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1. Introduction

The nonlinear Schrödinger equation (NLSE) de-
scribes the behavior of wave packets in weakly
nonlinear media. It is an adaptable model
to many disciplines in applied sciences such as
dynamical systems, materials science, nonlin-
ear optics, fluid dynamics, astrophysics, parti-
cle physics, and nonlinear transmission networks.
NLSE represents the evolution of optical waves in
a nonlinear fiber, various biological systems, and
the price of options in economics [1].

In the present paper, we consider a specific case
of the following Schrödinger equation

ε
∂u

∂τ
+R2(ς, τ, u)

∂2u

∂ς2
+

R1(ς, τ, u)
∂u

∂ς
+R0(ς, τ, u)u = 0, (1)

where ε = const., u(ς, τ) is the wave’s com-
plex amplitute. The coefficients Rj(ς, τ, u) for
j = 0, 1, 2 describe the variation of the medium.

If the functions Rj depend on u(ς, τ), it shows
that the medium has the nonlinear properties [2].
Linear and nonlinear Schrödinger equations are
obtained from equation (1) with respect to the
characteristics of the coefficients Rj(ς, τ, u) for
j = 0, 1, 2 and ε = i.

Optimal control problems (OCPs) arise in many
branches of science. They have numerous applica-
tions in optics, medical imaging, geophysics, sys-
tem identification, communication theory, astron-
omy, medicine [3–11].

As it is known, in the OCPs, there is an objec-
tive functional, a controlled system, and a set
of admissible controls. The objective function-
als can be diversely chosen with regard to our
purpose such as final, boundary or Lions-type
functional [12]. In the studies [13–22], the objec-
tive functional is considered as a final functional
and the controlled system is generally stated by
the Schrödinger equation. In [23–27], the OCPs
with Lions functional has been studied and the
controlled system is stated by linear or nonlin-
ear Schrödinger equations. Also, in [28–30], the
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OCPs for systems whose state is expressed by
the Schrödinger equation with the boundary func-
tional has been studied.

In this paper, we consider an OCP with Lions
functional for NLSE derived from (1). It is proved
that the OCP has a unique solution and the ob-
jective functional is Frechet differentiable. Also,
by proving the continuity of the gradient of the
objective functional, a necessary optimality con-
dition is obtained.

Differently from the previous studies, in this pa-
per, we analyze the solution of the OCP for NLSE
derived from (1) for R2 = R2(ς, τ), R1 = R1(ς, τ),
R0(ς, τ, u) = R0(ς, τ, u) with different coefficients
which are in the larger space than previous works.

2. The statement of optimal control
problem

The OCP is the problem of finding the minimum
of the objective functional

Jα(p) = ||u1 − u2||2L2(Ω) + α||p− w||2L2(I)
(2)

subject to

i
∂u1
∂τ

+ a0
∂2u1
∂ς2

+ ia1(ς)
∂u1
∂ς

−

a2(ς)u1 + p(ς)u1 + ia3|u1|2u1 = f1, (3)

u1(ς, 0) = ϑ1(ς), ς ∈ I,
u1(0, τ) = u1(l, τ) = 0, τ ∈ (0, T )

}
(4)

and

i
∂u2
∂τ

+ a0
∂2u2
∂ς2

+ ia1(ς)
∂u2
∂ς

−

a2(ς)u2 + p(ς)u2 + ia3|u2|2u2 = f2, (5)

u2(ς, 0) = ϑ2(ς), ς ∈ I,
∂u2
∂ς (0, τ) =

∂u2
∂ς (l, τ) = 0, τ ∈ (0, T )

}
(6)

on admissible controls set

P ≡ {p ∈ L2(I) : |p(ς)| ≤ b0 for almost all ς ∈ I} ,

where ς ∈ I = (0, l) , τ ∈ Q = [0, T ], i =
√
−1.

Let Ω = I×(0, T ), Ωτ = I×(0, τ), Ω̃τ = I×(τ, T )
and a0, a3, b0 > 0 are given real numbers, a1(ς),
a2(ς), ϑ1, ϑ2, f1, f2 are functions which satisfy
the conditions, respectively

|a1(ς)| ≤ µ1,
∣∣∣da1(ς)dς

∣∣∣ ≤ µ2 for almost all ς ∈ I,

a1(0) = a1(l) = 0, µ1, µ2 = const. > 0,

}
(7)

0 < µ3 ≤ a2(ς) ≤ µ4 for almost all ς ∈ I,

µ3, µ4 = const. > 0,
(8)

ϑ1 ∈ W̊ 2
2 (I), ϑ2 ∈ W 2

2 (I),
∂ϑ2(0)

∂ς = ∂ϑ2(l)
∂ς = 0,

fr ∈ W 0,1
2 (Ω) for r = 1, 2,

}
(9)

where Wm
s (I),Wm,n

s (Ω), W̊m
s (I) for m ≥ 0, s ≥ 1

are Sobolev spaces. These Sobolev spaces are in
detail explained in [31]. Also, α ≥ 0 is a Tikhonov
regularization parameter [32] and w ∈ L2(I) is a
given element.

Since the solutions of (3)-(4) and (5)-(6) evidently
depend on p, we denote ur = ur(ς, τ) ≡ ur(ς, τ ; p)
for r = 1, 2.We are interested in solutions of prob-
lems (3)-(4) and (5)-(6) in the following sense:

Definition 1. A function u1 ∈ U1 ≡
C0(Q, W̊ 2

2 (I)) ∩C1(Q,L2(I)) is said to be a solu-
tion of problem (3)-(4), if it holds (3) for almost
all ς ∈ I and any τ ∈ Q, (4) for almost all ς ∈ I
and for almost all τ ∈ (0, T ), respectively.

Definition 2. A function u2 ∈ U2 ≡
C0(Q,W 2

2 (I)) ∩C1(Q,L2(I)) is said to be a solu-
tion of problem (5)-(6), if it holds (5) for almost
all ς ∈ I and any τ ∈ Q, (6) for almost all ς ∈ I
and for almost all τ ∈ (0, T ), respectively.

In the definitions above, for any nonnegative in-
teger k, Ck(Q,B) is the Banach space of all
B−valued, k times continuously differentiable
functions on Q with the norm

||u||Ck(Q,B) =
k∑

m=0

max
0≤t≤T

||d
mu(t)

dtm
||B

for u ∈ Ck(Q,B).

By the methodology in [33], we can readily prove
the theorem below:

Theorem 1. Assume that a1, a2, ϑr, fr for
r = 1, 2 satisfy the conditions (7), (8) and (9),
respectively. Then, problems (3)-(4) and (5)-(6)
for each p ∈ P have unique solutions u1 ∈ U1,
u2 ∈ U2, respectively, and the functions u1, u2 sat-
isfy the estimates

||u1(., τ)||2W̊ 2
2 (I)

+

∥∥∥∥∂u1∂τ

∥∥∥∥2
L2(I)

≤ (10)

c1

(
||ϑ1||2W̊ 2

2 (I)
+ ||f1||2W 0,1

2 (Ω)
+ ||ϑ1||6W̊ 1

2 (I)

)
,
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||u2(., τ)||2W 2
2 (I)

+

∥∥∥∥∂u2∂τ

∥∥∥∥2
L2(I)

≤ (11)

c2

(
||ϑ2||2W 2

2 (I)
+ ||f2||2W 0,1

2 (Ω)
+ ||ϑ2||6W 1

2 (I)

)
,

for any τ ∈ Q, where the constants c1, c2 > 0 are
independent from ϑ1, f1, ϑ2, f2 and τ.

For simplicity, let’s rewrite problems (3)-(4) and
(5)-(6) in the form

i
∂ur
∂τ

+ a0
∂2ur
∂ς2

+ ia1(ς)
∂ur
∂ς

−

a2(ς)ur + p(ς)ur + ia3 |ur|2 ur = fr (12)

for r = 1, 2,

ur(ς, 0) = ϑr(ς), ς ∈ I for r = 1, 2, (13)

u1(0, τ) = u1(l, τ) = 0, τ ∈ (0, T ) ,
∂u2(0,τ)

∂ς = ∂u2(l,τ)
∂ς = 0, τ ∈ (0, T ) .

}
(14)

Thus, the OCP is to minimize the objective func-
tional (2) on P under conditions (12)-(14).

3. The solvability of optimal control
problem

In this section, we show that the OCP has a
unique solution on a dense subset of L2(I) and
it has at least one solution on L2(I).

Lemma 1. The functional J0(p) = ||u1−u2||2L2(Ω)

is continuous on P.

Proof. Suppose ur = ur(ς, τ ; p) and urδ =
ur(ς, τ ; p + δp) for r = 1,2 are solutions of prob-
lem (12)-(14) corresponding to p ∈ P , p+δp ∈ P,
respectively, where δp ∈ L∞ (I) is an increment
of any p ∈ P. Then, for r = 1, 2, the functions
δur ≡ ur(ς, τ ; p+ δp)−ur(ς, τ ; p) hold the bound-
ary value problem

i
∂δur
∂τ

+ a0
∂2δur
∂ς2

+ ia1(ς)
∂δur
∂ς

−

a2(ς)δur + (p(ς) + δp(ς))δur +

ia3
[(
|urδ|2 + |ur|2

)
δur
]
+ (15)

ia3urδur (δur) = −δp(ς)ur,

δur(ς, 0) = 0, ς ∈ I, r = 1, 2, (16)

δu1(0, τ) = δu1(l, τ) = 0, τ ∈ (0, T )
∂δu2(0,τ)

∂ς = ∂δu2(l,τ)
∂ς = 0, τ ∈ (0, T ) .

}
(17)

Now we multiply both sides of equation (15) by
δur for r = 1,2, and integrate over Ωτ . If we sub-
tract their complex conjugates from equalities ob-
tained with the help of integration by parts and
use condition (16), we get

∥δur(., τ)∥2L2(I)
+

∫
Ωτ

∂

∂ς

(
a1(ς) |δur|2

)
dςdt+

2a3

∫
Ωτ

|δur|2
(
|urδ|2 + |ur|2

)
dςdt+

2a3

∫
Ωτ

Re
(
urδur(δur)

2
)
dςdt = (18)

−2

∫
Ωτ

Im (δpurδur) dςdt+

∫
Ωτ

∂a1(ς)

∂ς
|δur|2 dςdt.

Using conditions (7), (17) and Young’s inequality
in (18),we obtain

∥δur(., τ)∥2L2(I)
+

a3

∫
Ωτ

|δur|2
(
|urδ|2 + |ur|2

)
dςdt ≤ (19)

(1 + µ2)

∫
Ωτ

|δur|2 dςdt+
∫
Ωτ

|δp|2 |ur|2 dςdt.

Since a3 > 0 and
∫
Ωτ

|δp|2 |ur|2 dςdt ≤

∥δp∥2L∞(I)

(
T∫
0

∥ur(., t)∥2L2(I)
dt

)
, from (19) by

virtue of estimates (10) and (11) we get

∥δur(., τ)∥2L2(I)
+

a3

∫
Ωτ

|δur|2
(
|urδ|2 + |ur|2

)
dςdt ≤ (20)

c3 ∥δp∥2L∞(I) , r = 1, 2

for any τ ∈ Q, where the positive constant c3 does
not depend on δp and τ.

Using formula (2) for α = 0, we obtain

δJ0(p) = J0(p+ δp)− J0(p) =

2

∫
Ω

Re [(u1 − u2) (δu1 − δu2)] dxdt+

∥δu1∥2L2(Ω) + ∥δu2∥2L2(Ω) − (21)

2

∫
Ω

Re (δu1δu2) dxdt

which implies that
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|δJ0(p)| ≤ 2 ∥u1∥L2(Ω) ∥δu1∥L2(Ω) +

2 ∥u1∥L2(Ω) ∥δu2∥L2(Ω) +

2 ∥u2∥L2(Ω) ∥δu1∥L2(Ω) +

2 ∥u2∥L2(Ω) ∥δu2∥L2(Ω) +

2 ∥δu1∥2L2(Ω) + 2 ∥δu2∥2L2(Ω) .

If we use estimates (10), (11), (20) in the inequal-
ity above, we get the inequality

|J0(p+ δp)− J0(p)| ≤

c4

(
∥δp∥L∞(I) + ∥δp∥2L∞(I)

)
for any p ∈ P, where c4 is a positive constant inde-
pendent from δp. Thus, we obtain that |δJ0(p)| →
0 as ∥δp∥L∞(I) → 0 for any p ∈ P, which con-

cludes the proof. □

Theorem 2. Let Theorem 1 be satisfied and w ∈
L2(I). Then, there exists a dense subset V ⊂
L2(I) such that OCP has a unique solution for
any w ∈ V and α > 0.

Proof. From Lemma 1, J0(p) is a lower semicon-
tinuous functional. Also, it is clear that J0(p)
is lower bounded. As known, L2(I) is a uni-
formly convex Banach space. Furthermore, P is a
closed, bounded subset of L2(I). Therefore, based
on Theorem 4 in [34] we can say that the OCP has
a unique solution on a dense subset V ⊂ L2(I).
This completes the proof. □

Theorem 3. Let w ∈ L2(I) be a given function
and α ≥ 0. Also, assume that Theorem 1 is satis-
fied. Then, the OCP has at least one solution.

Proof. The proof of Theorem 3 is carried out as
in [22]. □

4. The gradient of functional and a
necessary optimality condition

In this section, we introduce the adjoint problem
to investigate the differentiability of the objec-
tive functional and get a formula for its gradient.
Finally, a necessary optimality condition for the
OCP is derived.

By using Lagrange multiplier functions, we obtain
the adjoint problem as follows:

i
∂ηr
∂τ

+ a0
∂2ηr
∂ς2

+ i
∂

∂ς
(a1(ς)ηr)−

a2(ς)ηr + p(ς)ηr − 2ia3|ur|2ηr + (22)

ia3u
2
r η̄r = 2(−1)r (u1 − u2) for r = 1, 2,

ηr(ς, T ) = 0 for r = 1, 2, ς ∈ I, (23)

η1(0, τ) = η1(l, τ) = 0, τ ∈ (0, T ) ,
∂η2
∂ς (0, τ) =

∂η2
∂ς (l, τ) = 0, τ ∈ (0, T ) ,

}
(24)

where the functions ur = ur(ς, τ) are solutions
of problem (12)-(14) for any p ∈ P . It can be
seen that the adjoint problem (22)-(24) includes
the two boundary value problems. One of them
is a Dirichlet problem with respect to η1 and the
other is a Neumann problem with respect to η2.
If we use transform t = T −τ to the adjoint prob-
lem, we come to the conclusion that the adjoint
problem is in the form of problem (12)-(14). As
a solution of (22)-(24), we consider two functions
η1(ς, τ) ∈ U1, η2(ς, τ) ∈ U2 satisfying equation
(22) for almost all ς ∈ I and any τ ∈ Q, the
condition (23) for almost all ς ∈ I and the condi-
tions (24) for almost all τ ∈ (0, T ) , respectively.
Hence, we can state the validity of the following
theorem for the solution of the adjoint problem
(22)-(24):

Theorem 4. Let the assumptions of Theorem 1
be fulfilled. Then adjoint problem (22)-(24 ) has
a unique solution η1 ∈ U1, η2 ∈ U2 for any p ∈ P
and the following estimates hold

||η1(., τ)||2W̊ 2
2 (I)

+

∥∥∥∥∂η1∂τ

∥∥∥∥2
L2(I)

≤

c5 ∥u1 − u2∥W 0,1
2 (Ω)

, (25)

||η2(., τ)||2W 2
2 (I)

+

∥∥∥∥∂η2∂τ

∥∥∥∥2
L2(I)

≤

c6 ∥u1 − u2∥W 0,1
2 (Ω)

(26)

for any τ ∈ Q, where the positive constants c5, c6
do not depend on τ.

This theorem can be easily proved by the
Galerkin’s method similarly to the proof of The-
orem 1.

Now, let’s get the enhancement δJα(p) = Jα(p +
δp) − Jα(p) of Jα(p) for any p ∈ P, where δp ∈
L∞ (I) is an increment given to any p ∈ P such
that p+δp ∈ P . If we use formula (2), we achieve

δJα(p) =

∫
Ω

δp(ς)Re(u1η1)dςdτ +

∫
Ω

δp(ς)Re(u2η2)dςdτ + (27)

2α

l∫
0

(p− w) δpdς +R,
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where

R =

∫
Ω

δp(ς)Re(δu1η1)dςdτ +

∫
Ω

δp(ς)Re(δu2η2(ς, τ))dςdτ +

∥δu1∥2L2(Ω) + ∥δu2∥2L2(Ω) −

a3

∫
Ω

(|u1δ|2 − |u1|2)Im(δu1η̄1)dςdτ −

a3

∫
Ω

(|u2δ|2 − |u2|2)Im(δu2η̄2)dςdτ −

a3

∫
Ω

|δu1|2Im (u1η̄1) dςdτ −

a3

∫
Ω

|δu2|2Im (u2η̄2) dςdτ + α ∥δp∥2L2(I)

and δur ≡ ur(ς, τ ; p+ δp)− ur(ς, τ ; p) for r = 1, 2
hold problem (15) for any p ∈ P. By Young’s in-
equality for the term R, we get

|R| ≤ 5

2
∥δu1∥2L2(Ω) +

5

2
∥δu2∥2L2(Ω) +

α ∥δp∥2L2(I)
+

T

2

(
max
0≤τ≤T

∥η1(., τ)∥2L∞(I)

)
∥δp∥2L2(I)

+

T

2

(
max
0≤τ≤T

∥η2(., τ)∥2L∞(I)

)
∥δp∥2L2(I)

+

a3

∫
Ω

(
|u1δ|2 + |u1|2

)
|δu1|2 dςdτ +

a3

∫
Ω

(
|u2δ|2 + |u2|2

)
|δu2|2 dςdτ +

a3

T∫
0

∥η1(., τ)∥2L∞(I) ∥δu1(., τ)∥
2
L2(I)

dτ +

a3

T∫
0

∥η2(., τ)∥2L∞(I) ∥δu2(., τ)∥
2
L2(I)

dτ +

1

2
a3

T∫
0

∥u1(., τ)∥2L∞(I) ∥δu1(., τ)∥
2
L2(0,l)

dτ +

1

2
a3

T∫
0

∥u2(., τ)∥2L∞(I) ∥δu2(., τ)∥
2
L2(I)

dτ.

In the inequality above, if we use estimates (10),
(11), (20), (25), (26) and the well known inequal-
ity in [31]

∥u(., τ)∥2L∞(I) ≤

β2

∥∥∥∥∂u(., τ)∂ς

∥∥∥∥
L2(I)

∥u(., τ)∥L2(I)
, (28)

β2 = const. > 0

for any τ ∈ Q, we achive

|R| ≤ c7 ∥δp∥2L2(I)
≤ c8 ∥δp∥2L∞(I)

which shows that R = o
(
||δp||L∞(I)

)
, that is,

lim
||δp||L∞(I)→0

R
|δp||L∞(I)

= 0, where the constants

c7, c8 > 0 are independent from δp and τ. So,
from (27), we can write

δJα(p) =

l∫
0

 T∫
0

Re(u1η1 + u2η2)dτ

 δp(ς)dς +

l∫
0

2α (p− w) δp(ς)dς + o
(
||δp||L∞(I)

)
which implies that

J ′
α(p) =

T∫
0

Re(u1η1+u2η2)dτ+2α (p− w) . (29)

Consequently, the differentiability of Jα(p) in the
meaning of Frechet is shown and the next theorem
is proved:

Theorem 5. Let w ∈ L2(I) be a given function.
Assume that the conditions of Theorem 4 are sat-
isfied. Then, Jα(p) is a differentiable functional
on P and moreover, its gradient is given by for-
mula (29).

Lemma 2. The functional J ′
α(p) is continuous

on P.

Proof. Let’s prove that |J ′
α(p+ δp)− J ′

α(p)| −→
0 as ∥δp∥L∞(I) −→ 0 on the set P. Using formula

(29), we get
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J ′
α(p+ δp)− J ′

α(p) =
T∫
0

Re (u1δδη1 + u2δδη2) dτ + (30)

T∫
0

Re (δu1η1 + δu2η2) dτ + 2αδp(ς),

where the functions δηr = δηr(ς, τ) ≡ ηr(ς, τ ; p+
δp)− ηr(ς, τ ; p) for r = 1, 2 satisfy the problem

i
∂δηr
∂τ

+ a0
∂2δηr
∂ς2

+ i
∂ (a1(ς)δηr)

∂ς
−

a2(ς)δηr + (p(ς) + δp(ς))δηr = −δpηr −
ia3
(
2|urδ|2ηrδ − u2rδηrδ

)
+

ia3
(
2|ur|2ηr − u2rηr

)
+ 2(−1)r (δu1 − δu2) ,

δηr(ς, T ) = 0, ς ∈ I, r = 1, 2,

δη1(0, τ) = δη1(l, τ) = 0, τ ∈ (0, T )

∂δη2
∂ς

(0, τ) =
∂δη2
∂ς

(l, τ) = 0, τ ∈ (0, T ) .

For this problem, as similar to obtain of inequality
(20), we get the estimate

∥δηr(., τ)∥2L2(I)
+

a3

∫
Ω̃τ

|urδ|2|δηr|2dςdτ ≤ c9 ∥δp∥2L∞(I) (31)

for any τ ∈ Q and r = 1, 2. From (30), we get

∣∣J ′
α(p+ δp)− J ′

α(p)
∣∣ ≤

T∫
0

|u1δ| |δη1| dτ +

T∫
0

|u2δ| |δη2| dτ +

T∫
0

|δu1| |η1| dτ +

T∫
0

|δu2| |η2| dτ +

2α |δp(ς)|

which is equivalent to

∥∥J ′
α(p+ δp)− J ′

α(p)
∥∥2
L2(I)

≤

5T ∥u1δ∥2L∞(Ω)

T∫
0

∥δη1∥2L2(I)
dτ +

5T ∥u2δ∥2L∞(Ω)

T∫
0

∥δη2∥2L2(I)
dτ +

5T ∥η1∥2L∞(Ω)

T∫
0

∥δu1∥2L2(I)
dτ +

5T ∥η2∥2L∞(Ω)

T∫
0

∥δu2∥2L2(I)
dτ +

20α2 ∥δp∥2L2(I)
.

In inequality above, using estimates (10), (11),
(20), (25), (26), (31) and inequality (28) we get

∥∥J ′
α(p+ δp)− J ′

α(p)
∥∥2
L2(I)

≤

c10 ∥δp∥2L∞(I) for any p ∈ P

which implies that

∣∣J ′
α(p+ δp)− J ′

α(p)
∣∣ −→ 0 as ∥δp∥L∞(I) −→ 0,

where the constants c9, c10 > 0 are independent
from δp and τ. Thus, the proof is completed. □

Theorem 6. Presume that the Theorem 5 and
Lemma 2 hold and let p∗ = p∗(ς) be a solution of
the OCP. Then, the inequality

l∫
0

 T∫
0

Re(u∗1η
∗
1 + u∗2η

∗
2)dτ

 (p− p∗) dς +

l∫
0

(2α (p∗ − w)) (p− p∗) dς ≤ 0

is valid for any p ∈ P, where the functions u∗r and
η∗r , r = 1, 2 are solutions of (12)-(14) and the
adjoint problem corresponding to p∗ ∈ P, respec-
tively.

Proof. It is clear that the functional Jα(p) is the

sum of the functionals J0(p) and α ∥p− w∥2L2(I)
.

Since α ∥p− w∥2L2(I)
is a continuous functional on

P, from Lemma 1, we deduce that the functional
Jα(p) is continuous on the set P. Also if we take
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into account Lemma 2, we say that Jα(p) is a con-
tinuous differentiable functional on the convex set
P. Thus, by virtue of known theorem in [35], if the
functional Jα(p) has a minimum value at p∗ ∈ P,
then (

J ′
α(p

∗), p− p∗
)
L2(I)

≥ 0 for any p ∈ P

which concludes the proof. □

5. Conclusions

In this study, we examined an optimal control
problem for a system whose state is expressed by
the nonlinear Schrödinger equation. We regard
Lions functional as the objective functional. As
it is seen from the definition of P, the admissi-
ble controls set contains the measurable bounded
functions from L2(I). We have shown the ex-
istence and uniqueness of the solution to the
optimal control problem. By means of an ad-
joint problem, we demonstrated that the objective
functional is differentiable in the sense of Frechet.
Finally, by proving that the objective functional
is a continuously differentiable functional on the
set of admissible controls, we derived a necessary
optimality condition for the optimal control prob-
lem.

As a future direction, we will consider the opti-
mal control problem, in which the set of admissi-
ble controls will be chosen from the wider class of
functions.
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