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Abstract. The multi-choice programming allows the decision maker to consider multiple number of
resources for each constraint or goal. Multi-choice linear programming problem can not be solved
directly using the traditional linear programming technique. However, to deal with the multi-choice
parameters, multiplicative terms of binary variables may be used in the transformed mathematical
model. Recently, Biswal and Acharya [2] have proposed a methodology to transform the multi-choice
linear programming problem to an equivalent mathematical programming model, which can accommo-
date a maximum of eight goals on the right hand side of any constraint. In this paper we present two
models as generalized transformation the multi-choice linear programming problem. Using any one of
the transformation techniques a decision maker can handle a parameter with finite number of choices.
Binary variables are introduced to formulate a non-linear mixed integer programming model. Using a
non-linear programming software optimal solution of the proposed model can be obtained. Finally, a
numerical example is presented to illustrate the transformation technique and the solution procedure.
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1. Introduction

Most of the input parameters in real-world deci-
sion making problems exhibit some level of uncer-
tainty due to the scarcity of data (Dantzig [8]).
Traditional linear programming (LP) addresses
only practical problems in which all parameters
are deterministic. This includes objective func-
tion costs, constraint coefficients and right-hand
side (RHS) parameters. Thus, it is important
to find ways of using LP methods with uncer-
tainties in probabilistic, possibilistic or interval
formats. The methods developed to deal with
different LP models could be grouped into sto-
chastic linear programming (SLP), fuzzy linear
programming (FLP) and interval linear program-
ming (ILP). However, in some cases it is believed

that the parameters or coefficients in the decision
making problems are multi-choice in nature.

The situation of multiple choices for a param-
eter exists in many managerial decision making
problems. The multi-choice programming can
not only avoid the wastage of resources but also
decide on the appropriate resource from multiple
resources. Multi-choice programming is a math-
ematical programming problem, in which deci-
sion maker is allowed to set multiple number of
choices for a parameter. Hiller and Lieberman
[9] and Ravindran et al. [14] have considered
a mathematical model in which an appropriate
constraint is to be chosen using binary variables.
The number of binary variables required for a
constraint is the same as the total number of
choices for that constraint. March and Shapira
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[12] discussed that decision makers (DMs) can
have two aspiration levels for organizational per-
formance that influence risk-taking. In their
model two aspiration levels are considered simul-
taneously by raising organizational performance
to reach silent success level (e.g., market lead-
ership) and keeping organizational performance
to avoid falling below survival level (e.g., bank-
ruptcy). In Chang [5], the author has used bi-
nary variables to present mixed binary goal pro-
gramming to take decision on management prob-
lems where some goals are met and some are not
met. However, in some cases the actual result
of the operation is higher than the pre-defined
target values. It implies that the experts or
DMs underestimate the original aspiration level.
In fact, higher target values could be reached
under current available resources. Using this
concept Chang [6] has proposed formulation of
multi-choice goal programming (MCGP), which
allows DMs to set multi-choice aspiration levels
(MCAL) for each goal (i.e., one goal mapping
multiple aspiration levels) to avoid underestima-
tion of decision making. He used multiplicative
terms of binary variables to handle the multiple
aspiration levels. The transformed mathematical
model proposed by Chang [6] is clearly under-
stood by industrialist when the number of aspi-
ration levels assigned to a goal is a power of 2.
When the number of aspiration levels is not a
power of 2, the model is not clearly understood
(i.e. it remains silent on some binary codes).
In his other paper [7], he replaces multiplica-
tive terms of the binary variables using contin-
uous variable. Liao [11] proposes a formulation
method to solve multi-segment goal program-
ming problem, which obtains a solution close to
the DMs multi-segment aspiration levels. The
author has handled the multi-choice parameters
in the same way as the author has done in Chang
[6]. In his work a multi-choice parameter can
accommodate at best three choices. Recently,
we have established equivalent models for multi-
choice linear programming problem (MCLPP) [2]
that can accommodate at best eight alternatives
for a goal. In this paper we present two gen-
eralized transformation techniques to transform
an MCLPP to an equivalent mathematical pro-
gramming model. Using any one of these trans-
formation techniques the transformed model can
be derived. Using standard non-linear program-
ming techniques optimal solution of the proposed
model can be obtained. For recent developments
on multi-choice linear programming problem, one
may refer to [1, 3].

The organization of the paper is as follows: fol-
lowing the introduction in Section 1, mathemat-
ical model of MCLPP is presented in Section 2.
The transformation techniques to derive equiv-
alent mathematical models of MCLPP are pre-
sented in Section 3. In order to verify the pro-
posed transformation techniques, an example is
presented in Section 4. Finally, results and dis-
cussion, and conclusions are presented in Section
5 and Section 6 respectively.

2. Mathematical Model

The mathematical model of a MCLPP is pre-
sented as follows:

Find X = (x1, x2, x3, . . . , xn) so as to

max : Z =

n∑
j=1

cjxj (1)

subject to
n∑

j=1

aijxj ≤ {b(1)i , b
(2)
i , b

(3)
i , . . . , b

(ki)
i }, (2)

i = 1, 2, 3, . . . ,m

xj ≥ 0, j = 1, 2, 3, . . . , n (3)

RHS of the constraints (2) has ki number of pa-
rameters where only one parameter is to be se-
lected.

3. Transformation Techniques for
MCLPP

We present two transformation techniques of
MCLPP to formulate an equivalent mathemat-
ical model.

3.1. Transformation technique 1

Restrictions are given on the upper bound of bi-
nary variables.

Step-1: Select i-th (i=1,2,3,...,m) constraint
from the MCLPP. Find the total number of
choices for i-th constraint.

n∑
j=1

aijxj ≤ {b(1)i , b
(2)
i , b

(3)
i , . . . , b

(ki)
i } (4)

The total number of choices for first constraint
is ki. We suppose that ki ≥ 2.

Step-2: Find the number of binary variables,
which is required to handle the multi-choice pa-
rameters in RHS of the constraint in following
manner.
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Find li, for which 2(li−1) < ki ≤ 2li . Here li
number of binary variables are needed. Let the

binary variables are z
(1)
i , z

(2)
i , z

(3)
i , . . . , z

(li)
i .

Step-3: Expand 2li as
(
li
0

)
+

(
li
1

)
+

(
li
2

)
+

. . .+
(
li
ri1

)
+. . .+

(
li
ri2

)
+ . . .+

(
li
li

)
and select the

smallest number of consecutive terms whose sum
is ‘equal to’ or ‘just greater than’ ki from the ex-
pansion. Let the terms be

(
li
ri1

)
,
(

li
ri1+1

)
,
(

li
ri1+2

)
,

. . . ,
(
li
ri2

)
.

Step-4: Assign ki binary codes to ki number of
choices for first constraint as follows:

n∑
j=1

aijxj ≤
( li
ri1
)∑

j=1

P
(ri1)
j Q

(ri1)
j b

(j)
i

+

( li
ri1+1)∑
j=1

P
(ri1+1)
j Q

(ri1+1)
j b

(( li
ri1
)+j)

i + . . .

+

( li
(ri2−1))∑
j=1

P
(ri2−1)
j Q

(ri2−1)
j b

(( li
ri1
)+...+( li

ri2−2)+j)

i

+

(ki−L
(1)
i )∑

j=1

P
(ri2)
j Q

(ri2)
j b

(L
(1)
i +j)

i (5)

where L
(1)
i =

(
li
ri1

)
+

(
li

ri1+1

)
+ . . .+

(
li

ri2−1

)
j1 ∈ {1, 2, 3, ..., (li−s)+1}, j2∈ {2, 3, ..., (li−s)+
2}, . . . , js ∈ {s, s+ 1, ..., li}
I
(j)
s = {{j1, j2, . . . , js}|j1 < j2 < . . . < js, s =
ri1, ri1 + 1, ..., ri2}
P

(si)
j ={z(j1)i z

(j2)
i z

(j3)
i . . . z

(js)
i |{j1, j2, j3, . . . , js} ∈

I
(j)
s , s = ri1, ri1 + 1, ..., ri2}
Q

(si)
j = {

∏li
j=1(1− z

(j)
i )|j /∈ {j1, j2, . . . , js}}

Step-5: Restrict (2li − ki) number of binary
codes to overcome repetitions as follows:

z
(1)
i + z

(2)
i + z

(3)
i + . . .+ z

(li)
i ≥ ri1 (6)

z
(1)
i + z

(2)
i + z

(3)
i + . . .+ z

(li)
i ≤ ri2 (7)

z
(j1)
i + z

(j2)
i + z

(j3)
i + . . .+ z

(jri2 )
i ≤ ri2 − 1,

j = (ki−L
(1)
i )+1, (ki−L

(1)
i )+2, . . . ,

(
li
ri2

)
(8)

Restrictions should be imposed on

z
(j1)
i z

(j2)
i z

(j3)
i . . . z

(jri2 )
i ∈ P

(ri2i)
j , but not included

in Tri2 . Tri2 contains the terms P
(ri2i)
j in trans-

formed constraint (5).

Step-6: Formulate the mathematical model as:

max : Z =

n∑
j=1

cjxj (9)

subject to
n∑

j=1

aijxj ≤
( li
ri1
)∑

j=1

P
(ri1)
j Q

(ri1)
j b

(j)
i

+

( li
ri1+1)∑
j=1

P
(ri1+1)
j Q

(ri1+1)
j b

(( li
ri1
)+j)

i + . . .

+

( li
(ri2−1))∑
j=1

P
(ri2−1)
j Q

(ri2−1)
j b

(( li
ri1
)+...+( li

ri2−2)+j)

i

+

(ki−L
(1)
i )∑

j=1

P
(ri2)
j Q

(ri2)
j b

(L
(1)
i +j)

i , i = 1, ...,m

(10)

z
(1)
i +z

(2)
i +. . .+z

(li)
i ≥ ri1, i = 1, 2, 3, ..,m (11)

z
(1)
i +z

(2)
i +. . .+z

(li)
i ≤ ri2, i = 1, 2, 3, ..,m (12)

z
(j1)
i + z

(j2)
i + . . .+ z

(jri2 )
i ≤ ri2 − 1,

j = (ki−L
(1)
i )+1, (ki−L

(1)
i )+2, . . . ,

(
li
ri2

)
(13)

xj ≥ 0, j = 1, 2, 3, . . . , n (14)

z
(li)
i = 0/1, li = 1, 2, 3, . . . , ⌈ ln(ki)

ln 2
⌉, (15)

i = 1, 2, 3, . . . ,m.

where L
(1)
i =

(
li
ri1

)
+

(
li

ri1+1

)
+ . . .+

(
li

ri2−1

)
.

Step-7: Above mathematical model is a mixed
integer non-linear programming problem. Solve
the model with the help of existing methodology.

3.2. Transformation technique 2

Restriction is given on the lower bound of the
binary variables.

Step-1: Select i-th constraint from the MCLPP.
Find the total number of choices for i-th con-
straint.

n∑
j=1

aijxj ≤ {b(1)i , b
(2)
i , b

(3)
i , . . . , b

(ki)
i } (16)

The total number of choices for first constraint
is ki. We suppose that ki ≥ 2.
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Step-2: Find the number of binary variables,
which is required to handle the multi-choice pa-
rameters in RHS of the constraint in following
manner.

Find li, for which 2(li−1) < ki ≤ 2li . Here li
number of binary variables are needed. Let the

binary variables are z
(1)
i , z

(2)
i , z

(3)
i , . . . , z

(li)
i .

Step-3: Expand 2li as
(
li
0

)
+

(
li
1

)
+

(
li
2

)
+

. . .+
(
li
ri1

)
+. . .+

(
li
ri2

)
+ . . .+

(
li
li

)
and select the

smallest number of consecutive terms whose sum
is ‘equal to’ or ‘just greater than’ ki from the ex-
pansion. Let the terms be

(
li
ri1

)
,
(

li
ri1+1

)
,
(

li
ri1+2

)
,

. . . ,
(
li
ri2

)
.

Step-4: Assign k1 binary codes to k1 number
of choices for first constraint as follows:

n∑
j=1

aijxj ≤
( li
ri2
)∑

j=1

P
(ri2)
j Q

(ri2)
j b

(j)
i

+

( li
ri2−1)∑
j=1

P
(ri2−1)
j Q

(ri2−1)
j b

(( li
ri2
)+j)

i + . . .

+

( li
(ri1+1))∑
j=1

P
(ri1+1)
j Q

(ri1+1)
j b

(( li
ri2
)+...+( l1

ri1+2)+j)

i

+

(ki−L
(2)
i )∑

j=1

P
(ri1)
j Q

(ri1)
j b

(L
(2)
i +j)

i , (17)

i = 1, 2, . . . ,m (18)

where

L
(2)
i =

(
li
ri2

)
+

(
li

ri2−1

)
+ . . .+

(
li

ri1+1

)
j1 ∈ {1, 2, 3, ..., (l1 − s) + 1}, j2∈ {2, 3, ..., (l1 −
s) + 2}, . . . , js ∈ {s, s+ 1, ..., li}
I
(j)
s = {{j1, j2, . . . , js}|j1 < j2 < . . . < js, s =
ri1, ri1 + 1, ..., ri2}
P

(si)
j ={z(j1)i z

(j2)
i z

(j3)
i . . . z

(js)
i |{j1, j2, j3, . . . , js} ∈

I
(j)
s , s = ri1, ri1 + 1, ..., ri2}
Q

(si)
j = {

∏li
j=1(1− z

(j)
i )|j /∈ {j1, j2, . . . , js}}

Step-5: Restrict (2li − ki) number of binary
codes to overcome repetitions as follows:

z
(1)
i + z

(2)
i + z

(3)
i + . . .+ z

(li)
i ≥ ri1 (19)

z
(1)
i + z

(2)
i + z

(3)
i + . . .+ z

(li)
i ≤ ri2 (20)

li∑
t=1

z
(t)
i ≥ 1, t /∈ {j1, j2, j3, . . . , jri1},

j = (ki−L
(2)
i )+1, (ki−L

(2)
i )+2, . . . ,

(
li
ri1

)
(21)

Restrictions should be imposed on

z
(j1)
i z

(j2)
i . . . z

(jri1 )
i ∈ P

(ri11)
j , but not included

in Tri1 . Tri1 contains the terms P
(ri1i)
j in trans-

formed constraint (18).

Step-6: Formulate the mathematical model as:

max : Z =

n∑
j=1

cjxj (22)

subject to

n∑
j=1

aijxj ≤
( li
ri2
)∑

j=1

P
(ri2)
j Q

(ri2)
j b

(j)
i

+

( li
ri2−1)∑
j=1

P
(ri2−1)
j Q

(ri2−1)
j b

(( li
ri2
)+j)

i + . . .

+

( li
(ri1+1))∑
j=1

P
(ri1+1)
j Q

(ri1+1)
j b

(( li
ri2
)+...+( l1

ri1+2)+j)

i

+

(ki−L
(2)
i )∑

j=1

P
(ri1)
j Q

(ri1)
j b

(L
(2)
i +j)

i ,

i = 1, 2, . . . ,m (23)

z
(1)
i + z

(2)
i + z

(3)
i + . . .+ z

(li)
i ≥ ri1, (24)

i = 1, 2, 3, . . . ,m

z
(1)
i + z

(2)
i + z

(3)
i + . . .+ z

(li)
i ≤ ri2, (25)

i = 1, 2, 3, . . . ,m

li∑
t=1,t/∈I(j)ri1

z
(t)
i ≥ 1, (26)

j = (ki − L
(2)
i ) + 1, (ki − L

(2)
i ) + 2, . . . ,

(
li
ri1

)
,

i = 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, 3, . . . , n (27)

z
(li)
i = 0/1, li = 1, 2, 3, . . . , ⌈ ln(ki)

ln 2
⌉, (28)

i = 1, 2, 3, . . . ,m

where L
(2)
i =

(
li
ri2

)
+

(
li

ri2−1

)
+ . . .+

(
li

ri1+1

)
i =

1, 2, 3, . . . ,m.

Step-7: Above mathematical model is a mixed
integer non-linear programming problem. Solve
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the model with the help of existing methodology.

Remarks: An MCLPP can be transformed to a
standard mathematical programming problem by
using any one of the transformation techniques.
When we transform an MCLPP, we observe the
following cases.

Case-1: ki=2li . If ki is a complete power of
2, then the expansion will be 2li=

(
li
0

)
+

(
li
1

)
+(

li
2

)
+ . . .+

(
li
li

)
. When we move to Step-6 (in

both the transformation techniques), the restric-
tion will be

z
(1)
i +z

(2)
i +z

(3)
i +. . .+z

(li)
i ≥ 0, for some i (29)

z
(1)
i +z

(2)
i +z

(3)
i +. . .+z

(li)
i ≤ li, for some i (30)

which is obvious. Hence the presence or absence
of (29) and (30) restrictions will not affect the so-
lution of the transformed mathematical program-
ming model.

Case-2: ki ̸= 2li . If ki is not a complete power
of 2, then from the expansion of 2li the smallest
number of consecutive terms, whose sum equals
or just greater than ki are

(
li
ri1

)
,
(

li
ri1+1

)
,
(

li
ri1+2

)
,

. . . ,
(
li
ri2

)
. Hence ki ≤

(
li
ri1

)
+

(
li

ri1+1

)
+

(
li

ri1+2

)
+

. . .+
(
li
ri2

)
, i = 1, 2, 3, . . . ,m. In this case four

possibilities may arise:

(1) If ki =
(
li
ri1

)
+

(
li

ri1+1

)
+

(
li

ri1+2

)
+ . . .+

(
li
ri2

)
and ri1 = l − ri2, for some i then using any of
these two transformation techniques exactly one
equivalent mathematical programming model is
possible.

(2) If ki =
(
li
ri1

)
+

(
li

ri1+1

)
+

(
li

ri1+2

)
+ . . .+

(
li
ri2

)
and ri1 ̸= l − ri2, for some i then there exists
another set of smallest number of consecutive
terms

(
li

li−ri1

)
,
(

li
li−(ri1+1)

)
, . . . ,

(
li

li−ri2

)
such that

ki=
(

li
li−ri1

)
+

(
li

li−(ri1+1)

)
+ . . .+

(
li

li−ri2

)
. Hence

in this case using any of the transformation
techniques two different equivalent mathematical
programming models are possible.

(3) Let’s consider where ki <
(
li
ri1

)
+

(
li

ri1+1

)
+(

li
ri1+2

)
+ . . .+

(
li
ri2

)
and ri1 = li − ri2, for some i.

(a) Transformation Technique-1: Let
(
li
ri2

)
-(ki − L

(1)
i )=α

(1)
i for some i. That is out of(

li
ri2

)
(say =R

(1)
i ) number of binary codes α

(1)
i

number of binary codes are to be restricted by
using auxiliary constraints. This can be done in

(R(1)
i

α
(1)
i

)
different ways. Therefore a total of

(R(1)
i

α
(1)
i

)
different equivalent mathematical programming
models are possible.

(b) Transformation Technique-2: Let
(
li
ri1

)
-

(ki−L
(2)
i )=α

(2)
i . That is out of

(
li
ri1

)
(say =R

(2)
i )

number of binary codes α
(2)
i number of binary

codes are to be restricted by using auxiliary con-

straints. This can be done in
(R(2)

i

α
(2)
i

)
different

ways. Therefore a total of
(R(2)

i

α
(2)
i

)
different equiva-

lent mathematical programming models are pos-
sible.

We state that if the constraints of multi-choice
linear programming problem will satisfy ki <(
li
ri1

)
+

(
li

ri1+1

)
+

(
li

ri1+2

)
+ . . .+

(
li
ri2

)
and ri1 =

li − ri2, for some i then
(R(1)

i

α
(1)
i

)
+
(R(2)

i

α
(2)
i

)
number

of equivalent mathematical programming models
are possible.

(4) Let’s consider where ki <
(
li
ri1

)
+

(
li

ri1+1

)
+(

li
ri1+2

)
+ . . .+

(
li
ri2

)
and ri1 ̸= li − ri2, for some i.

In this case we have two set of smallest number of
consecutive terms i.e.

(
li
ri1

)
,
(

li
ri1+1

)
,
(

li
ri1+2

)
, . . . ,(

li
ri2

)
and

(
li

li−ri1

)
,
(

li
li−(ri1+1)

)
, . . . ,

(
li

li−ri2

)
such

that ki <
(
li
ri1

)
+

(
li

ri1+1

)
+

(
li

ri1+2

)
+ . . .+

(
li
ri2

)
and

ki <
(

li
li−ri1

)
+

(
li

li−(ri1+1)

)
+ . . .+

(
li

li−ri2

)
. Con-

sidering ki <
(
li
ri1

)
+

(
li

ri1+1

)
+

(
li

ri1+2

)
+ . . .+

(
li
ri2

)
and ri1 ̸= li − ri2, a total of

(R(1)
i

α
(1)
i

)
+
(R(2)

i

α
(2)
i

)
equiv-

alent mathematical models are possible. Sim-
ilarly, considering ki <

(
li

li−ri1

)
+

(
li

li−(ri1+1)

)
+

. . .+
(

li
li−ri2

)
and ri1 ̸= li − ri2, a total of

(R(1)
i

α
(1)
i

)
+
(R(2)

i

α
(2)
i

)
equivalent mathematical programming

models are possible.
Therefore we state that if the constraints of

multi-choice linear programming problem will
satisfy ki <

(
li
ri1

)
+

(
li

ri1+1

)
+

(
li

ri1+2

)
+ . . .+

(
li
ri2

)
and ri1 ̸= li − ri2, for some i then 2(

(R(1)
i

α
(1)
i

)
+
(R(2)

i

α
(2)
i

)
) number of equivalent mathematical pro-

gramming models are possible.

4. Numerical Example

A model presented by Kent et al. [10] is
used to illustrate the transformation techniques
of MCLPP to equivalent mathematical models.
The data of the model is taken from Rardin [13].
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In the model, U.S. forest service has used an al-
location model to address the sensitive task of
managing national forest land. The forest ser-
vice must tradeoff timber, grazing, recreational,
national preservation, and other demands on for-
est land. Models of a forest begin by divid-
ing land into homogeneous analysis areas. Sev-
eral prescriptions or land management policies
are proposed and then evaluated for each. The
optimization seeks the best possible allocation
of land in the analysis areas to particular pre-
scriptions, subject to forest-wide restrictions on
land use. Table-1 provides details of fictional 788
thousand acres Wagonho National Forest in the
model. Wagonho is assumed to have 7 analysis
areas, each subject to 3 different prescriptions.
The first prescription encourages timbering, the
second emphasizes grazing and third preserves
the land as wilderness.

The symbols of parameters are given below,
whose values are presented in 1.
si : size of analysis area i (in thousands of acres

pij : net present value (NPV) per acre of all uses
in area i if managed under prescription j,

tij : projected timber yield (in board feet per
acre) of analysis area i if managed under pre-
scription j,

gij : projected grazing capability (in animal unit
months per acre) of analysis area i if managed
under prescription j,

wij : wilderness index rating (0 to 100) of analysis
area i if managed under prescription j.

We wish to find an allocation that maximizes
net present value. The production of timber is
not fixed per acre. Past record of production of
timber shows that it produces at least either 38.0
million or 38.4 million or 38.9 million or 40 mil-
lion or 40.7 million or 40.9 million or 41.2 million
or 41.5 million or 42 million board feet of timber.
The number of animals grazing is at least 5 thou-
sand animal per month. Depending on previous
year record the wilderness index is at least either
68.5 or 69.0 or 69.6 or 70 or 71.2 or 71.5.

Forest Service model seeks an optimal alloca-
tion of valuable resources. Corresponding deci-
sion variables define the allocation.

xij : number of thousands of acres in analysis
area i managed by prescription j, which is non-
negative. The choices of parameters should be in
such a manner that the combination of choices
will maximize net present value. The above for-
est service problem is mathematically formulated
as an MCLPP and presented below:

max : Z =
7∑

i=1

3∑
j=1

pijxij (31)

subject to
3∑

j=1

xij = si, i = 1, 2, ..., 7 (32)

7∑
i=1

3∑
j=1

tijxij ≥ {38000, 38400, 38900, 40000,

40700, 40900, 41200, 41500, 42000} (33)
7∑

i=1

3∑
j=1

gijxij ≥ 5.0 (34)

1

788

7∑
i=1

3∑
j=1

wijxij ≥ {68.5, 69.0, 69.6,

70.0, 71.2, 71.5} (35)

xij ≥ 0, i = 1, ..., 7; j = 1, 2, 3. (36)

Using transformation technique-1, the
MCLPP (31)-(36) can be transformed to fol-
lowing equivalent mathematical programming
model:

max : Z =

7∑
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3∑
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pijxij (37)
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7∑
i=1

3∑
j=1

gijxij ≥ 5.0 (43)

1
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2 = 0/1, p1 = 1, 2, 3, 4, p2 = 1, 2, 3,

xij ≥ 0, i = 1, 2, 3, .., 7; j = 1, 2, 3. (47)

Above mathematical programming model is a
mixed integer non-linear programming problem.
The above model is solved using Lingo[15] soft-
ware. An optimal allocation is obtained as:

x11=0, x12=0, x13=75, x21=90,
x22=0, x23=0, x31=140, x32=0,
x33=0, x41=0, x42=0, x43=60,
x51=0, x52=212, x53=0, x61=15,
x62=0, x63=83, x71=0, x72 =0,
x73 =113, b8=40700, b9=5, b10=68.5

with a total net present value Z = $346,900,500.
Using transformation technique-2, the MCLPP
(31)-(36) can be transformed to following equiv-
alent mathematical model:
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xij ≥ 0, i = 1, 2, 3, . . . , 7; j = 1, 2, 3. (58)

Above mathematical model is a mixed inte-
ger non-linear programming problem. The above
model is solved using Lingo [15] software. An
optimal allocation is obtained as:

x11=0, x12=0, x13=75, x21=90,
x22=0, x23=0, x31=140, x32=0,
x33=0, x41=0, x42=0, x43=60,
x51=0, x52=212, x53=0, x61=15,
x62=0, x63=83, x71=0, x72 =0,
x73 =113, b8=40700, b9=5, b10=68.5

with a total net present value Z = $346, 900, 500.

5. Results and Discussion

We can derive a total of 20 equivalent mathemati-
cal programming models. In numerical example,
seven binary variables are used. The auxiliary
constraints involving binary variables have been
used in some cases in the transformed models to
restrict the repetition of goals. The number of
auxiliary constraints required is dependent on the
number of aspiration levels associated with each
constraints. Five auxiliary constraints are used
to restrict the repetition of goals in the numerical
example. The same number of binary variables
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and auxiliary constraints are required for trans-
formation of a constraint having multi-choice pa-
rameter in both the transformation techniques.
If ki is a complete power of 2, the presence or
absence of restrictions will not affect the solution
of the transformed mathematical model. Only
one of the twenty models is to be solved for an
optimal solution. In stead of solving several prob-
lems by changing the goals it is necessary to solve
only one optimization problem. We compute all
twenty equivalent models of the numerical exam-
ple and observed the same optimal solution.

6. Conclusions

The present study has explored the possibility of
applying transformation techniques for the solu-
tion of MCLPP problem having two or more goals
in the RHS of the constraints. The complexity of
the proposed model is due to presence of several
binary variables. It is observed that to transform
an MCLPP to an equivalent mathematical model

⌈ ln(ki)ln 2 ⌉ number of binary variables are needed
when ki number of aspiration levels are associ-

ated with i-th goal. Hence
∑m

i=1⌈(
ln(ki)
ln 2 ⌉ number

of binary variables are needed in an equivalent
model. The performance of the proposed model
becomes much better when the number of choices
for a constraint is increased. It can be used as
a powerful decision making tool for a decision
maker to take right decision. The transformation
techniques, which are proposed here can be used
with success not only for MCLPP but also can be
extended to various other similar problems with
multi-choice parameters.
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Table 1. Data of Forest Service

Analysis Acres, Prescrip- NPV Timber Grazing Wilderness,
area si tion, (per acre) (per acre) (per acre) index
i (000)’s j pij tij gij wij

1 75 1 503 310 0.01 40
2 140 50 0.04 80
3 203 0 0 95

2 90 1 675 198 0.03 55
2 100 46 0.06 60
3 45 0 0 65

3 140 1 630 210 0.04 45
2 105 57 0.07 55
3 40 0 0 60

4 60 1 330 112 0.01 30
2 40 30 0.02 35
3 295 0 0 70

5 212 1 105 40 0.05 60
2 460 32 0.08 60
3 120 0 0 90

6 98 1 490 105 0.02 35
2 55 25 0.03 50
3 180 0 0 75

7 113 1 705 213 0.02 40
2 60 40 0.04 45
3 400 0 0 95

i represents analysis area number (i = 1, 2, . . . , 7)
j represents prescription number (j = 1, 2, 3)


