (t, x1(t)) , if t > 0 (61)

C
t0D

α
t x2(t) = f2 (t, x2(t)) ,

x1(t0) = x10, x2(t0) = x20 if t = 0.

We can write the system above as

C
t0D

α
t X(t) = F (t,X(t)) , (62)

X(t0) = X0,

where

X(t) =

{
x1(t),
x2(t)

, X(t0) =

{
x1(t0),
x2(t0)

,

F (t,X(t)) =

{
f1 (t, x1(t)) ,
f2 (t, x2(t))

.

(63)

Now applying the fractional integral on both sides

X(t) =
1

Γ (α)

t∫
0

F (τ,X(τ)) (t− τ)α−1 dτ. (64)

At the previous section we showed that
f1 (t, x1(t)) and f2 (t, x2(t)) satisfy the Lipschitz
condition and are bounded in [a, b] . Using the Pi-
card iteration for above , then we have that

Xn+1(t) =
1

Γ (α)

t∫
t0

F (τ,Xn(τ)) (t− τ)α−1 dτ.

(65)

For the existence theory, we define Banach space
Φ = X ×X where X = C[0, T1] under the follow-
ing norm

∥X∥ = max
t∈[0,T1]

|x1(t), x2(t)| . (66)

So we have

∥Xn+1∥ = max
t∈[0,T1]

∣∣∣∣∣∣ 1

Γ (α)

t∫
t0

F (τ,Xn(τ)) (t− τ)α−1 dτ

∣∣∣∣∣∣
≤ 1

Γ (α)

t∫
t0

s (1 + ∥Xn∥) (t− τ)α−1 dτ

≤ s (1 + ∥Xn∥)
Γ (α)

(t− t0)
α

α
.

(67)

So we have that ∀t ∈ [a, b]

∥Xn+1∥ ≤ s (1 + ∥Xn∥)
Γ (α+ 1)

(b− t0)
α (68)

But ∀n > 0, ∃c ∈ [x0 − c, x0 + c] then

s (1 + ∥Xn∥)
Γ (α+ 1)

(b− t0)
α < c,

b <

(
cΓ (α+ 1)

s (1 + ∥Xn∥)

) 1
α

+ t0.

(69)

Under the above condition Xn(t) for n ≥ 0 is uni-
formly bounded and well-defined. For equiconti-
nuity of X, let us take t1 < t2 < T1, then consider

∥Xn(t1)−Xn(t2)∥
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=
1

Γ (α)
max

∣∣∣∣∣∣∣∣∣
t1∫
t0

F (τ,Xn−1(τ)) (t1 − τ)α−1 dτ

−
t2∫
t0

F (τ,Xn−1(τ)) (t2 − τ)α−1 dτ

∣∣∣∣∣∣∣∣∣

=
1

Γ (α)
max

∣∣∣∣∣∣∣∣∣∣∣∣∣

t2∫
t0

F (τ,Xn−1(τ)) (t1 − τ)α−1 dτ

−
t2∫
t0

F (τ,Xn−1(τ)) (t2 − τ)α−1 dτ

+
t1∫
t2

F (τ,Xn−1(τ)) (t1 − τ)α−1 dτ

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ 1

Γ (α)

t2∫
t0

∥F (τ,Xn−1(τ))∥
{
(t1 − τ)α−1 − (t2 − τ)α−1

}
dτ

+
1

Γ (α)

t1∫
t2

∥F (τ,Xn−1(τ))∥ (t1 − τ)α−1 dτ

≤ s (1 + ∥Xn∥)
Γ (α)

{
(t1 − t0)

α

α
− (t2 − t0)

α

α
− (t1 − t2)

α

α

}
+

s (1 + ∥Xn∥)
Γ (α)

{
(t1 − t2)

α

α

}
≤ s (1 + ∥Xn∥)

Γ (α+ 1)
{(t1 − t0)

α − (t2 − t0)
α} .

(70)

Noting that the (t− t0)
α is differentiable, by the

Mean Value theorem we can find c ∈ [t1 − t0, t2 −
t0] such that

α (c− t0)
α−1 (t1 − t2) = (t1 − t0)

α − (t2 − t0)
α .

(71)

So we have

∥Xn(t1)−Xn(t2)∥ ≤ s (1 + ∥Xn∥)
Γ (α+ 1)

α (c− t0)
α−1 (t1 − t2)

≤ s (1 + ∥Xn∥)
Γ (α+ 1)

α (c− t0)
α−1 ∥t1 − t2∥

< ε

(72)

then ∀ε > 0, we must find ∃δ > 0 such that

δ <
εΓ (α)

s (1 + ∥Xn∥)α (c− t0)
α−1 . (73)

So under the condition above Xn(t) is uniformly
equicontinuous.

Beside the Caratheodory principle verified above,
one can demonstrate the existence and uniqueness
of the system solutions of the considered system.

We have that

C
0 D

α
t x1(t) = f1 (t, x1(t)) , if t > 0 (74)

C
0 D

α
t x2(t) = f2 (t, x2(t)) .

It is sufficient to show that ∀t ∈ Ib = [0, b] the
associate Jacobian matrix is differentiable contin-
uous. The Jacobian associated to this system is
given as

J (x1, x2) =

[
−α1 β1 − 3εβ1x

2
2 + 2λx2

β2 − 3εβ2x
2
1 + 2λx1 −α2

]
.

(75)

The above is continuous for ∀ (x, y) which com-
pletes the proof.

7. Model with piecewise concept

It indeed above model can be used to replicate
some interpersonal interaction, one will notice
that the current mathematical model show only
one process, for example with the Caputo one can
only describe the relation following the power-law
behavior. Whereas in normal situations, inter-
personal interaction undergoes piecewise behav-
iors, where the relation change as function of time
in the case of ordinary differential equation and
space time in the case of partial differential equa-
tion. In this section, we shall consider the model
with two to three processes, including classical
behaviors, then power law behaviors or power
law and stochastic with piecewise idea [11]. In
these cases, the following mathematical systems
are constructed

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + λx22, if 0 ≤ t ≤ t1

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + λx21,

C
t1D

α
t x1(t) = −α1x1 + β1x2 − β1εx

3
2 + λx22, if t1 ≤ t ≤ T

C
t1D

α
t x2(t) = −α2x2 + β2x1 − β2εx

3
1 + λx21,

(76)

or

dx1(t)

dt
= −α1x1 + β1x2 − β1εx

3
2 + λx22, if 0 ≤ t ≤ t1

dx2(t)

dt
= −α2x2 + β2x1 − β2εx

3
1 + λx21,

dx1(t) =
(
−α1x1 + β1x2 − β1εx

3
2 + λx22

)
dt+ σ1x1dB1(t),

if t1 ≤ t ≤ T

dx2(t) =
(
−α2x2 + β2x1 − β2εx

3
1 + λx21

)
dt+ σ2x2dB2(t).

(77)

Obviously the above system can not be solved an-
alytically indeed due to non linearity, therefore we
will present some existence and uniqueness con-
ditions for the two systems. Indeed by putting
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dx1(t)

dt
= f1 (t, x1, x2) , if 0 ≤ t ≤ t1

dx2(t)

dt
= f2 (t, x1, x2) , (78)

C
t1D

α
t x1(t) = f1 (t, x1, x2) , if t1 ≤ t ≤ T

C
t1D

α
t x2(t) = f2 (t, x1, x2) .

The following Picard system of sequence can be
defined

x1n+1(t) = x1(0) +

t∫
0

f1 (τ, x1n, x2n) dτ, if 0 ≤ t ≤ t1

x2n+1(t) = x2(0) +

t∫
0

f2 (τ, x1n, x2n) dτ,

x1n+1(t) = x1(t1) +

t∫
t1

(t− τ)α−1

Γ (α)
f1 (τ, x1n, x2n) dτ,

if t1 ≤ t ≤ T

x2n+1(t) = x2(t1) +

t∫
t1

(t− τ)α−1

Γ (α)
f2 (τ, x1n, x2n) dτ,

(79)

and

x1n+1(t) = x1(0) +

t∫
0

f1 (τ, x1n, x2n) dτ, if 0 ≤ t ≤ t1

x2n+1(t) = x2(0) +

t∫
0

f2 (τ, x1n, x2n) dτ,

x1n+1(t) = x1(t1) +

t∫
t1

f1 (τ, x1n, x2n) dτ + σ1

t∫
t1

x1ndB1(t),

if t1 ≤ t ≤ T

x2n+1(t) = x2(t1) +

t∫
t1

f2 (τ, x1n, x2n) dτ + σ2

t∫
t1

x2ndB2(t),

if t1 ≤ t ≤ T.

(80)

The above sequences are Picard sequences that in-
deed satisfying indeed under some conditions uni-
form equicontinuity and bounded, this lead to the
existence of a unique system of solutions. The de-
tailed proof will not be presented here. However,
a numerical scheme will be used to solve numer-
ically the above equation. For the classical case,
we shall adopt Heun’s method

x̃1n+1 = x1n + h [f1 (tn, x1n, x2n)] ,

x̃2n+1 = x2n + h [f2 (tn, x1n, x2n)] ,

x1n+1 = x1n +
h

2
[f1 (tn, x1n, x2n) + f1 (tn+1, x̃1n+1, x̃2n+1)] ,

x2n+1 = x2n +
h

2
[f2 (tn, x1n, x2n) + f2 (tn+1, x̃1n+1, x̃2n+1)] ,

(81)

replacing x̃1n+1 and x̃2n+1, we get

x1n+1 = x1n +
h

2
[f1 (tn, x1n, x2n)

+ f1 (tn+1, x1n + hf1 (tn, x1n, x2n))],

x2n+1 = x2n +
h

2
[f2 (tn, x1n, x2n)

+ f2 (tn+1, x2n + hf2 (tn, x1n, x2n))].

For the Caputo type, to avoid confusion, we define

x1(tn+1) = x1n+1, (82)

x2(tn+1) = x2n+1,

x1(t0) = x10,

x2(t0) = x20.

x1n+1 = x10 +
1

Γ (α)

n∑
j=0

∫ tj+1

tj

f1 (τ, x1, x2) (tn+1 − τ)α−1 dτ,

x2n+1 = x20 +
1

Γ (α)

n∑
j=0

∫ tj+1

tj

f2 (τ, x1, x2) (tn+1 − τ)α−1 dτ,

x1n+1 = x10 +
1

2Γ (α)

n∑
j=0

∫ tj+1

tj

[f1 (tj , x1j , x2j)

+ f1 (tj+1, x1j+1, x2j+1)] (tn+1 − τ)α−1 dτ,

x2n+1 = x20 +
1

2Γ (α)

n∑
j=0

∫ tj+1

tj

[f2 (tj , x1j , x2j)

+ f2 (tj+1, x1j+1, x2j+1)] (tn+1 − τ)α−1 dτ

(83)

x1n+1 = x10 +
hα

2Γ (α+ 1)

n−1∑
j=0

[f1 (tj , x1j , x2j) + f1 (tj+1, x1j+1, x2j+1)]

{(n− j + 1)α − (n− j)α}

+
hα

2Γ (α+ 1)
[f1 (tn, x1n, x2n) + f1 (tn+1, x̃1n+1, x̃2n+1)] ,

x2n+1 = x20 +
hα

2Γ (α+ 1)

n−1∑
j=0

[f2 (tj , x1j , x2j) + f2 (tj+1, x1j+1, x2j+1)]

{(n− j + 1)α − (n− j)α}

+
hα

2Γ (α+ 1)
[f2 (tn, x1n, x2n) + f2 (tn+1, x̃1n+1, x̃2n+1)] ,

(84)
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where

x̃1n+1 = x10 +
hα

Γ (α+ 1)

n∑
j=0

f1 (tj , x1j , x2j) {(n− j + 1)α − (n− j)α} ,

x̃2n+1 = x20 +
hα

Γ (α+ 1)

n∑
j=0

f2 (tj , x1j , x2j) {(n− j + 1)α − (n− j)α} .

(85)

Finally for the stochastic part, the following nu-
merical solution can be obtained

x̃1n+1 = x1n + hf1 (tn, x1n, x2n) + σ1x1n [B1n+1 −B1n] ,

x̃2n+1 = x2n + hf2 (tn, x1n, x2n) + σ2x2n [B2n+1 −B2n] ,

x1n+1 = x1n +
h

2
[f1 (tn, x1n, x2n) + f1 (tn+1, x̃1n+1, x̃2n+1)]

+ σ1x1n [B1n+1 −B1n] ,

x2n+1 = x2n +
h

2
[f2 (tn, x1n, x2n) + f2 (tn+1, x̃1n+1, x̃2n+1)]

+ σ2x2n [B2n+1 −B2n] .

(86)

8. Numerical simulations

In this section, we will deal with the numerical
simulation of the interpersonal model with the
piecewise differential operators and the numerical
scheme where the Lagrange polynomial interpo-
lation is used [22]. In the numerical scheme, the
first part is classical, the second part is stochas-
tic and the last part is fractional. The numeri-
cal simulations are shown in Fig. 1 for α = 1,
Fig. 2 for α = 0.97, Fig. 3 for α = 0.98, and
Fig. 4 is obtained for chaos for α = 1, Fig. 5
is obtained for chaos for α = 0.97, Fig. 6 is ob-
tained for chaos for α = 0.98. For all figures, den-
sity of randomness are taken as σ1 = 0.09, and
σ2 = 0.09. Also figures including the initial con-
ditions as x1(0) = −0.1 , x2(0) = 0.8. Also, for the
numerical simulations of the system we consider
the values of the parameters as follows:

α1 = 0.1, α2 = 0.01, β1 = 5.7, β2 = −1, ε = 0.01
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Figure 1. Numerical solutions for α = 1.
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Figure 2. Numerical solutions for α = 0.97.

0 0.5 1 1.5 2 2.5 3 3.5

x
1
(t)

5

10

15

20

25

30

35

40

45

50

x
2
(t

)

x
1

x
2

Figure 3. Numerical solutions for α = 0.98.

Figure 4. Numerical solutions for α = 1.
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Figure 5. Numerical solutions for α = 0.97.

Figure 6. Numerical solutions for α = 0.98.

9. Conclusion

In this work, a nonlinear differential equation was
taken into consideration, and the Caputo, sto-
chastic process, and piecewise differential oper-
ators were used in place of the classical differen-
tial operators. Through this work, we have looked
into the associated equilibrium points’ general ap-
proach to stability. We have derived the condi-
tions under which the system admits a singular,
unique system of solutions using the linear growth
and Lipschitz requirements. To solve this problem
numerically in the Caputo, stochastic, and piece-
wise cases, a numerical approach was adopted.
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