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 Drones have started to be used for surveillance within the cities, visually scanning 

the predefined zones, quickly detecting abnormal states such as fires, accidents, 

and pollution, or assessing the disaster zones. Coverage Path Planning (CPP) is a 

problem that aims to determine the most suitable path or motion plan for a vehicle 

to cover the entire desired area in the task. So, this paper proposes a novel two-

dimensional coverage path planning (CPP) mathematical model with the fact that 

a single drone may need to be recharged within its route based on its energy 

consumption, and the obstacles must be avoided while constructing the route. Our 

study aims to create realistic routes for drones by considering multiple charging 

stations and obstacles for surveillance. We tested the model for a grid example 

based on the scenarios obtained by changing the layout, the number of obstacles 

and recharging stations, and area size using the Python Gurobi Optimization 

library. As a contribution, we analyzed the impact of the number of existing 

obstacles and recharging stations, the size and layout of the area to be covered on 

total energy consumption, and the total solution time of CPP in our study for the 

first time in the literature, through a detailed Scenario Analysis. Results show that 

the map size and the number of covered cells affect the total energy consumption, 

but different layouts with shuffled cells are not effective.  The area size to be 

covered affects the total computation time, significantly. As the number of 

obstacles and recharging stations increases, the computation time decreases up to 

a certain limit, then stabilizes. 
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1. Introduction 

Technological developments such as unmanned aerial 

vehicles (UAVs) have significantly affected all 

industries in recent years. UAVs, which were first used 

for military purposes [1-2], soon attracted the attention 

of the private sector and commercial industries. With 

the new regulations made for air traffic management, 

drone studies have been channeled and increased 

accordingly. According to researchers, drones (UAVs) 

are currently used mostly in outdoor areas [3], and 

outdoor applications tend to increase in the future.  

When UAV technologies are examined under the title 

of sustainable cities, it aims to be a solution to the 

problems that come with sustainable cities [4]. It will 

be possible to use UAVs, which are expected to have 

an important role in the field of smart and sustainable 

cities, in city problems such as flood detection, disaster 

management, traffic management, health needs 

distribution, and last-mile delivery by connecting to all 

data links with IoT technology [5]. Otto et al. [6] also 

emphasized that UAVs may provide cost savings and 

capabilities for difficult-to-access infrastructure, 

environmental monitoring, and medical supplies 

distribution, and help save lives.  

In this study, we developed a mathematical model for 

the two-dimensional Coverage Path Planning Problem, 

which aims to minimize total energy consumption 

while considering the drone's recharging and the 

obstacles to be avoided within the path plan. Our study 

has the following contributions: Unlike the existing 

models for other vehicle types, the specialized energy 

consumption function for the drone has been added to 

the two-dimensional Coverage Path Planning (CPP) 

model. Besides, recharging the drones in the 

predetermined stations is decided in the model to 

overcome battery drain problems, and the obstacles are 

avoided during the path planning.  

Although the related CPP problem has been examined 
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from many perspectives, we analyzed the impact of the 

number of existing obstacles and recharging stations, 

the size and layout of the area to be covered on total 

energy consumption, and the total solution time in our 

study for the first time in the literature, through a 

Scenario Analysis. This is a unique aspect of our study. 

This comprehensive analysis brings useful insights to 

this field. To the best of our knowledge, none of the 

past studies included all these aspects in the two-

dimensional Coverage Path Planning of drones. 

The paper is organized as follows: In the following 

section, the related works are briefly explained. In 

Section 3, the CPP problem is introduced. In Section 4, 

the Proposed Mathematical Model is explained. Then, 

in Section 5, Scenario Analysis and application results 

are discussed in detail. Finally, the Conclusion and 

future work are presented. 

2. Literature review  

In this section, a brief overview of the civil applications 

of drones/UAVs will be made. Later, past studies 

regarding the CPP will be discussed, and the merit of 

our study in the current literature will be explained. Cai 

et al. [7] made a survey of advances in UAVs and future 

application prospects. Drone technologies were studied 

for different application areas such as logistics [8-9], 

manufacturing [10], surveillance [11], intralogistics 

[12-13], disaster management [14], inventory 

management [15-16], and agriculture [17-18]. Ozkan 

and Kaya [11] studied UAV path planning for border 

security and patrolling missions and solved the problem 

using a Genetic Algorithm-based Matheuristic for 

different scenarios based on departure basis, daily 

patrol numbers, and ranges of UAVs.  

Besides, Otto et al. [6] performed a comprehensive 

review study of the optimization approaches for civil 

applications of drones/UAVs. Coverage path planning 

for full and partial coverage, as well as, coverage from 

stationary positions were discussed in detail [6]. 

Readers may refer to this study for a comprehensive 

literature review. Glock and Meyer [19] developed a 

unified view for path planning and vehicle routing 

studies from many different disciplines that aim at 

spatial coverage. This study is also an interesting one 

that discusses the similarities between and the solution 

methods of these two problem types. 

The CPP problem has been studied for not only single-

drone but also multiple drones [20]. Avellar et al. found 

the optimum number of drones required to cover the 

entire designated area and tried to execute the task with 

multiple drones in a minimum time [21]. In another 

study, a suitable covering path was created for the 

mapping task to determine post-disaster risk with more 

than one drone [22]. Besides, Wang et al. [23] 

developed a model that allowed drones to cover the area 

more than once each time by improving the only one-

time coverage constraint. Zhang and Duan [24] added 

constraints for drones with different starting battery 

capacities to cover the space. The path routing problem 

for multiple drones that minimizes total traveling time 

was studied in an urban setting, considering battery 

limitations, obstacles, and recharging stations [25]. 

Although this study is like our work, one minimized 

total time spent during the route rather than total energy 

consumption. 

In addition to 2-dimensional studies, there are also 

instances of 3-dimensional (3D) CPP articles [26-27]. 

Bircher et al. [26] developed the routing optimization 

model and mostly focused on 3D structure inspections; 

while Balasubramanian et al. [27] determined the 

optimum route by considering different 3D static 

obstacles.  

Besides, there are some past studies that focused on 

energy-efficient CPP which is the main topic of this 

study. Balasubramanian et al. [27] used the ant colony 

optimization model to calculate the 3-dimensional 

energy-efficient route. Vasquez-Gomez et al. [28] 

developed an efficient route planning algorithm for the 

coverage of the convex regions of the drones, based on 

different starting and end points, but the algorithm did 

not guarantee optimality. Choi et al. [29] developed a 

column generation algorithm for solving the CPP based 

on a precise computation of the energy consumption 

during the missions. Aiello et al. [30] developed an 

energy-efficient algorithm for route planning of drones, 

but the authors did not consider the recharging stage 

within the routes. Modares et al. [31] formulated the 

energy-efficient CPP for multiple drones and 

minimized the maximum energy consumption among 

all of the UAVs paths. Shivgan and Dong [32] modeled 

the energy-efficient CPP in a similar way to the 

traveling salesman problem and solved it by means of 

Genetic and Greedy Algorithms. To sum up, algorithm-

based past papers for energy-efficient CPP are more 

common, but these do not guarantee optimality. Most 

of them do not consider recharging needs. However, 

our study considers both recharging states in the route 

and the time spent during the route including flight time 

and recharging time.  

Bezas et al. [33] studied the CPP for swarms of UAVs 

and solved the model considering paths of parallel lines 

and spiral coverage.  Vazquez-Carmona et al. [34] 

developed an efficient algorithm for the CPP, 

especially for disinfecting the areas, and simulated the 

routes that they developed. Tevyashov et al.[35] solved 

the multi-drone CPP of the agricultural fields, by 

minimizing the maximum time needed to cover 

assigned areas. The common objectives of the CPP 

models are maximum area coverage, minimum energy 

consumption, and minimum time [36]. For a detailed 

survey of the CPP with drones/UAVs, the readers may 

refer to [20].  

The impact of the number of existing obstacles and 

recharging stations, the size and layout of the area to be 

covered on total energy consumption, and the total 

solution time of the Energy-Efficient CPP were 

analyzed for the first time in the literature, using a 

comprehensive Scenario Analysis. This is a unique 

aspect of our study.   
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3. Problem definition  

Coverage Path Planning (CPP) is a problem that reveals 

the appropriate motion plan for a vehicle to cover the 

entire desired area in the task [20]. The mentioned 

vehicle could be a human, robot, flying vehicle, or any 

other mechanism which can move and turn. In this 

study, the area to be covered is thought to be covered 

with a multi-rotor UAV, commonly known as a drone.  

To properly construct the CPP problem, the area to be 

covered is identified as a certain map and it is assumed 

that the UAV knows the map beforehand. As also stated 

in the research, the problem logic is similar to the 

problem of TSP [32], in that the vehicle has to 

consecutively visit all of the nodes in the system. A 

similar type of this method is used in literature by 

dividing the space into grids for discretizing it, the only 

difference is that the CPP problem is turned into a VRP 

problem [37]. In the CPP problem, the map is divided 

into cells that have an equal area, and the cell is 

assumed to be covered when the drone is positioned in 

the center of the cell since the drone has a specific 

hovering height and the camera can capture an area at a 

time [31]. The area of the cell is proportionate to the 

camera angle of view and it is assumed to be a square 

view. UAV hovers at a specific height which makes the 

map a 2-D space. Because of the fixed hovering height, 

at all points of the map, the camera sees cells that have 

the same dimensions.  

Different types of UAVs can perform different 

movement types. To define the problem much more 

strictly, the type of movement that the UAV can 

perform has to be decided. In the literature, there are 

two types of approaches called the Von-Neumann and 

Moore Neighborhood movements which can be seen in 

Figure 1 [38]. Since drones can make diagonal moves 

by changing the power of rotors and it is more realistic, 

the Moore Neighborhood approach is more suitable for 

the application.

 

Figure 1. Von-Neumann movements (left) and Moore 

Neighborhood movements (right). 

 

To make the application more realistic the map includes 

obstacle cells that UAV has to avoid and does not have 

to cover. These obstacles can range from no-fly zones 

to buildings. In the literature, multi-UAV applications 

[39] and single-UAV applications [40] are available. In 

this work, a single UAV is chosen. The drones are fit 

for the use areas. However, the main problem with 

drones is the low fly durations because of the battery 

[41]. To solve the problem of battery recharging 

stations that are spread across the map are added to the 

problem definition. To calculate the energy 

consumption a unit energy cost is defined per cell, and 

this consumption is correlated with the distance 

traveled. While straight movements cost one unit of 

energy, diagonal movements cost according to the 

distance traveled. Recharging stations allow the drone 

to fully charge its battery when it lands at the cell of the 

recharging station. Although technology development 

studies are conducted to achieve better energy 

management in electric vehicles [42], recharging 

station cells still must be covered in the path planning.  

4. Mathematical model 

We proposed a new mathematical model for the single-

vehicle (i.e. UAV), energy-efficient two-dimensional 

CPP, in this study. The model consists of sub-elements 

such as assumptions, sets, parameters, variables, 

objective functions, and constraints that are expressed 

mathematically. Each element has been meticulously 

developed to validate that the model is sustainable and 

does not give infeasible solutions, and is explained in 

detail in the following sections: 

Some assumptions have been made to reach feasible 

results and to increase the computational speed of the 

model. These assumptions are explained one by one in 

the following part: 

• A drone is deployed from and returned to a 

predefined point inside the grid, called the base. 

• If the area is not convex, it is converted into the 

convex hull of the area (square or rectangle). 

• A drone is equipped with an onboard 

camera/sensor pointing down and has a square 

viewing aspect, which equals one-grid size. 

• No external forces affecting the drones are 

considered, such as weather conditions (i.e. wind). 

• The number of visiting recharging stations must be 

equal to 1 for the other cells. Cells that contain 

recharging stations are also considered to be 

covered.  

• All coverage areas and recharging stations are at 

the same altitude; therefore, the problem is 2-

dimensional.  

• At any recharging station, the battery is charged to 

100% battery level. In other words, no partial 

charging is allowed. 

• The time spent at the charging stations varies 

according to the remaining charge of the drone. 

• The spent time for landing and take-off movements 

from the starting and charging points is neglected 

in the model. 

• Drone always moves at a constant speed, 

disregarding the extra time spent in turns. 

• Total energy consumption is related to the distance 

traveled and unit energy consumption of the 

vehicle per meter.  

• The battery needs to be always higher than a 

certain percent of its full battery level to provide 

enough energy to return home base in case of 

emergencies. 
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• The battery change times will not be included in 

the model since this is an energy-consumption-

based model. 

4.1. Sets  

The sets that are used in the model are described below. 

k: Step number (k = 0, 1, 2, …, K). 

i: The cell that the drone is leaving (i = 1, 2, …, I). 

j: The cell that the drone is entering (j = 1, 2, …, I) 

(i=j=1 represents depot/base). 

OC: The set of cells that have an obstacle. 

CC: The set of cells that needs to be covered. 

SC: The set of cells that have a charging station. 

4.2. Parameters  

The parameters used in the construction of the model 

are described below. 

p: Initial position of the drone. 

d: Energy spent in the movement of one cell. 

B: Full battery capacity of the drone. 

I: Number of cells to be covered. 

si: Whether cell i has a charging station or not. (si=1 ∀ i 
∈ SC, si=0 ∀ i  ∉ SC) 

cij: Energy consumption between cell i and cell j. 

rij: Time spent between cell i and cell j. 

g: Total amount of time to fully charge the drone 

battery. 

4.3. Decision variables 

The decision variables that the model decides on are 

described below. 

yk: The battery of the drone at the end of step k. 

hk: The cumulative sum of energy consumption from 

step 1 to k. 

ui: Dummy variable for sub-tour constraints. 

mij
k: Dummy multiplication variable. 

t: The total time of flight for the drone to cover all cells. 

xij
k={1, if the drone moves from cell i to cell j at step k; 

0, otherwise} . 

4.4. Mathematical model 

The objective function of the model is as given in (1). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

𝑖,𝑗,𝑘                (1) 

Subject to 

∑ 𝑥𝑖𝑗
𝑘

𝑖 = ∑ 𝑥𝑗𝑖
𝑘+1

𝑖 , ∀ 𝑗, 𝑘, 𝑘 ≠ 0, 𝑘 ≠ 𝐾            (2) 

∑ 𝑥𝑖𝑝
𝐾

𝑖 = 1                 (3) 

 𝑥𝑖𝑗
𝑘 = 0, ∀ 𝑖, 𝑗, 𝑘, 𝑖 = 𝑗                   (4) 

∑ 𝑥𝑖𝑗
𝑘

𝑖,𝑘 ≥ 1, ∀ 𝑗, 𝑗 ∈ 𝐶𝐶               (5) 

𝑢𝑖 − 𝑢𝑗 + 𝐼 ∑ 𝑥𝑖𝑗
𝑘

𝑘 ≤ 𝐼 − 1, ∀ 𝑖 ≠ 𝑗, 𝑖 > 1, 𝑗 > 1      (6) 

𝑐𝑖𝑗𝑥𝑖𝑗
𝑘 ≤ 𝑑√2  ∀ 𝑖, 𝑗, 𝑘               (7) 

∑ 𝑥𝑖𝑗
𝑘

𝑘 ≤ 1, ∀ 𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑘 ≠ 0             (8) 

𝑥𝑖𝑗
0 = 0, ∀ 𝑖, 𝑗, 𝑖 ≠ 𝑗             (9) 

∑ 𝑥𝑖𝑗
𝑘

𝑖,𝑗 = 1, ∀ 𝑘, 𝑘 ≠ 0              (10) 

ℎ𝑘 = ℎ𝑘−1 + ∑ 𝑥𝑖𝑗
𝑘 𝑐𝑖𝑗𝑖,𝑗 , ∀ 𝑘, 𝑘 ≠ 0            (11) 

ℎ0 = 0               (12) 

ℎ𝑘 ≤ ℎ𝑘+1, ∀ 𝑘, 𝑘 ≠ 𝐾            (13) 

∑ 𝑥𝑝𝑗
1

𝑗 = 1            (14) 

𝑦0 = 𝐵                (15) 

𝑚𝑖𝑗
𝑘 = 𝑠𝑖𝑥𝑖𝑗

𝑘 , ∀ 𝑖, 𝑗, 𝑘            (16) 

𝑦𝑘 = 𝑦𝑘−1 − ∑ 𝑥𝑖𝑗
𝑘 𝑐𝑖𝑗𝑖,𝑗 + ∑ 𝑚𝑖𝑗

𝑘 (𝐵 − 𝑦𝑘−1)𝑖,𝑗 ∀ 𝑘, 𝑘 ≠ 0    (17) 

𝑡 =  ∑ 𝑥𝑖𝑗
𝑘 𝑟𝑖𝑗𝑖,𝑗,𝑘 + ∑ 𝑔𝑚𝑖𝑗

𝑘
𝑖,𝑗,𝑘;𝑘≠0 (𝐵 − 𝑦𝑘−1)/𝐵        (18) 

𝑦𝑘 ≥  0.2𝐵, ∀ 𝑘            (19) 

𝑥𝑖𝑗
𝑘 = {0, 1}, ∀ 𝑖, 𝑗, 𝑘           (20) 

𝑚𝑖𝑗
𝑘 = {0, 1}, ∀ 𝑖, 𝑗, 𝑘            (21) 

𝑦𝑘 , ℎ𝑘, 𝑢𝑖 , 𝑡 ≥ 0 ∀ 𝑖, 𝑘           (22) 

Objective (1) calculates the total energy consumption 

by the sum product of the given unit consumption cost 

and the decisions made by the model about the nodes to 

be visited at each step, considering all the decisions 

overall steps. Constraint in (2) applies the classical TSP 

approach by making sure that the number of elements 

that go into a cell goes out from it at all points. The only 

modification to the original equation is making sure the 

equality is according to the steps. With the constraint in 

(3) the UAV returns to its original position after 

covering every cell at the last step.  

Constraint in (4) is a simple constraint that prohibits the 

movement from a cell to itself. The Constraint in (5) is 

the main constraint that ensures every single cell is 

covered. This is an inequality that is greater than or 

equal to one, and there can be some circumstances 

where the UAV has to visit the same cell twice. Here, 

the set CC does not contain the obstacle cells, which 

means obstacle cells must be avoided. Constraint in (6) 

is the sub-tour elimination constraint which is a well-

known and standard constraint that prevents the system 

from going into a sub-tour and; thus, not being able to 

complete the whole path. Constraint in (7) ensures the 

drone movement is a type of Moore Neighborhood 

movement and other types of movements are not 

allowed. With the Constraint in (8) the same movement 

cannot be made in different steps. In other words, one 

movement can be made only in one step. Since the steps 

are defined starting from 0, the constraint in (9) ensures 

that there is no movement in step 0. Constraint in (10) 

ensures that one step includes only one movement. 

Constraint in (11) calculates the cumulative energy 

consumption to be used in the other constraints. 

Constraint in (12) initializes the sum of energy 

consumption to 0 at step 0. Constraint in (13) is the 

constraint that provides continuity to the model in terms 

of the steps. With this constraint, the order of steps is 
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correctly evaluated in the model. Constraint in (14) 

ensures the UAV starts from the initial point p at step 

1. Constraint in (15) is the initialization of battery level 

to B which is the maximum, at step 0. Constraint in (16) 

is added to the model as an intermediate calculation that 

calculates the auxiliary multiplication variable of 

whether the UAV is leaving the charging station or not. 

The Constraint in (17) is the battery update constraint 

which ensures the battery is lowered after a movement 

is made at any step. With the second part of the 

equation, the battery is fully charged if the UAV is 

exiting a charging station. The charging is made after 

the drone is done with its last step to ensure that there 

is no overplus of energy used when there is none. 

Constraint in (18) calculates the total flight time of the 

drone to fully cover all the cells that can be covered as 

well as the charging times in stations according to the 

amount of battery charged. Constraint (19) ensures that 

the battery is always more than 20% of full capacity 

[43]. Constraints in (20) and (21) are binary constraints 

for the variables x and m. Constraints in (22) are the 

nonnegativity constraints for the non-binary decision 

variables. 

5. Experimental design   

 In this section, scenario analysis is performed to 

analyze the model under different circumstances. The 

effects of parameters such as layout, number of 

obstacles, area size, and number of recharging stations 

of the model are examined in detail with four different 

main scenarios. 

The grid example shown below in Figure 2 illustrates 

the grid and cell design used by the model throughout 

the scenario analysis. While black cells represent 

barriers, the blue cell represents the recharging stations. 

Arrows also represent the optimal route that the model 

finds to cover all cells. As can be seen, the route 

manages to avoid obstacles while at the same time 

stopping by the charging station to avoid running out of 

battery. The battery needs to be always higher than 20% 

of its full battery level to provide enough energy to 

return home base in case of emergencies according to 

DJI which is one of the best drone producers [43]. 

As mentioned above, the model was examined under 

four different main scenarios. The changing parameters 

are as follows: 

1. Layout Design 

2. The number of Obstacles  

3. Area Size 

4. The number of Recharging Stations (RS)  

 

There are also the fixed parameters of the model which 

are not changed across scenarios. The list of parameters 

and their values are given in Table 1. However, other 

than these, drone type, processor power, and battery 

type situations, which may vary in real life, are not 

considered in our analysis. 

 
Figure 2. Grid example of the scenario analysis. 

 

Table 1. Fixed-parameter values. 

Parameter  Value 

Starting Cell  1  

Speed (Square/Unit Time)  1  

Average Energy Consumption Per Cell   1  

Maximum Battery Capacity (Unit Energy)  100  

 

In addition to the fixed parameters above, each scenario 

has Controlled Parameters (C), Independent 

(Changing) Parameters (I), and Dependent Parameters 

(D). The controlled parameters have fixed values 

through the associated scenario runs. The Independent 

Parameters are the ones with changing values within 

different runs of the associated scenario. The dependent 

parameters are the ones whose values may change 

according to the change of the Independent Parameters.  

The matrix of the scenarios and parameters is presented 

in Table 2. The dependent variables to be observed 

were determined as total energy consumption, average 

energy consumption, and computation time. In 

Scenario 1, area size, the number of obstacles, the 

number of covered cells, and the number of recharging 

stations were kept constant to observe the impact of the 

layout change, by shuffling only their places. In 

Scenario 1, ten different layouts were considered. In 

scenario 2, only one new obstacle is added each time, 

keeping the previous obstacle positions constant while 

increasing the number of obstacles. The layout is not 

shuffled every time. As the number of obstacles 

increased from two to eleven at each run, the number 

of covered cells decreased.  

Table 2. Parameters of the scenarios. 

 

Number 

of  
Cells 

Covered 

Layout 

Number  

of 

obstacles 

Area 
Size 

Number 

of 
Recharge 

Stations 

S-1 C I C C C 

S-2 D C I C C 

S-3 D C C I C 

S-4 C C C C I 
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In scenario 3, only the area size is increased by keeping 

the numbers and position of all obstacles and 

recharging stations constant. Accordingly, the number 

of coverable cells has increased. Six different area sizes 

changing from 3*3 to 8*8 were considered, at different 

runs. In scenario 4, the number of obstacles and area 

size are fixed. One new recharging station is added in 

each run, keeping the previous recharging stations' 

positions constant. The number of charging stations 

was increased from one to six at each iteration. The 

layout is not shuffled.  

6. Scenario results and discussion 

After deciding on the scenario setup, inputs, and 

outputs, the mathematical model was run by changing 

the parameter values at each scenario, iteratively, 

through the Gurobi Optimization Library. Recorded 

outputs were further prepared as bar/combo charts for 

each scenario. Throughout the analysis, the code for the 

model was compiled on the Gurobi Optimization 

Library in Python 3.8. The Gurobi version 9.1.2 was 

used to run the algorithm. The computer which was 

used to run the scenarios had a microprocessor of 

Intel(R) Core (TM) i7-7700HQ, and a total of four 

physical cores, and eight logical processors were used 

to run the scenarios with eight threads. We shared the 

Python codes of the mathematical model in [44].  

For the study, the total energy consumption which is 

the objective of the model is the primary concern in 

terms of the outputs. As shown in the scenario details, 

since some of the models included different numbers of 

cells, the total energy consumption would not provide 

accurate or meaningful results. Hence, not to lose any 

type of information and to better interpret the results, 

the average energy consumption per cell was also 

logged. Lastly, for any scenario application of the 

mathematical model, the total computational time was 

recorded and a chart of the computation time was 

created.  

 

 
Figure 3. Scenario results for energy consumption.

6.1. Total energy consumption analysis 

With the possible applications in mind, the most 

important performance metric in the covering mission 

is energy consumption. Drones are inadequate in terms 

of their battery capacity. Hence, utmost importance is 

given to the energy consumption. The four different 

scenarios have resulted as shown in Figure 3. The bars 

show the total energy consumption, whereas the red 

lines show the average energy consumption per cell.  

 

The first scenario was constructed to observe if the total 

energy consumption changes in different layouts. The 

model was found to be resilient for different types of 

layouts by having similar results in terms of both total 

and average energy consumption. This shows that the 

model accomplishes what it was constructed for. In 

scenario 2, as the number of obstacles increases, the 

total energy consumption decreases. However, if 

average energy consumption per cell is observed (that 

is plotted in red), it increases as the number of obstacle 



Single-drone energy efficient coverage path planning with multiple charging stations for surveillance    177 

cells increases. This indicates that the movements of 

the drone become more inefficient as the area becomes 

more restricted. In scenario 3, if there are more cells 

present on the map, the total energy consumption 

increases since the total area to be covered increases. 

The average energy consumption decreases slightly 

when the map size increases, but no significant changes 

are observed. Scenario 4 depicts the cases where the 

number of recharging stations increases in the same 

map setup (layout). The drone behaves differently and 

changes its path until a certain number of recharging 

stations. After that, the drone follows the same path 

since the battery does not become its primary concern. 

This behavior can be seen in Figure 3. After increasing 

the number of recharging stations beyond two, the 

model gives the same result in terms of total energy 

consumption.  

As a result, in different scenarios, the model manages 

the battery of the drone as efficiently as possible, while 

covering the whole area. The map size, the number of 

covered cells, and to a certain extent the number of 

recharging stations affect the total energy consumption. 

However, different layouts with shuffled cells do not 

affect the total energy consumption. 

6.2. Computation time analysis 

We illustrate the computational times spent in each 

scenario, in Figure 4. In Scenario 3, the computation 

time is affected at most, since the number of cells 

increases exponentially. Scenario 1 has similar 

computation times through different layouts with some 

variation. This shows that the model acts efficiently in 

different layouts. In the second scenario, except for the 

model that has three obstacles, the computation time 

decreases. This decrease can be due to the decrease in 

the total cells that need to be covered. In the fourth 

scenario, the computation time decreases until the 

saturation point of the charging stations. After that, the 

computation time stabilizes. To sum up, the area size to 

be covered affects the total computation time, 

significantly. As the number of obstacles and 

recharging stations increases, the computation time 

decreases up to a certain limit, then stabilizes. The 

layout does not much affect the computational time. 

 

 

 
Figure 4. Scenario results for computational time 

 

7. Conclusion 

In this study, a novel mathematical model was 

proposed for the single-drone two-dimensional 

Coverage Path Planning that minimized the total 

energy consumption. The specialized energy 

consumption function for the drone has been defined in 

the objective. Besides, the model builds the path and 

decides at which step the battery must be recharged in 

the predetermined recharging stations while avoiding 

obstacles during the path planning. In addition, the 

impacts of the number of existing obstacles and 

recharging stations, the size and layout of the area to be 

covered on the total and average energy consumption, 
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and total computational time were examined using a 

comprehensive Scenario Analysis. We explained our 

findings and proposed some insights. Some of the 

practical implications of this study are as follows:  

• Disaster commanders and local government 

officials may employ the proposed model 

embedded in a software platform to plan the route 

of the UAVs, in order to assess the impact of the 

disaster and determine the affected disaster zones. 

• For very big-size disasters, the area to be covered 

may be broken into segments, and the model can 

be solved, in shorter computational times. 

• The availability of charging stations is a significant 

issue, especially for electric vehicles’ adaptation. 

The total flight time results of our model can be 

exploited for the new recharging stations’ location 

decisions. 

To give perspectives for future studies in this field, 

more detailed studies can be performed on battery, 

algorithm, time, camera parameters, and movement. 

Firstly, the model can be modified to allow partial 

battery charging. In this way, it will provide more 

convenient routing for a drone that needs a limited time 

at the charging station or needs a partial charge to 

complete the route. Secondly, while dividing the areas 

where CPP will be applied, the real camera angle can 

be considered and the grid can be created accordingly. 

In this way, a more realistic routing matrix will be 

obtained. 

Third, an objective function such as minimum time or 

latency can be written instead of energy consumption. 

In this way, the task assigned to the drone can be 

completed in a certain time instead of with minimum 

energy. Besides, the existing constraints in the model 

can be simplified, or some heuristic models can be 

developed for a faster solution. Because of the current 

complexity, serious computational power and time are 

needed. Lastly, the turning, accelerating, or 

decelerating movement of the drone can be added to 

make the work more realistic and applicable. For more 

advanced work, there could be an expansion by 

transitioning the 2-D space to a 3-D space with different 

obstacles, which could be buildings of different heights 

in the smart city application. 
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