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1. Introduction

The recent development in the area of fractional
theory plays an important role in mathematics.
It is well understood by physical interpretation
of differential equations that many of the realis-
tic systems are better modeled by fractional or-
der derivatives than integer order. Hence, there
has been a huge growth in the fractional research
field. The progress of this particular theory has
a wide range of application in electro-magnetic,
viscoelasticity, image processing, signal process-
ing, control theory, diffusion, porous media, fluid
flow and other fields. For more noteworthy contri-
butions of fractional field the readers are referred
to the books [1–5] and the research papers [6–14].
Moreover fractional integro-differential equations
are used in various scientific domains such as con-
trol theory, medicine, biology and ecology etc. In

the following research articles the above discussed
concepts are well explained [6, 10,11,15,16].

Inclusion type differential equation establishes a
relation of the type ẋ ∈ F (x) in such a way that
the map F assigns any point x ∈ Rn to a set
F (x) ⊂ Rn. To put in simple terms, the gener-
alization of the differential function ẋ = F (x) is
termed as differential inclusion. In 1995, El-Sayed
and Ibrahim extended the theory of integer or-
der differential inclusion to fractional order [17].
Differential inclusion of fractional order acts as
a key technique in analyzing differential equation
with discontinuous right hand side which basically
arises while modelling dynamical system which in-
volves friction and impact problem. A sectorial
operator is a type of linear operator that maps
functions from one Banach space to another. It
is a type of operator that is widely used in the
study of partial differential equations and their
associated boundary value problems. Sectorial
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operators play an important role in the analy-
sis of differential calculus, especially in the study
of well-posedness and stability of boundary value
problems. They are also used in the theory of
semigroups of operators and in the study of evo-
lution equations. In [18] Kazufumi Ito et. al. an-
alyzed the various secorial properties of Caputo
derivative of order ϱ ∈ (1, 2). In [19] JinRong
Wang et. al. investigated the existence of piece
wise mild solutions of nonlocal impusive fractional
differential inclusions with fractional sectorial op-
erator on Banach spaces. The readers can re-
fer to [12, 20–24] for present qualitative research
topics in differential equations of inclusion type.
In [13,14,25,26] the authors studied the existence
and solvability of mild solution for various frac-
tional order systems with sectorial operator of the
type (P, η, ϱ, γ).

In general, while dealing with complicated differ-
ential systems such as growth modeling, econom-
ics, biology and quantum field theory the random
noise or stochastic perturbation is unavoidable.
Therefore there are numerous ongoing research
in analyzing the existence and uniqueness of sto-
chastic control models using various fixed point
methods. The concept of stochastic fractional
control system has been well developed with the
help of different kinds of fixed point approaches
in [6, 13, 27, 28]. The weaker notion of control
theory is called as approximate controllability.
This type of controllable system ensures that the
system is steered to any random small neighbor-
hood of the final state. Recently, the approx-
imate controllability of control systems defined
by impulsive functional inclusions and neutral
integro-differential systems are well discussed in
the research publications [6, 8, 10,12,29–32].

Very recently the autors in [10] investigated the
following existence results for Caputo fractional
mixed Volterra Fredholm-type integro differential
inclusions of order ϱ ∈ (1, 2) with sectorial oper-
ators. Further in the past few years the applica-
tion of nonlocal condition in fractional differential
equations has emerged as a magnificient area of
investication since it describes the evolution of the
system in an efficient way. Therfore we extend
out theoritical result of the Caputo fractional
stochastic integro-differential inclusions system
to nonlocal conditions with sectorial operators.

CDϱ
ζz(ζ) ∈Az(ζ) +G

(
ζ, z(ζ),

∫ ζ

0
f(ζ, ν, z(ν),∫ T

0
f(ζ, ν, z(ν))dν

)
, ζ ∈ V = [0, T ],

z(0) = z0, z′(0) = z1.

Being motivated by the above works, in this pa-
per we establish the sufficient conditions for the
approximate controllability of Caputo fractional
stochastic integro-differential inclusions with sec-
torial operators of the form

CDϱ
ζz(ζ) ∈ Az(ζ) +G

(
ζ, z(ζ),

∫ T

0
f(ζ, ν, z(ν))dν

)
dW (ζ)

dζ
+ Bx(ζ), ζ ∈ V = [0, T ], (1)

z(0) = z0, z′(0) = z1.

where ϱ ∈ (1, 2), the sectorial operator A is a
mapping from D(A) ⊂ X to X of type (P, η, ϱ, γ)
in Banach space X . W (ζ) be a standard cylin-
drical Wiener process in X defined on a sto-
chastic space

(
Ω,ℑ, {ℑζ}ζ⩾0,P

)
. The nonempty,

closed, convex and bounded multivalued function
G : V × X × X → 2X \ {∅} and f be a mapping
from V × V × X into X , x ∈ L2(V,H), where H
stand for Banach space. In addition, the linear
operator B : H → X is bounded.
The article contains the following parts:
Part 2 : Consists of the preliminaries and defini-
tions.
Part 3 : The controllability results for the chosen
fractional inclusion systems (1) are derived by us-
ing fixed point technique.
Part 4 : The outcome of approximate controlla-
bility results derived for system (1) is extended to
fractional nonlocal system.
Part 5: Appropriate illustrations for the obtained
results have been established.
Part 6: Conclusion and future works of the pre-
sented system are discussed.

2. Preliminaries

Consider the Hilbert spaces X , K and the com-
plete probability space (CPS)

(
Ω,ℑ,P

)
outfitted

with a normal filtration {ℑζ , ζ ∈ V } satisfies the
regular conditions (ℑζ is a increasing right con-
tinuous family such that ℑζ ⊆ ℑ, ℑ0 contains
all P-null set). Let E(.) denotes the expectation
with respect to the measure P. Let {ej}∞j=1 be a
complete orthonormal basis of K. Suppose that
W = (Wζ)ζ⩾0 is a cylindrical K-valued Wiener

process defined on the CPS
(
Ω,ℑ,P

)
with co-

variance operator Q ⩾ 0, such that Trace(Q) =
∞∑
j=1

λj = λ < ∞, and Qej = λjej . Then

W (ζ) =
∞∑
j=1

√
λjWj(ζ), with Wj(ζ), j = 1 to ∞
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are mutually independent one-dimensional stan-
dard Wiener processes. We consider that ℑζ =
T{W (s) : 0 ⩽ s ⩽ ζ} is the sigma algebra
generated by W and ℑζ = ℑ. Let L(K,X ) be
a bounded linear operator space with the usual
operator norm ∥ · ∥. For φ ∈ L(K,X ) we de-

fine ∥φ∥2 = Trace
(
φQφ∗) =

∞∑
j=1

∥
√

λjφej∥2. If

∥φ∥2 < ∞ then φ is called Q−Hilbert-Schmidt
operator and the space of such operators is de-
noted by LQ(K,X ). The completion LQ(K,X ) of
L(K,X ) w.r.t the topology induced by the norm
∥.∥Q where ∥φ∥2Q = (φ,φ) is a Hilbert space with
the above norm topology.

The Banach space L2

(
Ω,ℑT ,X

)
is the collection

of all square-integrable, strongly measurable, ℑζ−
adapted, X− valued random variables. Also take

C
(
V,L2

(
Ω,ℑT ,X

))
=
{
z : V → L2

(
Ω,ℑT ,X

)
|

z is continuous and sup
ζ∈V

E∥z(ζ)∥2 < ∞
}

be a Banach space. Finally, we define the set

C =
{
z ∈ C

(
V,L2(Ω,ℑT ,X )

)
| z is measurable,

ℑζ − adapted X valued functions
}

be a closed subspace of C
(
V,L2(Ω,ℑT ,X )

)
with

norm ∥z∥ = supζ∈V E∥z(ζ)∥2, E determine the
integration w.r.t the probability measure.

Definition 1. [3] The Riemann-Liouville frac-
tional integral of order β having the lower limit 0
for a function g mapping [0,∞) into R+ is defined
as

Iβg(ζ) =
1

Γ(β)

∫ ζ

0

g(ν)

(ζ − ν)1−β
dν, ζ > 0, β ∈ R+.

Definition 2. [3] The Riemann-Liouville frac-
tional derivative of order β employing the lower
limit 0 for a function g is defined as

RLDβg(ζ) =
1

Γ(j − β)

dj

dζj

∫ ζ

0
g(j)(ν)(ζ − ν)j−β−1dν,

ζ > 0, j − 1 <β < j, β ∈ R+, j ∈ N.

Definition 3. [3] Caputo fractional derivative of
order β employing the lower limit 0 for a function
g is defined as

CDβg(ζ) = LDβ

(
g(ζ)−

j−1∑
i=0

g(i)(0)

i!
ζi

)
,

ζ > 0, j − 1 < β < j, β ∈ R+, j ∈ N.

Definition 4. [14] The closed and linear opera-
tor A mapping from D into X is called sectorial
operator of type (P, η, ϱ, γ) provided that there ex-
ist γ belongs to R, η belongs to (0, π2 ) and P > 0
such that the ϱ-resolvent of A exists outside the
sector

γ + Sη = {η + µϱ : µ in C(V,X ), |Arg(−µϱ)| < η}

∥(µϱI −A)−1∥ ≤ P

|µϱ − γ|
, µϱ /∈ γ + Sη.

Further, throughout the paper we assume that A
is a sectorial operator of type (P, η, ϱ, γ), hence
it is easy to establish that A stands for infinitesi-
mal generator of a ϱ-resolvent family {Wϱ(ζ)}ζ≥0

which belongs to Banach space, where

Wϱ(ζ) =
1

2πi

∫
c
eµϱR (µϱ, A) dµ.

Definition 5. [14] Let G : V × Ω →
L(K,X ) be the strongly measurable mapping

such that
∫ T
0 E∥G(ζ)∥pL(K,X )dζ < ∞ then

E∥
∫ ζ
0 G(ν)dW (ν)∥p ⩽ Lg

∫ ζ
0 E∥G(ν)∥pL(K,X )dν,

for all ζ ∈ J and p ⩾ 2, where Lg is a constant.

Definition 6. [14] A function z belongs to
C(V,X ) is called mild solution of (1) provided
that it fulfills the operator equation

z(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν.

In the above

Kϱ(ζ) =
1

2πi

∫
c
eµϱµϱ−1R(µϱ, A)dµ, Qϱ(ζ)

=
1

2πi

∫
c
eµϱµϱ−2R(µϱ, A)dµ,

Wϱ(ζ) =
1

2πi

∫
c
eµϱR(µϱ, A)dµ,

with c being a suitable path such that µϱ /∈ γ + Sη

for φ belongs to C.

Theorem 1. [14,33] If A is a sectorial operator
then the following hold on ∥Kϱ(ζ)∥ :

(i) Take γ ≥ 0 and 0 < χ < π, then

∥Kϱ(ζ)∥ ≤ M1(η, χ)Pe
[M1(η,χ)(1+γζϱ)]

1
2

[(
1+ sinχ

sin(χ−η)

) 1
ϱ

−1

]
π sin

1+ 1
ϱ η

(1 + ηζϱ) +
Γ(ϱ)P

π(1 + γζϱ)| cos π−χ
ϱ |ϱ sin η sinχ

,

where, ζ > 0,M1 (η, χ) = max

{
sin χ

sin(χ− η)
, 1

}
.
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(ii) Take γ < 0 and 0 < χ < π then for ζ > 0

∥Kϱ(ζ)∥ ≤ 1

1 + |γ|ζϱ(
eP [(sin χ+ 1)

1
ϱ − 1]

π| cos χ|1+
1
ϱ

+
Γ(ϱ)P

π| cosχ| | cos π−χ
ϱ |ϱ

)
.

Theorem 2. [14,33] If A is a sectorial operator
then the following hold for ∥Wϱ(ζ)∥ and ∥Qϱ(ζ)∥:

(i) Take γ ≥ 0 and 0 < χ < π then ζ > 0

∥Wϱ(ζ)∥ ≤
P

[(
1 + sinχ

sin (χ−η)

) 1
ϱ

− 1

]
π sin η

× (1 + ηζϱ)
1
ϱ ζϱ−1e[M1(η,χ)(1+γζϱ)]

1
ϱ

+
Pζϱ−1

π(1 + γζϱ)| cos π−χ
ϱ |ϱ sin η sin χ

,

∥Qϱ(ζ)∥ ≤
P

[(
1 + sinχ

sin(χ−η)

) 1
ϱ

− 1

]
M1(η, χ)

π sin η
ϱ+2
ϱ

(1 + ηζϱ)
ϱ−1
ϱ ζϱ−1e[M1(η,χ)(1+γζϱ)]

1
ϱ

+
PϱΓ(ϱ)

π(1 + γζϱ)| cos π−χ
ϱ |ϱ sin η sinχ

,

where M1(η, χ) = max
{
1, sin η

sin(χ−η)

}
.

(ii) Take γ < 0 and 0 < χ < π then

∥Wϱ(ζ)∥ ≤ ζϱ−1

1 + |γ|ζϱ(
eP [(sinχ+ 1)

1
ϱ − 1]

π| cosχ|

+
P

π| cos π−χ
ϱ | | cosχ|

)
.

∥Qϱ(ζ)∥ ≤
(
eP [(sinχ+ 1)

1
ϱ − 1]t

π| cosχ|1+
2
ϱ

+

ϱΓ(ϱ)P

π| cos π−χ
ϱ | | cosχ|

)
1

1 + |γ|ζϱ
, for ζ > 0.

Let (X , d) be a metric space. The following ex-
pressions are used in this article:

• N (X ) = {H ∈ P(X ) : H ̸= ∅},
• Ncl(X ) = {H ∈ N (X ) : H closed},
• Nb(X ) = {H ∈ N (X ) : H bounded},
• Ncp(X ) = {H ∈ N (X ) : H compact},
• Nc(X ) = {H ∈ N (X ) : H convex}.

For the multivalued map K : C → 2C \ {∅} the
following definition holds. Additional informa-
tion on multivalued maps can be found in the
books [34].

Definition 7. [35] If for all z ∈ C, K (z) is
closed(convex) then the map K is closed(convex).
For every bounded set C of C, K (C) =⋃

z∈C K (z) is bounded in C then K is bounded
on bounded sets.

Definition 8. [35] K is known as upper semi
continuous (u.s.c) on C if the following conditions
holds:

(i) For all z0 ∈ C the set K (z0) ̸= ϕ and it
is closed.

(ii) For all open set C ∈ C such that C ⊃
K (z0) then there exist an open neighbor-
hood K (W) ⊆ C.

Definition 9. [35] If K (C) is a relatively com-
pact, for all bounded subset C of C then K is
completely continuous.

Definition 10. [35] If the completely continu-
ous map K has a nonempty values then K is
u.s.c if and only if K has a closed graph i.e.,
zk → z∗, uk → u∗, uk such that K zk signify
u∗ ∈ K z∗. Moreover , if there exists z ∈ Y such
that z ∈ K (z) then K has a fixed point.

An u.s.c function K : X → X is said to be con-
densing if for all bounded subset C ⊆ X having
ι(C ) ̸= 0, where ι stands for the Kuratowski mea-
sure of non compactness, we get

ι(K (C )) < ι(C ).

Definition 11. [35] G mapping from V ×X ×X
into Nb,cl,cp(L(K,X )) is called L1-Caratheodory
provided that

(i) ζ → G(ζ, z, x, y) is measurable for all
z, x, y belongs to X .

(ii) (z, x, y) → G(ζ, z, x, y) is u.s.c for all ζ
belongs to V .

(iii) For all p > 0, there exist jp belongs to
L1(V,R+) such that

E∥G(ζ, z, x, y)∥2 ≤ sup{E∥g∥2 : g ∈ G(ζ, z, x, y)}
≤ jp(ζ), for all ζ ∈ V.

For further information on multivalued functions
refer the books [34]. Detail analysis in multival-
ued maps are presended in this work. The follow-
ing are two suitable operators and their underly-
ing assumptions:

ΓT
0 =

∫ T

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)dν : X → X ,

R(ℏ,ΓT
0 ) = (ℏI + ΓT

0 )
−1 : X → X .
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In the above W∗
ϱ (ζ−ν) and B∗ stands for adjoints

of Wϱ(ζ − ν) and B respectively and Clearly ΓT
0

is the bounded linear operator.

To begin, evaluate the below assumptions:

(H0) In the strong operator topology,
ℏR(ℏ,ΓT

0 ) → 0 as ℏ → 0+.

Consider the accompanying linear inclusions of
fractional system{

CDϱ
ζz(ζ) ∈ Az(ζ) + Bx(ζ), ζ ∈ V = [0, T ],

z(0) = z0, z′(0) = z1,

is approximately controllable on V.

Lemma 1. [16]. Suppose V is a compact
real interval and the collection of all nonempty,
bounded, closed and convex subsets of X is called
Nb,cl,cp(X ). Consider multivalued function G
mapping from V×X into Nb,cl,cp(X ) is measurable
to ζ for all fixed z belongs to X , upper continuous
to z for all ζ belongs to V and for all z belongs to
C,

SG,z =

{
g ∈ L1(V,X ) : g(ζ) ∈ G

(
ζ, z(ζ),∫ T

0
f(ζ, ν, z(ν))dν

)
, ζ ∈ V

}
is nonempty. Assume that M : L1(V,X ) → C is
a linear continuous function, next

M◦ SG : C → Nb,cl,cp(C)
z → (M◦ SG)(z) = M(SG,z)

is a closed graph operator belongs to C → C.

Lemma 2. [36] Suppose H is a subset of X
which is nonempty, bounded, closed and convex,
assume D : H → 2X \ {∅} is u.s.c with closed,
convex values such that D(H) ⊂ H where D(H)
is compact, then D has a fixed point.

3. Approximate controllability

The section explicitly focuses on the articulation
of mild solution for the above mentioned system
(1). We now present the required hypothesis for
proving the main theorem:

(H1) Kϱ(ζ), Qϱ(ζ) and Wϱ(ζ) are compact ϱ-
resolvent families generated by the secto-
rial operator A. For all ζ belongs to V ,

there exist P̂ > 0 such that

sup
0≤ζ≤T

∥Kϱ(ζ)∥ ≤ P̂ ,

sup
0≤ζ≤T

∥Qϱ(ζ)∥ ≤ P̂ ,

sup
0≤ζ≤T

∥Wϱ(ζ)∥ ≤ P̂ .

(H2) The functions g(ζ, s, .), h(ζ, s, .) : X −→
X are continuous for all (ζ, s) ∈
∆ and for all z ∈ X the function
g(., ., z), h(., ., z) : ∆ −→ X are strongly
measurable.

(H3) The multivalued map G : V × X × X →
Nb,cl,cp(L(K,X )) is an L2− caratheordy
function such that for all ζ ∈ V, the func-
tion G(ζ, ., .) : X ×X → Nb,cl,cp(L(K,X ))
is u.s.c and for all (s, z) ∈ ×X ×X the set

SG,z =

{
g ∈ L2(J, L(K,X )) : g(ζ) in G

(
ζ, z(ζ),∫ T

0
f(ζ, ν, z(ν))dν

)
for a.e ζ ∈ V

}
is nonempty.

(H4) There exists a function Lg,p : X → R+

such that.

sup

{
E∥g∥2 : g(ζ) ∈G

(
ζ, z(ζ),

∫ T

0
f(ζ, ν, z(ν))dν

)}
≤ Lg,p(ζ),

for almost every ζ ∈ V .
(H5) The function ν → (ζ − ν)T−1Lg,p(ζ) ∈

L1(V,R+) such that there exist φ > 0 such
that

lim
p→∞

inf

∫ ζ
0 νµ−1Lg,p(ν)dν

p
= φ < +∞.

(H6) If g : C([0, T ],X ) → X is continues then
there exists some constant Mg such that
E∥g(x)∥2 ≤ ∥x∥2.

Now, we can show that the system (1) is control-
lable approximately on the given interval. That is
there exist a mild solution z ∈ C satisfies the re-
quirements of approximate controllability, where

z(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν, g ∈ SG,z,

x(ζ) = B∗W∗
ϱ (ζ − ν)R(ℏ,ΓT

0 )q(z(·)).
In the above

q(z(·)) = zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(ζ − ν)g(ν)dW (ν).

Theorem 3. On considering the hypothesis
(H0)− (H6) are fulfilled then (1) contains at least
one mild solution on V if

4P̂ 2

[
1 +

(P̂PB)
4

ℏ

]
φ < 1
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with PB = ∥B∥.

Proof. The main aim of this theorem is to nd
conditions for solvability of system (1) to be re-
solvable for ℏ > 0. Now we prove that the map-
ping Φ from C into 2C given by

Φ(z) =

{
z ∈ C. m(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν, g ∈ SG,z

}
,

has a fixed point.
Step 1: For all ℏ > 0, Φ(z) is convex for all z
belongs to C. Let m1,m2 ∈ C, then there exists
g1, g2 belongs to SG,z such that ζ belongs to V ,
we obtain

mi(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)gi(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)gi(τ)dW (τ)

]
(ν)dν, i = 1, 2.

Let κ ∈ [0, 1], then for all ζ belongs to V , now we
have
(κm1 + (1− κ)m2)(ζ) = Kϱ(ζ)z0

+Qϱ(ζ)z1 +

∫ ζ

0
Wϱ(ζ − ν)[κg1(ν) + (1− κ)g2(ν)]dν

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1 −

∫ T

0
Wϱ(T − τ)[κg1(τ)

+ (1− κ)g2(τ)]dW (τ)

]
(ν)dν.

Since SG,z is convex, κm1 + (1− κ)m2 belongs to
SG,z. Hence κm1 + (1− κ)m2 belongs to Φ(z).

Step 2: Assume that

Bp =
{
z ∈ C|∥z∥C ≤ p

}
, for p > 0.

Clearly Bp is convex, closed and bounded subset
of C. For ℏ > 0, our assumption is there exist
p > 0 such that

Φ(Bp) ⊂ Bp.

If not, then for all p > 0, there exist zp belongs
to Bp, but Φ(z

p) /∈ Bp, i.e,

∥Φ(zp)∥C = sup
{
∥mp∥C : mp ∈ Φ(zp)

}
> p,

and

mp(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)gp(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)gp(τ)dW (τ)

]
(ν)dν,

for some gp belongs to SG,zp .
By referring (H3), we get

E∥xp(ζ)∥2 = E

∥∥∥∥B∗W∗
ϱ (T − τ)R(ℏ,ΓT

0 )[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)gp(τ)dW (τ)

]∥∥∥∥2
≤ E∥B∗∥2E∥W∗

ϱ (T − τ)∥2E∥R(ℏ,ΓT
0 )∥2

× E

∥∥∥∥[zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)gp(τ)dW (τ)

]∥∥∥∥2
≤ P̂ 2P 2

B
1

ℏ

[
4E∥zT ∥2

+ 4E∥Kϱ(T )z0∥2 + 4E∥Qϱ(T )z1∥2

+ 4Lg

∫ T

0
E∥Wϱ(T − τ)gp(τ)∥2dτ

]
≤

P̂ 2P 2
B

ℏ

[
4E∥zT ∥2 + 4P̂ 2E∥z0∥2 + 4P̂ 2E∥z1∥2

+ 4P̂ 2Lg

∫ T

0
∥gp(τ)∥2dτ

]
.

Now for ℏ > 0,

p <E∥(Φzp)(ζ)∥2 ≤ 4E∥Kϱ(ζ)z0∥2

+ 4E∥Qϱ(ζ)z1∥2

+ 4Lg

∫ ζ

0
E∥Wϱ(ζ − ν)gp(ν)∥2dν

+ 4

∫ ζ

0
E∥Wϱ(ζ − ν)Bxp(ν)∥2d

≤ 4P̂ 2E∥z0∥2 + 4P̂ 2E∥z1∥2

+ 4P̂ 2Lg

∫ ζ

0
E∥gp(ν)∥2dν

+ 4P̂ 2

∫ ζ

0
E∥Bxp(ν)∥2dν
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≤ 4P̂ 2E∥z0∥2 + 4P̂ 2E∥z1∥2

+ 4P̂ 2Lg

∫ ζ

0
Lg,p(ν)dν

+ 4P̂ 2P 2
B

∫ ζ

0

(
P̂ 2P 2

B
ℏ

[
E∥zT ∥2 + P̂ 2E∥z0∥2

+ P̂ 2E∥z1∥2 + P̂ 2Lg

∫ T

0
Lg,p(τ)dτ

])
dν

≤ 4P̂ 2E∥z0∥2 + 4P̂ 2E∥z1∥2

+ 4P̂ 2Lg

∫ ζ

0
Lg,p(ν)dν

+ 4
(P̂ 2P 2

B)
2

ℏ

[
4E∥zT ∥2 + 4P̂ 2E∥z0∥2

+ 4P̂ 2E∥z1∥2 + 4P̂ 2Lg

∫ T

0
Lg,p(τ)dτ

]
.

Dividing the above equation by p and as p → ∞
we obtain

4P̂ 2

[
1 + 4

(P̂ 2P 2
B)

2

ℏ

]
φ ≥ 1,

which contradicts to our assumption.
Step 3: We check that {Φ(z) : z ∈ Bp} is
equicontinuous.

For all m belongs to Φ(z) and z belongs to Bp,
there exist g ∈ SG,z such that

m(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1 +

∫ ζ

0
Wϱ(ζ − ν)g(ν)dν

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν.

Suppose 0 ≤ ζ1 < ζ2 ≤ T . In addition,

E∥m(ζ2)−m(ζ1)∥2 = E∥Kϱ(ζ2)z0 +Qϱ(ζ2)z1

+

∫ ζ2

0
Wϱ(ζ2 − ν)g(ν)dW (ν)

+

∫ ζ2

0
Wϱ(ζ2 − ν)Bx(ν)dν −Kϱ(ζ1)z0 −Qϱ(ζ1)z1

−
∫ ζ1

0
Wϱ(ζ1 − ν)g(ν)dW (ν)

−
∫ ζ1

0
Wϱ(ζ1 − ν)Bx(ν)dν∥2

≤ 6E∥[Kϱ(ζ2)−Kϱ(ζ1)]z0∥2

+ 6E∥[Qϱ(ζ2)−Qϱ(ζ1)]z1∥2

+ 6L2
g

∫ ζ2

ζ1

E∥Wϱ(ζ2 − ν)g(ν)∥2dν

+ L2
g

∫ ζ1

0
E∥[Wϱ(ζ2 − ν)−Wϱ(ζ1 − ν)]g(ν)∥2dν

+

∫ ζ2

ζ1

E∥Wϱ(ζ2 − ν)Bx(ν)∥2dν

+

∫ ζ1

0
E∥[Wϱ(ζ2 − ν)−Wϱ(ζ1 − ν)]Bx(ν)∥2dν

≤ 6E∥Kϱ(ζ2)−Kϱ(ζ1)∥2E∥z0∥2

+ 6E∥Qϱ(ζ2)−Qϱ(ζ1)∥2E∥z1∥2

+ 6L2
gP̂

2

∫ ζ2

ζ1

Lg,p(ν)dν

+ 6L2
g

∫ ζ1

0
E∥Wϱ(ζ2 − ν)−Wϱ(ζ1 − ν)∥2Lg,p(ν)dν

+ 6P̂ 2P 2
B

∫ ζ2

ζ1

E∥x(ν)∥2dν

+ 6P 2
B

∫ ζ1

0
E∥Wϱ(ζ2 − ν)−Wϱ(ζ1 − ν)∥2

× E∥x(ν)∥2dν.
In the above aforementioned inequality the right
hand side → 0 as ζ2 → ζ1 by using the continu-
ity of functions ζ → ∥Kϱ(ζ)∥, ζ → ∥Qϱ(ζ)∥ and
ζ → ∥Wϱ(ζ)∥. Therefore, Φ(Bp) is equicontinu-
ous.

Step 4: We show that H(ζ) = {m(ζ) : m ∈
Φ(Bp)} is relatively compact belongs in X . For
ζ = 0, result is trivial, hence H(ζ) = {z0}.
For some fixed ζ belongs to V . Assume that
0 < ϵ < ζ, z belongs to Bp and introduce the
operator mϵ by

mϵ(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ−ϵ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ−ϵ

0
Wϱ(ζ − ν)Bx(ν)dν.

Hence Q(ϵ), ϵ > 0 is a compact operator, then
Hϵ(ζ) = {mϵ(ζ) : mϵ ∈ Φ(Bp)} is relatively com-
pact belongs to X , 0 < ϵ < ζ. Further, for all z
belongs to Bp, we get

E∥m(ζ)−mϵ(ζ)∥2 = E∥
∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν

−
∫ ζ−ϵ

0
Wϱ(ζ − ν)g(ν)dW (ν)

−
∫ ζ−ϵ

0
Wϱ(ζ − ν)Bx(ν)dν∥2,

≤ 2

∫ ζ

ζ−ϵ
L2
gE∥Wϱ(ζ − ν)g(ν)∥2dν

+ 2

∫ ζ

ζ−ϵ
E∥Wϱ(ζ − ν)Bx(ν)∥2dν

≤ 2L2
gP̂

2

∫ ζ

ζ−ϵ
Lg,p(ν)dν
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+ 2P̂ 2P 2
B

∫ ζ

ζ−ϵ
E∥x(ν)∥2dν.

We see that E∥m(ζ) − mϵ(ζ)∥2 → 0 as ϵ → 0+.
Thus there exist relatively compact set and it is
arbitrarily close to H(ζ) = {m(ζ) : m ∈ Φ(Br)}
and the set H(ζ) is relatively compact in X for all
ζ ∈ [0, T ]. At ζ = 0 it is compact, hence H(ζ) is
relatively compact belongs to X for all ζ ∈ [0, T ].

Step 5: Φ has a closed graph.

Consider zn → z∗ and mn → m∗ as n → ∞. We
will prove m∗ ∈ Φ(z∗). Since mn ∈ Φ(zn), such
that gn belongs to SG,zn such that

mn(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)gn(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)× gn(τ)dW (τ)

]
(ν)dν.

We need to show there exist g∗ belongs to SG,z∗

such that for all ζ belongs to V ,

m∗(ζ) = Kϱ(ζ)z0 +Qϱ(ζ)z1

+

∫ ζ

0
Wϱ(ζ − ν)g∗(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)g∗(τ)dW (τ)

]
(ν)dν.

Clearly,

E

∥∥∥∥(mn(ζ)−Kϱ(ζ)z0 −Qϱ(ζ)z1

−
∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)gn(τ)dW (τ)

]
(ν)dν

)
−
(
m∗(ζ)−Kϱ(ζ)z0 −Qϱ(ζ)z1

−
∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)g∗(τ)dW (τ)

]
(ν)dν

)∥∥∥∥2 → 0,

as n → ∞. Assume that T : L1(V,X ) → C,

(T g)(ζ) =

∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[ ∫ T

0
Wϱ(T − τ)g(τ)dW (τ)

]
(ν)dν.

We can conclude that the operator T ◦ SG,z is a
closed graph by using Lemma 1. Then, in view of
T we can see that

(
mn(ζ)−Kϱ(ζ)z0 −Qϱ(ζ)z1

−
∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)g∗(τ)dW (τ)

]
(ν)dν

)
∈ T (SG,zn).

Since gn → g∗, as n tends to zero, it follows that
for all ζ belongs to V , we obtain

(
m∗(ζ)−Kϱ(ζ)z0 −Qϱ(ζ)z1

−
∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)g∗(τ)dW (τ)

]
(ν)dν

)
∈ T (SG,z∗).

As a result, Φ is a closed graph.

Thus Φ is multivalued map which is completely
continuous and hence as a result of the previous
steps and Ascoli-Arzela theorem it is easily see
that Φ is u.s.c. As a result, which has a fixed
point z(ζ) on Bp and by referring to Lemma 2,
which is the mild solution of (1). □
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Definition 12. The fractional integro-differential
inclusions (1) is called approximately control-

lable on [0, T ] provide that R(T, z0) = X , where
R(T, z0) = {zT (z0; z) : z(ζ) in L2(V,X )} is a
mild solution of (1).

The following assumptions are required for prov-
ing the main results.

H7 The function G : V × X × X →
Nb,cl,cp(L(K,X )) is uniformly bounded for
all ζ ∈ V and z ∈ X

Theorem 4. Suppose (H0)− (H7) are fulfilled.
Further there exist I belongs to L1(V, [0,+∞))

such that supz∈X ∥G(ζ, z(ζ),
∫ T
0 f(ζ, ν, z(ν))dν)∥

≤ I (ζ) for a.e. ζ belongs to V . In addition, (1)
is approximately controllable.

Proof. Let zα(.) ∈ Bp be a fixed point of the
operator Φ, by Theorem 3.1 any fixed point of Φ
is a mild solution of 1. This means that there is
zα ∈ Φ(zα), i.e. by the Fubini theorem there is
gα ∈ SG,z∗ such that for all ζ ∈ V.

zα(ζ) = Kϱ(ζ)z0 −Qϱ(ζ)z1

−
∫ ζ

0
Wϱ(ζ − ν)BB∗W∗

ϱ (ζ − ν)R(ℏ,ΓT
0 )

×
[
zT −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − τ)g∗(τ)dW (τ)

]
(ν)dν

)
.

Define

P (gα) = zα −Kϱ(T )z0 −Qϱ(T )z1

−
∫ T

0
Wϱ(T − ν)gα(ν)dW (ν),

for some gα ∈ SG,z∗ .

Noting that I − ΓT
0 R(ℏ,ΓT

0 ) = αR(ℏ,ΓT
0 ),

i.e we get zα(b) = zT − αR(ℏ,ΓT
0 )P (gα).

By assumption (H7),

E∥
∫ T

0
gα(ν)dW (ν)∥2 ≤ L2

g

∫ T

0
E∥gα(ν)∥2dν

≤ L2
glr(ζ)T ≤ L2

glrT.

Subsequently, the sequence {gα} is uniformly
bounded in L2(V,X ). Hence we can find a sub-
sequence of {gα} which is still denoted by {gα}
that converges weakly to g ∈ L2(V,X )
Denoting h = zT − Kϱ(T )z0 − Qϱ(T )z1 −∫ T
0 Wϱ(T − ν)g∗(ν)dW (ν).

We see that

E∥P (gα)− h∥2

= E

∥∥∥∥∫ T

0
Wϱ(T − ν)[g∗(ν)− g(ν)]dW (ν)

∥∥∥∥2
≤ L2

g

∫ T

0
E∥Wϱ(ζ − ν)[gα(ν)− g(ν)]∥2dν

≤ sup
0≤t≤T

ζ∫
0

E∥Wϱ(ζ − ν)[gα(ν)− g(ν)]∥2dν.

Using Ascoli-Arzela theorem, we can see that

the linear operator,
(·)∫
0

(.,−ν)µ−1Wϱ(.−ν)g(ν)dν :

L2(V,X ) → C(V,X ) is compact. Therefore, we
get E∥P (gα)− h∥2 → 0 as α → 0.
Hence,

E∥zα(b)− zT ∥2 = E∥R(α,ΓT
0 )P (gα)∥2

≤ 2E∥R(α,ΓT
0 )(h)∥2 + 2E∥R(α,ΓT

0 )(P (gα)− h)∥2

≤ 2E∥R(α,ΓT
0 )(h)∥2 + ∥(P (gα)− h)∥2 → 0

as α → 0+.

This proves the approximate controllability of sys-
tem (1) □

4. Nonlocal conditions

The idea of nonlocal initial conditions of the dif-
ferential systems were inspired by physical con-
cerns. The result pertaining to approximate con-
trollability is extended to Hilbert space in [37]. In
contrary, to local conditions Byszewski et. al [38]
interrogated the abstract Cauchy with nonlocal
conditions in Banach spaces. For more details on
nonlocal conditions refer [13, 14, 39, 40]. Consider
the fractional systems of order ϱ ∈ (1, 2) with
nonlocal conditions:


CDϱ

ζz(ζ) ∈ Az(ζ) +G(ζ, z(ζ),∫ T
0 f(ζ, ν, z(ν))dν)dW (ν)

dν

+Bx(ζ), ζ ∈ V = [0, T ],

z(0) = z0 + w1(z), z′(0) = z1 + w2(z).

(2)

In the above, w1, w2 is appropriate functions and
it is mapping from V ×X into X which fulfill the
subsequent condition:

(H8) The completely continuous functions
w1, w2 belongs to C(V,X ) and there ex-
ists c, d, e, k > 0 such that

E∥w1(z)∥2 ≤ cE∥z∥2 + d,

E∥w2(z)∥2 ≤ eE∥z∥2 + k, for all z ∈ Y.
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Definition 13. A function z belongs to C is called
a mild solution of (2) provide that

z(ζ) = Kϱ(ζ)[z0 − w1(z)] +Qϱ(ζ)[z1 − w2(z)]

+

∫ ζ

0
Wϱ(ζ − ν)g(ν)dW (ν)

+

∫ ζ

0
Wϱ(ζ − ν)Bx(ν)dν.

Theorem 5. Provide that (H0)-(H8) are fulfilled
and if

P̂ 2

[
1 +

(P̂ 2P 2
B)

2

ℏ

]
φ+ P̂ 2(c+ e)

×
[
1 +

(P̂ 2P 2
B)

2

ℏ

]
φ < 1

where PB = ∥B∥ then (2) has at least one mild so-
lution on [0, T ] and is approximately controllable.

Proof. Since the theoretical proof of the theorem
much similar to that of Theorem 3, we neglect the
proof. □

5. Application

To illustrate our finding we consider the following
fractional integro-differential system



∂ϱ

∂ζr z(ζ, s) ∈
∂2

∂s2
z(ζ, s) + J

(
ζ, z(ζ, s),∫ ζ

0 e(ζ, ν, z(ν, s))dν

)
dW (ν)
dν + w(ζ, s),

z(ζ, 0) = z(ζ, 1) = 0, ζ ∈ V,

z(0, s) = z0(s),

z′(0, s) = z1(s), s ∈ [0, π].

(3)

In the above the order of fractional system ϱ = 3
2 ,

J : [0, 1]×X ×X → 2X \{∅} and the continuous
function e mapping from [0, 1]× [0, 1]×X into X .
Let us consider X = H = L2([0, π]) and let W (ζ)
be a standard cylindrical Wiener process in X
defined on a stochastic space

(
Ω,ℑ, {ℑζ}ζ⩾0,P

)
,

Dϱz = ∂ϱz
∂ζϱ is the Caputo fractional derivative of

order 1 < β < 2.

D(A) ={z ∈ X : z, z′ are absolutely continuous,

z′′ ∈ X , z(0) = z(π) = 0}.
Now there exist a sequence {ej}j⩾1 of eigenvec-
tors of A such that. {ej}j⩾0 is a complete or-

thonormal and ej(y) =
√

2
π sin y. Furthermore A

is dense in X and A is the infinitesimal generator
of a resolvent family {W(ζ), ζ ≥ 0} belongs to
X , according to [14].

Put z(ζ) = z(ζ, ·), ζ belongs to [0, 1] and x(ζ) =
ω(ζ, ·). The linear bounded operator B : H → X

defined by Bx(ζ)(s) = w(ζ, s). Then

e(ζ, ν, z)(s) = f(ζ, ν, z(s)),

and

G(ζ, z, ℘1)(s) = J (ζ, z(s), ℘1(s))

for ζ, ν belongs to [0, 1], z, ℘1 belongs to X and s
belongs to [0, π]. The above mentioned fractional
partial differential system (3) can be consider as
the exact representation of the problem (1) with
the functions our preferred choices. Then it can
be easily viewed that all the requirements of the
Theorem 3 satisfied and hence we can ensure the
approximate controllability of (3) on [0, T ].

6. Conclusion

The findings of this research analyze the outcome
results of approximate controllability of Stochas-
tic fractional integro-differential equation consid-
ered in Banach space. Bohnenblust-Karlin’s fixed
point technique is used as the key factor to es-
tablish the required conditions for our chosen
fractional system (1) to be controllable approxi-
mately. The above mentioned procedure to estab-
lish the approximate controllability is extended to
fractional nonlocal system. In future the present
work can be extended by analysing the controlla-
bility results of stochastic integro fractional differ-
ential inclusion system with impulsive conditions.
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