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In this study, the mathematical model through incommensurate fractional-
order differential equations in Caputo meaning are presented for time-
dependent variables given as the numerical aperture, critical angle, and accep-
tance angle characteristics of a fiber optic cable with electro-optical cladding.
The qualitative analysis including the existence and stability of the equilibrium
points of the proposed model has been made according to the used parame-
ters, and then, the results obtained from this analysis are supported through
numerical simulations by giving the possible values that can be obtained from
experimental studies to these parameters in the model. In this way, a stable
equilibrium point of the system for the core refractive index, cladding refractive
index and electrical voltage is obtained according to the threshold parameter.
Thus, the general formulas for the critical angle, acceptance angle and numer-
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1. Introduction

Optical fibers are referred to as the waveguide
used for light transmission [1]. The light sig-
nal includes modulated information and is car-
ried over the glass surface due to the structure
of the fiber [2]. Modern optical fibers consist of
two coaxial glass cylinders, consisting of the outer
layer called cladding and the inner layer called
the essence with a larger refractive index [3]. The
structure of the optical fiber is depicted in Figure
1.

The phenomenon of total internal reflection is a
necessary condition for the transmission of light
within the waveguide. Otherwise, efficient trans-
mission does not occur, that is, the light passes to
the external environment. Furthermore, gauges
such as optical fibers’ refractive index profiles,
structures, the number of modes they support,
signal processing capabilities, distribution, and

polarization can also classify them. The phenom-
enon of total reflection can be explained by Snell’s
law, which represents the phenomenon of beam
optics at the interface separating two different me-
dia [1] and is expressed as n1sin∅1 = n2sin∅2 .

Figure 1. The basic structure of the
optical fiber.

When a light beam encounters an interface sep-
arating two different environments, some of the
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light is reflected in the first environment and the
rest passes to the second medium. This is be-
cause the speed of light is different in the two
environments. Figure 2 shows the behavior of
the light beam when it encounters the interface.
Here, the relationship between refractive indices
is n1 > n2 [4–6].

Figure 2. The behavior of the light
beam encountering an interface.

Assuming that the angle of refraction is 90o, the

expression ∅c = sin−1
(
n2
n1

)
is reached and ∅c is

known as the critical angle [7,8]. If the angle of ∅1
made by the incoming beam with the normal of
the interface is greater than the critical angle, the
total internal reflection criterion is met and the
light is reflected back to the initial environment
at exactly the same angle [7–9]. The refractive
indices, critical angle, acceptance angle, and ac-
ceptance cone of the core, cladding, and external
environment on the fiber optic cable operating on
the total reflection principle are stated are Figure
3.

Figure 3. The refractive indices,
critical angle, acceptance angle and
acceptance cone of the core, cladding
and external environment on the fiber
optic cable.

One of the parameters that determine the per-
formance of optical fibers is the numerical aper-
ture (NA), whose formula is NA = n0sinθa =(
n2
1 − n2

2

)1/2
[7]. Here θa is the angle of accep-

tance [8]. NA is the capacity to capture light
rays of different angles entering the fiber optic

cable. The larger the NA magnitude, the more
light beams travel through the fiber. Fibers have
a certain angle of acceptance, and this angle
varies depending on the refractive index of the
core, cladding, and medium from which the light
comes. Fiber optic cable can only transmit in-
coming light rays within the limits of the accep-
tance cone angle, and another performance crite-
rion, the acceptance angle is half the acceptance
cone angle. NA grows as the difference between
the core and cladding indices of fiber optic cable
grows [7, 8, 10].

The development of optical fibers is possible
through close cooperation between both waveg-
uide and materials engineering [11,12]. Function-
ality can be added to fiber optic cables with the
adjustable behavior of materials. A variation in
refractive indices of electro-optical (EO) materi-
als, whose optical effects can be adjusted, can be
observed with an externally applied electric field.
In this context, there are many studies on EO
waveguide modulators and optical fibers in the
literature. The first study on EO polymer op-
tical fiber (POF) has been proposed by Kuzyk
et all [13–19]. Here, high electrical strength has
been obtained with an optical fiber consisting
of cladding with two parallel indium electrodes,
doped EO cores and poly (methyl methacrylate)
(PMMA) cladding.

In another study, a few important factors related
to the creation and sustainability of EO effect in
POF have been examined experimentally and sev-
eral EO POF designs have been presented. One
of the designs is a dual-core-planar cladding while
the other designs are a dual-core design with one
EO core and an H-shaped cladding in section. In
the study, the EO effect of the structure has been
measured and the change of this effect in differ-
ent conditions has been examined. In the same
article, it is emphasized that many device appli-
cations are based on the EO effect and it is also
stated that they plan to improve liquid crystal
doped POFs [13].In this study, the refractive in-
dex change caused by the EO effect of the mate-
rial with the external electric field applied to the
cladding from the outside is defined in the pro-
posed mathematical model.

A mathematical model is an abstract model made
using mathematical symbols and objects to ex-
plain the behavior of a real-life situation. This
type of modeling can help make better decisions
and examine functional relationships by making
predictions about a particular process [20].It can
be submitted in many different versions, such as
mathematical models, statistical models, and dif-
ferential equations. Differential equation models
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are used in many fields of science to determine
the dynamic perspectives of systems. Fractional
calculus has been an ancient but increasingly im-
portant subject of mathematics since the 17th
century. Fractional integral and differential op-
erators can be thought of as generalized forms of
integral and derivative operators with non-integer
order [21]. The memory notion for fractional cal-
culus is significant. In memory systems, it has to
remember previous values of the input to indicate
the current value of the output. Considering the
modeling of various memory phenomena, it is gen-
erally stated that a memory process is composed
two phases, a short-term situation with perma-
nent retention and a situation through fractional
derivative [22]. Recently, an increasing number of
studies and applications of fractional order sys-
tems have been presented in many fields of science
and engineering [23–26].

The innovation in this study is to propose the
fractional-order differential equation model for
the fiber optic consisting of EO cladding, such
that the dependent variables are the external elec-
tric field applied externally to the cladding and
the changes in refractive index caused by the EO
effect of the material.

Therefore, the structure of this article is format-
ted in the following order. In Section 2, we sub-
mit some mathematical definitions and notations
regarding fractional-order differential equations
adopted in the article. In Section 3, the math-
ematical model for an electro-optic cladding fiber
optic cable is introduced and then it has been
carried out the qualitative analysis of this model.
Also, the formulas for the structural parameters
of optical fiber waveguides have been updated,
when the system is in equilibrium. The proposed
method is numerically examined by a sample in
Section 4. Finally, the results and discussion are
drawn in Section 5.

2. Preliminaries of fractional-order
derivative

This section reviews the fundamental definitions,
theorems, concepts, and results that we will use
throughout the remainder of this paper.

Definition 1. (Riemann–Liouville fractional in-
tegral) Let t0 ∈ R+ = [0,∞) be the initial time.
Let Lloc

1 (J,Rn) be the linear space of all locally
Lebesgue integrable functions m : J → Rm, J ⊂
R. Let ||.|| be a norm in Rn. Riemann–Liouville
fractional integral of order α ∈ (0, 1)

t0I
α
t m (t) = 1

Γ (α)

∫ t
t0

m(s)

(t−s)1−αds, t ≥ t0, (1)

where m ∈ Lloc
1 ([ t0,∞) ,R) and Γ (.) is the

Gamma function [27].

Definition 2. (Caputo fractional derivative) The
Caputo fractional-order differential operator of
the function X can be stated as

C
t0D

α

t
X (t) =

1
Γ (m−α)

∫ t
a

X(m)(τ)

(t−τ)α−m+1dτ for m− 1 < α < m,

X(m) (τ) for α = m,
(2)

where t0 ≤ t, m ∈ Z+ [27].

Lemma 1. (Generalized mean value theorem)
Assume that X (t) ∈ C ([a, b]) and C

t0D
α

t
X (t) ∈

C ([a, b]), such that 0 < α ≤ 1, then:

X (t) = X (a) + 1
Γ (α)

C
t0D

α

t
X (ξ) (t− a)α, (3)

with a ≤ ξ ≤ t, for all t ∈ (a, b] [28,29].

Definition 3. (Incommensurate fractional or-
der system) The multi-order fractional differential
equation system reads as

C
t0D

α

t
X (t) = F (t,X) , X (0) = X0 (4)

where X (t) = [x1 (t) , x2 (t) , . . . , xn (t) ]
T ∈

Rn, F = [f1, f2, . . . , fn]
T ∈ Rn, fi :

[0,+∞) × Rn → R, i = 1, 2, . . . , n. α =
[α1, α2, . . . , αn] is the multi-order of system (4),
if all αi are equal to a constant, then (4)
is the generally considered model. C

t0D
α

t
=[

C
t0D

α1

t
, Ct0D

α2

t
, . . . , Ct0D

αn

t

]T
, C

t0D
αi

t
denotes αi th-

order fractional derivative in the Caputo sense.
C
t0D

α

t
X (t) refers to the “direct product” of linear

operator C
t0D

α

t
and vector X (t), i.e. C

t0D
α

t
X (t) =[

C
t0D

α1

t
x1 (t) ,

C
t0D

α2

t
x2 (t) , . . . ,

C
t0D

αn

t
xn (t)

]T
[30].

The multiple order can be any real vector, even a
complex one. In this study, it is only accepted the
real case of order.

If α = α1 = α2 = . . .= αn, then the system
is called a commensurate order system, otherwise
system denotes an incommensurate order system
(IFOS), which is more general than the other [31].

Definition 4. The equilibrium points of system
(4) are calculated by solving the following equa-
tion F (X) = 0 and we have been supposed that
X∗ = (x∗1, x∗2, . . . , x

∗
n) is an equilibrium point of

system (4).

Lemma 2. Eigenvalues λi for i =
1, 2, . . . , ρ (α1 + α2 + · · ·+ αn) of system (4)
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are calculated by the charasteristical polynomial
obtained from
det (diag (λρα1 , λρα2 , . . . , λραn)− J (X∗)) = 0
such that ρ is the least common multiple of the
denominators of rational numbers α1, α2, . . . , αn

and J (X∗) = ∂F
∂X

∣∣
X=X∗. If all eigenvalues λi

satisfy |arg (λi)| > π
2ρ , then X∗ is locally asym-

totically stable (LAS) for system (4) [32,33].

3. The mathematical model for an
electro-optic cladding fiber optic
cable

This section of the paper purposes to suggest
a model based on the memorability nature of
the Caputo fractional-order derivative. Let the
t (≥ 0) value represent the time parameter. It is
denoted the voltage of the electric field by v, the
refractive index of the core of the fiber optic ca-
ble by n1, and the cladding refractive index by n2.
Also, it is v = v (t) , n1 = n1 (t) , n2 = n2 (t) such
that v, n1, n2 > 0. Our recommended model de-
scribed the changes in the refractive indexes of
fiber optic cable with electro-optic cladding is ex-
pressed by the following IFOS

C
0 D

α1

t v (t) = Λ− βv

C
0 D

α2

t n1 (t) = r1n1

(
1− n1

C

)
C
0 D

α3

t n2 (t) = r2n2

(
1− n2

n1

)
− δv + n0

(5)

with positive initial conditions v (0) =
v0, n1 (0) = n10, n2 (0) = n20. In addition that,
the derivative orders are αi for i = 1, 2, 3 such
that 0 < αi ≤ 1 and the parameters have the
properties given as

Λ, β, r1, C, r2, δ, n0 > 0. (6)

The model has the following assumptions. The
voltage is supplied by the fixed amount of Λ and
it is decreasing by a ratio β. It is also assumed
that the inequality

n0
δ ≥ v (7)

exists for v. For the refractive index of the core of
the fiber optic cable (n1) and the refractive index
of the cladding (n2), their sizes vary according to
the logistic rules. The rate of increase of n1 is
r1 and its maximum magnitude (the mathemat-
ically well-known the carrying capacity term) is
C. Also, it is always n1 > n2. Therefore, the
maximum magnitude of the refractive index of
the cladding is up to or smaller than the refrac-
tive index of the core of the fiber optic cable. The

growth rate of the refractive index of the cladding
is r2. Also, n2 decreases by its δ ratio as it is af-
fected by the voltage of the electric field. Since
n0, which is the refractive index of the medium
outside the fiber optic cable, is smaller than n2,
n0 has been added to the cladding refractive in-
dex.

3.1. The existence and uniqueness of the
solution of system (5)

In this section, the existence and uniqueness of
the solutions for FOS in Eqs (5) is examined.

Lemma 3. With each non-negative initial condi-
tions, there exists a unique solution of fractional-
order system in Eqs (3). For every non-negative
initial condition, there is a unique solution of
fractional-order system in Eqs (5).

Proof. Existence and uniqueness of system (3)
will be indicated in the region Ω × (0; T ] where
Ω =

{
(v, n1, n2) ∈ R3

+ : max (|v| , |n1| , |n2|) ≤ ζ
}
.

Here, it is followed the approach used in [32]. We
express X = (v, n1, n2) and X = (v, n1, n2). Con-
sider a mapping

G (X) = (G1 (X) , G2 (X) , G3 (X) )

and

G1 (X) = Λ− βv,
G2 (X) = r1n1

(
1− n1

C

)
,

G3 (X) = r2n2

(
1− n2

n1

)
− δv + n0.

(8)

For any X, X, it follows from (8) that∥∥G(X)−G(X̄)
∥∥ = |Λ− βv − Λ + βv̄| +∣∣r1n1(1− n1

C )− r1n̄1(1− n̄1
C )

∣∣ + |r2n2(1 −
n2
n1
)−δv + n0 − r2n̄2(1 − n̄2

n̄1
) + δv̄ − n0)| =

β |v − v̄|+
∣∣r1(n1 − n̄1)− r1

C (n1 − n̄1)(n1 + n̄1)
∣∣+∣∣∣r2(n2 − n̄2)− r2(n2

n2
n1

− n̄2
n̄2
n̄1
)− δ(v − v̄)

∣∣∣,∥∥G(X)−G(X̄)
∥∥ ≤ β |v − v̄| + r1 |(n1 − n̄1)| +

r1
C |(n1 − n̄1)| |(n1 + n̄1)| + |r2(n2 − n̄2)| +

r2

∣∣∣(n2
n1
n2

− n̄2
n̄1
n̄2
)
∣∣∣+ δ |(v − v̄)|,∥∥G(X)−G(X̄)

∥∥ ≤ (β + δ) |v − v̄| +
(r1 + r1

C |(n1 + n̄1)|) |n1 − n̄1| + r2 |n2 − n̄2| +

r2

∣∣∣(n2
2

n1
− n̄2

n̄1
)
∣∣∣.

We said that the logistic growth rule is valid for
n1. If the non-negative initial condition (n1 (0))
is less than the carrying capacity, it will approach
its capacity (C) by increasing, if not, it will ap-
proach its capacity by decreasing. For example,
let max {n1, n1} = n1. In this case we have have∣∣∣n2

2
n1

− n2
2

n1

∣∣∣ ≤
∣∣∣n2

2−n2
2

n1

∣∣∣ ≤ |n2−n2||n2+n2|
n1 (0)︸ ︷︷ ︸
or C

. There-

fore, it is
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∥∥G (X)−G
(
X̄
)∥∥ ≤φ1 |v − v̄|+ φ2 |n1 − n̄1|

+ φ3 |n2 − n̄2| ,
(9)

where
φ1 = (β + δ)

φ2 =
(
r1 + 2ζ r1

C

)
φ3 =

(
r2 + r2

2ζ
n1(0)

) (10)

Therefore, it is obtained
∥∥G (X)−G

(
X
)∥∥ ≤

L
∥∥X −X

∥∥ where L = max (φ1, φ2, φ3). G(X)
satisfies the Lipschitz condition. In this sense, it
is indicated the existence and uniqueness of the
solutions of Eqs (5) □

3.2. Boundedness and non-negativity of
the solutions of system(5)

Solutions of Eqs. (5) are non-negative and
bounded since they have densities of interacting
variables. This case is examined here.

Lemma 4. The solutions of (3) which start in
R3
+ are uniformly bounded and non-negative.

Proof. It is adopted the manner of approaching
which is used in [34]. Therefore, we have follows
C
t0D

α

t
v (t) = Λ− βv ⇒ v (t) = v (0)Eα (−β(t)α) +

Λ(t)αEα,α+1 (−β(t)α) ,

C
t0D

α

t
n1 ≤ r1n1

(
1− n1

C

)
and

C
t0D

α

t
n1 + r1n1 ≤ 2r1n1 − r1

C n1
2 =

− r1
C


(n1−C)2︷ ︸︸ ︷

n1
2 − 2n1C + C2−C2

 ≤ r1C ⇒ n1 (t) ≤

n1 (0)Eα (−r1(t)
α) + r1C(t)αEα,α+1 (−r1(t)

α)

limt→∞ n1 (t) ≤ C (11)

and C
t0D

α

t
n2 = r2n2

(
1− n2

n1

)
− δv + n0 and

C
t0D

α

t
n2+r2n2 ≤ − r2

n1

(
n2
2 − 2n2n1 + n2

1 − n2
1 − n0

r2
n1

)
=

(
− r2

n1
(n2 − n1)

2 + r2

(
n1 +

n0
r2

))
≤

r2

(
C + n0

r2

)
⇒ n2 (t) ≤ n2 (0)Eα (−r2(t)

α) +

r2

(
C + n0

r2

)
(t)αEα,α+1 (−r2(t)

α)

limt→∞ n2 (t) ≤
(
C + n0

r2

)
. (12)

Hence, the solutions of FOS starting in R3
+ are

uniformly bounded in the region Ω .

From the system (5), we have

C
0 D

α1

t v (t)
∣∣
v=0

= Λ ≥ 0
C
0 D

α2

t n1 (t)
∣∣
n1=0

= 0
C
0 D

α3

t n2 (t)
∣∣
n2=0

= n0 − δv ≥ 0 (Due to (7))

(13)

for all t ∈ [0, T ]. With respect to Lemma 1,
we can accomplish that the solution X(t) =

(v (t) , n1 (t) , n2 (t))
T of system (5) belongs to

R3
+, and this completes the proof. □

Definition 5. (Threshold Parameter)To ex-
amine the local stability of equilibrium point of
Eqs (5), threshold parameter called basic repro-
duction number has been introduced given as

R0 =

(
δ Λ
β
−n0

)
Cr2
4

. (14)

The stability for equilibrium values of the electric
field voltage, the core refractive index of fiber op-
tic cable, and the cladding refractive index of fiber
optic cable is defined according to the threshold
parameter.

Lemma 5. Considering equilibrium points of the
proposed model in (5) with reference to threshold
parameter definited in (14), it is satisfied the fol-
lowings:

i. If R0 ≤ 1, then there is always

E1

(
Λ
β , C, C

1+
√

(1−R0)

2

)
,

ii. If 0 < R0≤1, then there are

both E1

(
Λ
β , C, C

1+
√

(1−R0)

2

)
and

E2

(
Λ
β , C, C

1−
√

(1−R0)

2

)
.

Proof. We have assumed that E (v, n1, n2) rep-
resent the equilibrium point of the system (5),
such that

v, n1, n2 > 0. (15)

The steadiness points of system (5) are achieved
by deciphering the following system of equations:
Dvα1 = Dnα2

1 = Dnα3
2 = 0. Therefore, we have

Λ− βv = 0
r1n1

(
1− n1

C

)
= 0

r2n2

(
1− n2

n1

)
− δv + n0 = 0

(16)

From the first two equations of (16), n1 = C and
v = Λ

β are obtained. By substituting these values

in the last equation, it is obtained the 2nd degree
polynomial given as

n2
2 − Cn2 +

C
r2

(
δΛ
β − n0

)
= 0 (17)
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for the equilibrium value showing the refractive
index of the cladding. The discriminant of this
equation is ∆ = C2 (1−R0) according to (14). If
R0 > 1, a suitable n2 value cannot be found due
to ∆ < 0.

(i) Let R0 ≤ 1. In this case, (n2)1,2 =

C
1±
√

(1−R0)

2 for roots of Eq.(17)
are obtained. Since it is obvious
(n2)1 > 0, the equilibrium point

E1

(
Λ
β , C, C

1+
√

(1−R0)

2

)
is reached.

(ii) Also, the equilibrium point

E2

(
Λ
β , C, C

1−
√

(1−R0)

2

)
occurs too,

when R0 > 0.

□

Lemma 6. The LAS conditions of equilibrium
points for the system (5) are as follows.

(i) Let R0<1. In this case,

E1

(
Λ
β , C, C

1+
√

(1−R0)

2

)
is LAS.

(ii) The equilibrium point

E2

(
Λ
β , C, C

1−
√

(1−R0)

2

)
existing for 0 <

R0 ≤ 1 is always unstable.

Proof. Let R0 ≤ 1. The Jacobian matrix of the
system (5) at E (v, n1, n2) for E1 and/or E2 is
given by

J (E (v, n1, n2)) = −β 0 0
0 r1 − 2r1n1

C 0

−δ r2n2
2

n1
2 r2 − 2r2n2

n1

 (18)

From the equation
det (diagonal (λρα1 , λρα2 , λρα3)− J (E (v, n1, n2)))
= 0, the characteristic equation is

(λρα1 + β)(λρα2 − (r1 − 2r1n1
C ))(λρα3 − (r2 − 2r2n2

n1
)) = 0

(19)

where ρ is the least common multiple of the de-
nominators of the derivative orders α1, α2, α3 in
the system (5). Considering Lemma 2, the LAS
condition of E (v, n1, n2) is that the λ eigenvalues
to be obtained from (19) satisfy the inequalities
arg (λ) > π

2ρ . Also, if λ is real number (∈ R), it
must be λ < 0 to satisfy the stability conditions
of the equilibrium point. Therefore, it is

λρα1 = −β (20)

λρα2 = r1 −
2r1n1

C
(21)

λρα3 = r2 −
2r2n2

n1
(22)

where λρα1 , λρα2 , λρα3 ∈ R and λρα1 ∈ R− due to
inequalities in (6) and (15). Let us consider (20).
Therefore, the equations

λj = β
1

ρα1 cis (2j−1)π
ρα1

, for j = 1, 2, 3, . . . , ρα1

(23)

is obtained by means of the De-Moivre rules such
that it is cisπ = cosπ + isinπ for i =

√
−1. We

have

|Arg(λj )| = π
ρα1

, 3π
ρα1

, . . . , (2ρα1−1)π
ρα1

(24)

If the stability conditions in Lemma 2 are applied;
then

π

ρα1
,
3π

ρα1
, . . . ,

(2ρα1 − 1)π

ρα1
>

π

2ρ

and so,

1

α1
,
3

α1
, . . . ,

(2ρα1 − 1)

α1
>

1

2

α1 < min {2, 6, . . . , 2 (2ρα1 − 1)} (25)

are obtained. In the introduction of proposed
model in the system (5), it is stated that αi ∈
(0, 1] for i = 1, 2, 3. Therefore, Eqs. (23) for
(20-a) are already satisfied. This means that
the stability conditions for the equilibrium point
E (v, n1, n2) are not disturbed.

Thus, it should be examined whether the equa-
tions in (20-b) and (20-c) satisfy the stability con-
ditions. Consider that n1 = C for the equilibrium
points both E1 and E2, the equations in (20-b)
and (20-c) have the following forms:

λmα2 = −r1 (26)

λmα3 = r2 −
2r2n2

C
. (27)

Since −r1 < 0 due to inequality in (6), it is clear
that (26) does not disturb the stability conditions
when it is considered similarly to (20). From (27),
if

n2 >
C
2 , (28)

then the equilibrium point is stable, since λρα3 ∈
R−. Thus, the following results are achieved.
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(i) Let R0 ≤ 1. It is n2 = C
1+
√

(1−R0)

2 for
E1. The LAS conditions in terms of (25)
are fulfilled, when R0 < 1. Therefore, E1

is LAS.
(ii) Let 0 < R0 ≤ 1. In this case, we have

n2 = C
1−
√

(1−R0)

2 for E2. Considering
(25), E2 is unstable point.

The abovementioned results regarding the equi-
librium points are submitted in Table 1.

Table 1. LAS conditions of equilib-
rium points of the system(5).

Equilibrium Point Existence
Condition

Stability
Condition

E1

(
Λ
β , C, C

1+
√

(1−R0)

2

)
If R0≤1, If R0<1

E2

(
Λ
β , C, C

1−
√

(1−R0)

2

)
If
0 < R0≤1,

Unstable
point

□

4. Numerical studies

In this section, the parameters used in the system
(5) are given numerical values and this system is
analyzed numerically to be compatible with the
outcomes of the qualitative analysis. The param-
eter values are as shown in Table 2.

Table 2. The considered values of
parameters in the proposed model (5)
and their interpretations.

Parameters Definitions Values
Λ Applied voltage

constant
10.5

β Decrease rate of
voltage constant

1

r1 Growth rate of
core refractive
index

0.2

C Maximum mag-
nitude of the
cladding refractive
index

15

r2 Growth rate of
cladding refractive
index

0.25

δ The rate of
voltage-dependent
decrease in
cladding refractive
index

0.8

n0 Environmental re-
fractive index

8

(α1, α2, α3) Fractional-orders (1, 1, 1)
(0.9, 0.9, 0.9)
(0.75, 0.75, 0.75)
(0.7, 0.8, 0.9)
(0.9, 0.8, 0.7)

(v0, n10, n20) Initial conditions (16, 12, 9)

The following figures show the stability of the
equilibrium point E1 (10.5, 15, 13.17890832929182),
since 0 ≤ R0 = 0.42666667 < 1.

Table 3. Sensitivity indices of R0

according to Table (2).

Parameters Sensitivity in-
dex

(
(S)

) Elasticity

r2
(S)R1

0r2
=

−4
Cr22

(
δΛ
β − n0

)
=

−1
r2
R0

−1.7066

δ (S)R1
0δ =

4
Cr2

(
δΛ
β − n0

)
=

4
Cr2

Λ
β

11.2

Λ (S)R1
0Λ =

4
Cr2

(
δΛ
β − n0

)
=

4
Cr2

δ
β

0.8533

β (S)R1
0β =

4
Cr2

(
δΛ
β − n0

)
=

−4
Cr2

δ Λ
β2

−8.96

C (S)R1
0C =

−4
C2r2

(
δΛ
β − n0

)
=

−1
C R0

−0.0284

n0
(S)R1

0n0
=

4
Cr2

(
δΛ
β − n0

)
=

− 4
Cr2

−1.0666

The parameter with the greatest positive effect
on R0 is δ, while the parameter with the greatest
negative effect is β. If δ is increased (or decreased)
by 1%, then the value of R0 will increase (or de-
crease) by 10.6667%. Similarly, if β is increased
(or decreased) by 1%, then the value of R0 will
decrease (or increase) by 8%.

Figure 4. Stabilities of variables for
derivative orders given by (1,1,1).
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Figure 5. Stabilities of variables for
derivative orders given by (.9,.9,.9).

Figure 6. Stabilities of variables
for derivative orders given by
(.75,.75,.75).

Figure 7. Stabilities of variables for
derivative orders given by (.7,.8,.9).

Figure 8. Stabilities of variables for
derivative orders given by (.9,.8,.7).

5. Conclusion

In this study, which proposes optical fiber with
EO cladding unlike the literature, a mathematical
model in the IFOS form in the Caputo meaning
including optical fiber variables, given as numer-
ical aperture, critical angle and acceptance an-
gle are presented. The stability analysis conse-
quences of system have been shown with simula-
tions and it has been seen that they are consistent
with respect to qualitative analysis.

In the following results as a contribution to the
literature, the structural parameters including nu-
merical aperture, critical angle and acceptance
angle of optical fiber waveguides are mentioned.
In the light of the information given in Table 1,
the necessary calculations were made for the sta-

ble equilibrium point E1

(
Λ
β , C, C

1+
√

(1−R0)

2

)
at

R0 < 1.

Result 1 Since the critical angle formula is ∅c =
arcsin

(
n2
n1

)
, this value evaluated at the LAS E1

is obtained as

∅c = arcsin

(
1+
√

(1−R0)

2

)
for 0 ≤ R0 < 1,

(29)

such that −π
2 ≤ ∅c ≤ π

2 .

Result 2 Let us consider that the numerical
aperture formula given as NA = n0sinθa =√

n2
1 − n2

2. When E1 is LAS, this formula is

NA = C
2

√
2 +R0 − 2

√
(1−R0) for 0 ≤ R0 < 1.

(30)

Result 3 Acceptance angle for the LAS E1is ob-
tained as

θa = arcsin

(
C
2n0

√
2 +R0 − 2

√
(1−R0)

)
for 0 ≤ R0 < 1.

(31)

such that −π
2 ≤ θa ≤ π

2 .

Consider the point E1 for R0 < 1, the results ob-
tained above are summarized in the table below.
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Table 4. The obtained results of the
proposed system in (5) for 0 ≤ R0 <
1.

The
LAS
equi-
lib-
rium
point

E1

(
Λ
β , C, C

1+
√

(1−R0)

2

)

The
critical
angle
for-
mula
for E1

∅c = arcsin

(
1+
√

(1−R0)

2

)

The
numer-
ical
aper-
ture
for-
mula
for E1

NA = C
2

√
2 +R0 − 2

√
(1−R0)

The
accep-
tance
angle
for-
mula
for E1

θa =

arcsin

(
C
2n0

√
2 +R0 − 2

√
(1−R0)

)

Considering the values in Table 2, the values in
Table 3 are obtained as follows:

• Threshold parameter: 0 ≤ R0 =
0.42666667 < 1,

• The LAS equilibrium point: E1(10.5, 15,
13.1789),

• The critical angle: ∅c = arcsin (0.8785) =
61.46194534o,

• The numerical aperture formula: NA =
7.163544880024326,

• The acceptance angle: θa =
arcsin (0.8954) = 63.55985484o.

As a result, considering these assumptions, the
fiber optic cable, the numerical aperture, the criti-
cal angle, and the acceptance angle values can be
accordingly recalculated by the obtained formu-
las. In addition, the above-mentioned structural
parameter values can be easily found according to
the parameter values of the system.

In the scope of our study, we introduced an in-
novative approach by proposing the utilization
of an electro-optic material, previously unconsid-
ered, for the protective sheath of the fiber optic

cable. Subsequently, we mathematically modeled
the phenomena associated with light behavior. As
a result of this analysis, we put forth the propo-
sition that, instead of employing a general for-
mula, calculations for these parameters could be
conducted using the novel equations derived from
our mathematical modeling.

In the future, such works will be able to guide the
mathematical modeling of fibers designed with
materials with the proposed adjustable cladding
index and will be able to shed light on material de-
velopment in line with this modeling. The types
of materials to be developed in this way can be
the subject of research in many fields, especially in
materials engineering. The results obtained can
be revolutionary in many fields.
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Appendix A

Matlab codes used for graphics are:

memory.m

1
2 function [yo] = memory(r, c, k)

3 temp = 0;

4 for j=1:k-1

5 temp = temp + c(j)*r(k-j);

6 end

7 yo = temp;

fiber optic function.m

1 function [T, Y] = fiber\_optic\_function(parameters , orders , TSim , Y0)

2 h = .04;

3 n = round(TSim/h);

4 q1 = orders (1); q2 = orders (2); q3 = orders (3);

5 a\_1 = parameters ,(1); b = parameters (2); r\_1 = parameters (3);

6 C = parameters (4); r\_2 = parameters (5); a\_2 = parameters (6);

7 n\_3 = parameters (7);

8 cp1 = 1; cp2 = 1; cp3 = 1;

9 for j = 1:n

10 c1(j) = (1 -(1+q1)/j)*cp1;

11 c2(j) = (1 -(1+q2)/j)*cp2;

12 c3(j) = (1 -(1+q3)/j)*cp3;

13 cp1 = c1(j); cp2 = c2(j); cp3 = c3(j);

14 end

15
16 x(1) = Y0(1); y(1) = Y0(2); z(1) = Y0(3);

17
18 for i = 2:n

19 x(i) = (a\_1 -b*x(i-1))*h$\ mathrm {\wedge }$q1 - memory(x, c1 , i);

20 y(i) = (r\_1*y(i-1)*(1-y(i-1)/C))*h$\ mathrm {\wedge }$q2 -memory(y, c2 ,

i);

21 z(i) = (r\_2*z(i-1)*(1-z(i-1)/y(i-1))-a\_2*x(i-1)+n\_3)*h$\ mathrm {\
wedge }$q3 - memory(z, c3 , i);

22 end

23
24 for j = 1:n

25 Y(j,1) = x(j); Y(j,2) = y(j); Y(j,3) = z(j);

26 end

27
28 T = 0:h:TSim;

run.m

1 close all; clear all; clc;

2 A = 1:4000;

3 A = A';

https://orcid.org/0000-0003-0933-7796
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4 [t, y] = fiber\_optic\_function ([10.5 1 .2 15 .25 .8 8], [1 1 1],

160, [16 12 9]);

5 figure; plot(A,y(:,1), A,y(:,2),A,y(:,3));

6 xlabel('{\ textbackslash}bf Time ', 'fontsize ', 10); ylabel('{\
textbackslash}bf v(t), n\_1(t) and n\_2(t)', 'fontsize ', 10); grid;

7 legend('v(t)','n\_1(t)','n\_2(t)');
8 title('Stabilities of variables for derivative orders given by (1,1,1)

');
9

10 [t, y] = fiber\_optic\_function ([10.5 1 .2 15 .25 .8 8], [.9 .9 .9],

160, [16 12 9]);

11 figure; plot(A,y(:,1), A,y(:,2),A,y(:,3));

12 xlabel('{\ textbackslash}bf Time ', 'fontsize ', 10); ylabel('{\
textbackslash}bf v(t), n\_1(t) and n\_2(t)', 'fontsize ', 10); grid;

13 legend('v(t)','n\_1(t)','n\_2(t)');
14 title('Stabilities of variables for derivative orders given by

(.9 ,.9 ,.9) ');
15
16 [t, y] = fiber\_optic\_function ([10.5 1 .2 15 .25 .8 8], [.75 .75

.75], 160, [16 12 9]);

17 figure; plot(A,y(:,1), A,y(:,2),A,y(:,3));

18 xlabel('{\ textbackslash}bf Time ', 'fontsize ', 10); ylabel('{\
textbackslash}bf v(t), n\_1(t) and n\_2(t)', 'fontsize ', 10); grid;

19 legend('v(t)','n\_1(t)','n\_2(t)');
20 title('Stabilities of variables for derivative orders given by

(.75 ,.75 ,.75) ');
21
22 [t, y] = fiber\_optic\_function ([10.5 1 .2 15 .25 .8 8], [.7 .8 .9],

160, [16 12 9]);

23 figure; plot(A,y(:,1), A,y(:,2),A,y(:,3));

24 xlabel('{\ textbackslash}bf Time ', 'fontsize ', 10); ylabel('{\
textbackslash}bf v(t), n\_1(t) and n\_2(t)', 'fontsize ', 10); grid;

25 legend('v(t)','n\_1(t)','n\_2(t)');
26 title('Stabilities of variables for derivative orders given by

(.7 ,.8 ,.9) ');
27
28 [t, y] = fiber\_optic\_function ([10.5 1 .2 15 .25 .8 8], [.9 .8 .7],

160, [16 12 9]);

29 figure; plot(A,y(:,1), A,y(:,2),A,y(:,3));

30 xlabel('{\ textbackslash}bf Time ', 'fontsize ', 10); ylabel('{\
textbackslash}bf v(t), n\_1(t) and n\_2(t)', 'fontsize ', 10); grid;

31 legend('v(t)','n\_1(t)','n\_2(t)');
32 title('Stabilities of variables for derivative orders given by

(.9 ,.8 ,.7) ');
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