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1. Introduction

f(z)<g(2).
Let A be the family of functions of the form (2) (2)

If g is a univalent function in F, then

f(z):z—kianz", zeFl (1)
n=2

f(z) <g(2) & f(0)=g(0) and f(E) C g(E).
which are analytic in the open unit disk £ =
{z € C:|z| < 1} and let S denote the subclass of
A consisting of all univalent functions in E. With
a view to recalling the principal of subordination
between analytic functions, let f (z) and g (z) be
analytic functions in E. Then we say that the
function f (z) is subordinate to g (z) in E, if there
exits a Schwarz function w (z) , analytic in £ with

The famous coefficient conjucture Beiberbach
conjucture for the functions f € S of the
form was first presented by Beiberbach [1]
in 1916 and proven by de-Branges [2] in 1985.
In between the years 1916 and 1985, many
mathematicians worked to prove Beiberbach’s
conjucture. Consequently, they defined several
subclasses of S connected with different image
domains. Among these, the families $*,C and
K of starlike functions, convex functions, and
such that f(z) = g(w(z)). We denote this close-to-convex functions, respectively, are the
subordination by most fundamental subclasses of S and have a

w(0) =0and |w(z)| <1,(z € E)
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nice geometric interpretation. These families are
defined as follows:

—{fES:

:{fES:l—l—Z/—Z

1+2
1—2z

2f (2)
G

(2 € E)} (2)

We recall here which are connected with
trigonometric functions and are defined as folows:

Sein = {f €5

Csin_{feS 1+2J{((§) <1+sin(z),(z€ E

2f ()
f(z)

< 1+sin(z),(z€E)}

(
Rgn={f€8:f () <1+sin(2),(z € B)}
(

The class S, of analytic function defined in ({5)

was introduced by Cho et al. [3].

In the 1960s Pommerenke [4], [5] defined the
Hankel determinant H,,, (f)for a given f of the
form f as follows

Gnp, Gp4-1 Uptq—1
An+1 an+2 ... Un4q
HQJZ (f) - : : : Y
Un+qg—1 Qn+q An+4-2q—2

where ¢,n € N = {1,2,3,...} . In particular,

1 a9

2
Hoa(f) = o 2| =as—a,
as as
He2 (=1 o0 4 = agay — a3
and
1 a2 as
H3i(f)=1]a2 a3 a4
az a4 as

= as (a2a4 — a%) + a4 (agas — aq) + as (a3 — a%) .

The studies on Hankel determinants are
concentrated on estimating Ho o (f) and Hs 1 (f)
for different subclasses of S.The absolute sharp

bounds of the functional Hss (f) were found
in [6], [7] for each of the families S*,C, and R,
where the family R contains functions of bounded
turning. In [7] , Janteng et al. proved that
|Ha2 (f)] < 1 for S*and |Haa(f)] < % for
K,where S*and Kare very well known classes of
starlike and convex functions. The estimation
of the determinant |Hsj(f)| is very hard as
compared to deriving the bound of |Haza (f)].
The paper on |Hs i (f)| was given in 2010 by
Babalola [§], in which he obtained the upper
bound of Hs; (f) for the families of S*,C, and
R. Later on, many authors published their work
regarding |Hs (f)| for different subclasses of
univalent functions; see [9H16]. In 2017, Zaprawa
[17] improved the results of Babalola. In 2018,
Kowalczyk et al. [18] and Lecko et al. [19] obtained
the sharp inequalities:

[Hy ()] < 5z and |Hy (/)] <

O —

for the recognizable families K and S* (%),
respectively , where the symbol S* (%) stands
for the family of starlike functions of order %
Arif M. et al. [20] obtained the upper bound of
|H3 1 (f)|for the subclasses S% ,Csin and Rgy in
2019. In 2019, Shi et al. [21] investigated the
estimate of [Hg 1 (f)|for the subclasses S7,,.,Cecar
and R.q-in of analytic functions connected with
the cardioid domain. In 2019, Zaprawa [22]
studied the Hankel Determinant for Univalent

Functions Related to the Exponential Function.

For f € Ane N =1{0,1,2,,3,...}, the operator
D" f is defined by D™ : A — A [23]

Df (2) = f (2)
D" f(2) =2 [D"f (z)], ,z € E.

IffeA f(z)=z+>00,ar2",
2+ >0 ktagzk, 2 € E.

Letne N ={0,1,2,,3,...} and A > 0. We let DY
denote [24] the operator defined by

then D" f (2) =

Dy A— A DSf(2) = £ (2),
Dif(2) = (1= X)) DSf (2) + Az (D3 (2))
=(1=X) f(2)+Azf (2),

DY (2) = (1= A) DY f (2) + Az (D3 f (2))

We observe that DY is a linear operator and for
f(2) =243, apz*, we have [25]
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D)™ ayz®

S Ak -
k=2

Now, we define a subclass of analytic functions as
follows:

Definition 1. Let A >0, n € N ={0,1,2,3,...}
and f(z) is defined by (1). We define the classes
of SE‘A n) and C(y ) in the following way

z(DY f(z
C(A’n):{f65:1+w

ZANTE)) (fo(z))/ sin (z
Dy f (=) =<1+ sin ( )}

9)

and

NSz

< 1+sin (z)} .

(10)
In this present article, our aim is to investigate
the estimate of |Hao (f)| and |Hsq (f)| for the

subclasses S’a n) and C(y ny of analytic functions
related with sine function.

2. Auxiliary lemmas

Let P denote the family of all functions p which
are analytic in E with Re p(z) > 0 and has the
following series representation

p(2)=14+prz+pz®+ p32 + ...

oo
:1+anz”(z€E).

n=1

(11)

Here p(z) is called the Caratheodory function
126].

Lemma 1. ( /27]) Let p(z) € P. Then |p,| <
2, n=1,2,....

Lemma 2. ( (28], [29]) Let the function p(z) €
P be given by , then

2pp = p} + (4 - pi) (12)
for some z, x| <1, and
Aps = pi +2p1 (4 —pF) x —p1 (4 = p}) 2® (13)

+2 (4 - p) (1 - \l’lz) 7

for some complex value n, |n| < 1.

Lemma 3. ( 20/, |30]/) Let p(z) € P and has
the form then

p2 !p1!2
Al g 1
2| = 2

|Pnvar — ppnpi| < 2(142p) for p e R, (15)

(14)

‘pQ -

[Pk = mppp| <2, for0<n <1,  (16)

|pmPn —pkp| <4 form+n=Fk+1, (17)
and for complex number A, we have

[p2 — Api| < max{2,2|A —1}. (18)

For the results in 15)),(16),(17) see ( [31],

[32]) for the 1nequahty 1.'
Lemma 4. ([20/) Let p(z) € P and has the form

,then
|Jp? — Kpipa + Lps| (19)
<2 +2|K —2J|+2|T -~ K +1L]|.

3. Main results

3.1. The upper bound of the modules of
Hankel’s determinants for the
coefficients of functions belonging to
class S(*)\’n)

Theorem 1. If the function f (z) € S(/\ n) and of
the form , then
1 1
|(I2‘ < (1+)\)n7‘a3| = 2(1+2)\)
13 7
laa] < 36(1+3)\)”’| as| < 24 (1 +4\)"™

Proof. From the definition of the class SE‘)\,H), we

have
2 (D3 (2)) .
— - =1+sin(w(z 20
e (w() ()
where w is analytic in £ with w(0) = 0 and

|lw(z)] < 1,z € E. Consider a function p such
that

1+w(z)
1—w(z)
then p € P. This implies that

_p(z)—1
w(z)_p(z)—l—l_

p(z) = =14piz+p22 + ...

p1z 4+ poz? +p32d + ..
24 p1z+paz2 +p32d3 + ...

From , we can write
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2(D3 ()
Dy f(2)
2(1+2))"as — (1 +\)*" 2} 22

+[3(1+3N)"ay—

3(14+20)" (1 + \)" agas + (1 + 30" 3} 23
+41+4N)"as —4(1+3N)" (14 X)"azaq
+4(14 20" (14 2 d2a3 — 2 (1 4 2))*" a?
—(1+N"a3] 2+ .

+(1+N)"azz

(21)

After some simple calculations, we obtain
3 5
1 sin(u (2)) = 14w () - 20 (012)

7
@),
7

:1+%plz+( Tl)z +(458p§+p3 plpz) 3_|_

5) p‘f pips3 p% 4
2 opipy — ok 12 .. (22
< TPy Ty g ) T (22

From , and , it follows that

b1

S - 23
2 (1 + )" (23)
as = (24)
4(1 —l— 2)\
3
p1p2 V41
. 2
T 3,\ < 24) (25)
nip 5p pip2  p3
as 8(1+4/\) ( aiak vy vl f) :
(26)

Applying Lemma 1 in and , we obtain

D1 1
_ < d
'”"20+Awu+xwan
D2 1
’a3| = n N
10+207| = 21 +2n

If the expression is calculated by taking

J = -3, K =1, L=1in the inequality (19),
we obtain
laal = gy |~ 92l — apip2 + 3| (27)
_ 1
= 6(1+3\)"

2 1+21+1
24 4 12

- 1 L2 17 13
S 6(1+30" 12 3 12 T 36(1+3A)"

If the expression is calculated using the
Lemma 1 and inequality, we have

1

| 28
Ia5\_8( +4A)n (28)
1 2 1 p1|? 5 5
{2 P4 3101;03 +2 P4 2 + Y D2 6P1
< 7
24 (1 +4N)™

Taking A = 0,n = 0 in Theorem 1, we obtain the
following Corollary 1. |
Corollary 1. If the function f(z) € S, 0) = 5*
and of the form (I) then |as| < 1las| < 1, las| <
3 las| < 7.

Theorem 2. If the function f (z) € S()\ ny and of
the form , then

1

S 242" (29)

‘ a3 a2 }
Proof. To obtain the inequality, we will use
the expression . If equations and are

used,we can write

P2 _[(pl

2
2
jas = a3] A1+20" |2 1+)\)“]

. D2 _ p1
A(L4+20)" 414+
B 1 (142)N)" 4
4(1+2))" 1+ 07"
1 (1+2))"
S — {2 2’(1+A)2"_1‘}'

‘ 2

p2 —

Here, considering that

(14 2X)"
(1+ M)~

S1422< 14220+ A2 =22 >0,
1

= 2(1+2)\)"

<1=(1+20)" < (1+A)*

\% az}

1s written. O

Theorem 3. If the function f (z) € S(/\ and of

the form , then

|agas — ay] (30)
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_ 1 3v+v9r2+8v
< 1+A)”(1+2/\)” 9(1+3N)"™> 0<A< 4
- 13 A > 3v+vV9r2+8v
36(1+30)™ = 4

3=

Here, it is defined as v = (%) —1.

Proof. From , and , it follows that

Jat
i sn” -
asaz — as| =

1 1
<8(1+/\)"(1+2>\)" T 24(1+3>\)”) P1p2

_ p3
6(1+3N)"
(31)

If the expression is calculated by taking

1
/ 144 (14 3\
1 1
K = _
(8(1+/\)”(1+2)\)"+24(1+3)\)">’
1
L = - -
6(1+3\)"

in the inequality ,We obtain

1
= 72(1+3\)"
1 1
S(L+N"(1+2)0)" " 18(1+3\)"
1 17
'8 (T+ X" (1+20)"  144(143\)"

|a2a3 a4|

.

+2

Now, Let’s Look at the sign of m —

Wexpression. Let’s assume that
1 B 17
S1+N)"(1+20)"  144(1+3N)" —

With a simple calculation, we write

1 17
BV (120" = (143"
= 144 (14 30)" < 136 [(1 + A) (1 4 2\)]"

8(1 +3>\) <17(1 +3)\+2>\2)

= (17 ) <1+1+3/\:>( 7" *13124\??,\
If( ) —1=v then(ﬁ) —12>0. Thus, we
obta1ny<1%:‘3/\:>2)\2 3vA—v>0.

If this inequality is solved, we find

3v—vV9?% + 8v and 3v 4+ Vo2 + 8u
nd \y = )

A= A 1

Thus, since A > 0 must be, we get |agag — ag] <

L 1 3v+V0u? 1 8v
ST AT~ aagan™ 0 S A S S
__13 A\ > SvtVorZisy
36(1+30)" > 1
O
Theorem 4. If the function f (z) € S(/\ and of
the form , then
|Hapz (f)| = |azas — ] (32)

13 1
36 (L+N)" (L4+30)" " 4(1420)>"

Proof. From , and , it follows that

2
‘a2a4 — a3‘
p1p _ pip2
(1+)\)"(1+3)\)" 48(1+1)" (1+3/\)
_ r3
288(1—1-/\) (1+3/\)" 16(1+2X1)2"

If the triangle inequality is applied to this last
equation, we obtain

2
asay — a3‘
|p1] — b Lt
< 2a+N) " (1r3n” |P3 24
< 2
- ‘ 16(1+20)%"

(19) according to inequality, we can write

_pnpe P
4 24
=gl +2 5 + !}
< PR
13
< —.
- 6

Thus , we obtain |a2a4 — a§| <

{;.L@r;}
FNTABN" 6 " 114N

13 1
= 36N (113N T 4(142X0)%"" U

Theorem 5. If the function f (z) € S(/\ ny and of
the form , then
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( 13
36(1+3f\)"(1+)\)”(1+2)\)”

_l’_

8(1+2))3"
( 13)

N 324(1+3,\)2"

+48(1+4)\ %1+2)\ )t

7201130 (1T+X) " (1+20)"
L1

_l’_

[H3 (1)] <

8(14+21)3"
169

1296(1+3/\)2”

A > 3v+v9 1/2+8v
(33)

+48(1+4)\) Ty

1
Here, it is defined as v = (%)E —1.

Proof. If the absolute value of both sides of the
expression

Hs (1) =as (a2a4 - ag) — a4 (ag — agas)
+as (a3 — a3)

is taken and the triangle inequality is applied, we
can write

|H3 (1)| < |as| |azas — a3| + |aa| |as — azas]

+ |as| \613 — a%‘-

In this last inequality, if the upper bound
expressions discussed in Theorem 1, Theorem 2,
Theorem 3, and Theorem 4, are written instead
of and necessary operations are done, we obtain

13
36(1+3N) " (1+ 0" (120"
L1

8(14+2))3"
_ 13
324(1+3,\)2"
2
+ = ) < A < 31/+\/9V +8v
|H3 (1)| < 48(1+4)\ %1+2>\ ’
72(1+3/\ AN (142N
8(1+2,\)3"
+ 169
1296(1+3))2"
7 . 3v+v9r2+8v
Ty A 2 1
. . 18 l
Here, it is defined as v = (ﬁ)" — 1. O

3.2. The upper bound of the modules of
Hankel’s determinants for the
coefficients of functions belonging to
class Oy -

Theorem 6. If the function f(z) € Cinp and
of the form

las] <

then lag] <
|as| <

1
s 193]

__1 __ 13 ___T
6(1+2)\ ) 144(1+3/\ )T 120(1+4N)" "

0< A< 3u+\/9u2+8v

Proof. From the definition of the class C(y ), we
have

DTL
1y ZDRF @) —ltsin(w(z)  (34)
(DRf(2))
where w is analytic in E with w(0) = 0 and
lw(z)] <1,z € E.
From , we can write
1+u71+2(1+)\) agz
(D3(2))
1614+ 20)" a5 — 4(1+ \)" a3 22
FI2(1+ 30" a4
—18 (1 + )\)n (1 + 2)\)” a2as3
8 (1 4+ A)%" a%} B1[20(1+4\)"a
—32 (1 + )\)n (1 + 3)\)” aoQy
—18 (1 + 20)*" a3 (35)
+48 (1 4+ A (1 4+ 20)" d2as
16 (1+ N 4} A
From and , it follows that
p1
=2 __ 36
T YL (36)
D2
BT a2 (37)
1 pip2 Pl
=~ (p 22N 38
YRS SNL (p3 T o) O
_ 1 P1P 5p1  pip2  p3
a5 = Jo(1+an" (p4 S vr 7 i f) :
(39)
Applying Lemma 1 in and , we obtain
P1 1
< 40
laz] < ‘4(1+)\)” SISV
and
P2 1
< < . 41
‘“3’—‘12(1+2A)" Ssazoyp W

If the expression is calculated by taking

J = 24, K = %, L =1 in the inequality ,
we obtain

las] < __t - —ip:{’ — 1p1pz + p3
24(1+3\)"| 24 4
13

< -
= 144 (1+ 30"

If the expression is calculated using the
Lemma 1 and inequality, we have
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1
sl S waray (2
{ % ‘p p1p3‘ }
+3 |p4 “ﬂb|+‘m“ — §0i]
B 7
1201 44N
0

Theorem 7. If the function f (z) € C() ) and of
the form , then

1

“caroy W

|as — aﬂ

Proof. To obtain the inequality (43]) we will use

the expression . If equations (36)) and are
used,we can write
|as — a3
2
_ P2 _ pP1
12(1+20)" [4(1—1—)\)"}
1 3(1+2\)"
< nmax{m B2 }
12 (1 + 2)) 4(1+N)"
3(1+20)" .
Here RSN < 1. Thus, since
maX{Z 2 ‘4&13‘3” — 1‘} = 2, the desired

result is obtained in the form of ‘ag —a%‘

1
612N " O

Theorem 8. If the function f (z) € Cy ) and of
the form , then

| 13
— aa| < wEEyrEEEYyT T masyT

(44)
Proof. From , and , it follows that

|a2a3

|a2a3 — a4]
pip2
BN (120"
= 3
1 Py pip2
Ty (24 + 71 p3)

If the triangle inequality is applied to this last
equation, we write

Iagag—a4|
|p1Hp2’
= %O+M"O+MW
1 p1 D1P2
Toraantaa Ty T8

According to the inequality, it is thought that

3
b1 | P1ip2
oy Ty P8
2\1!+2\—1—1|}
< 24 1712
< { Blg 4]
13
< _
= %

can be written and if Lemma 1 is taken into
account, we find

lagaz — a4|
[p1]|p2] 1 ﬁ pip2
S marntaeen” T aaagenyT (24 T T —P3

BN @2n” T T E”

Theorem 9. If the function f (z) € C(y ) and of
the form , then

) 13
a3’ < BTN (143" T 36(1—1—2)\)2”'

(45)

|a2a4

Proof. From , and , it follows that

‘a2a4 — a%‘

P1p3 _ pip2
96(1T+N)" (130" — 384(1+N)" (1+3)\)
R i _ 5
2304(1T+X) " (T+3X)"  144(1+2X)2"

If the triangle inequality is applied to this last
equation, we write

‘a2a4 — a%‘

|p1]
(1+>\g (1+30)"™
P1p2

‘p3 144 1+2,\)2"

According to the inequality, it is thought that

_P1p2_ﬁ
4 24
1 1 1 1 1
< 92|—=|+2 —|+2 ——+1
_{‘24+‘4+12+‘24 4+‘}
13
< —
- 6

can be written and if Lemma 1. is taken into

account, we find

‘a2a4 — a%‘

2 13, _ 1
< {96(1+)\)"(1+3)\)" 5 T 36(1+2/\)2"}

13 1
288(1+ M) (1+3N)" + 36(1+20)%"" -

IN
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Theorem 10. If the function f(z) € C() ) and
of the form , then

13 1
[Hs (1)] < AN (LN (" T 216(142)%"
20736(1430)%" | T20(1+4N)" (1+20)" "

Proof. The proof of this theorem is similar to the

one in Theorem 5. Il
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