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Abstract. In this paper, multiproduct supply chain network model is developed with system opti-
mization perspective. Each kind of products has an individual cost function and, at the same time,
contributes to its own and other product’s cost function in an individual way. The well-known equi-
librium algorithm is extended to find system optimization pattern for such multiproduct supply chain
network.
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1. Introduction

Today, supply chains are more extended and
complex than ever before. At the same time,
the current competitive economic environment
requires that firms operate efficiently, which has
spurred interest among researchers as well as
practitioner to determine how to utilize supply
chains more effectively and efficiently.

Furthermore, although there are numerous ar-
ticles discussing multi-echelon supply chains, the
majority deal with a homogeneous product, but,
in application, deal is performed with multiprod-
uct supply chain. Therefore, homogenous restric-
tion is relaxed and worked with multiproduct in
the same supply chain network. In this paper,
system optimization perspective is utilized which
minimizes the total cost in the system. So, we ex-
tend equilibrium algorithm to construct system-
optimizing flow pattern [3].

Note that Min and Zhou [5] provided a synop-
sis of supply chain modeling and the importance

of planning, designing, and controlling the sup-
ply chain as a whole. Nagurney, [6] subsequently,
proved that supply chain network equilibrium
problems, in which there is cooperation between
tiers, but competition among decision-makers
within a tier, can be reformulated and solved
as transportation network equilibrium problems.
Cheng and Wu [2] proposed a multiproduct, and
multi criterion, supply-demand network equilib-
rium model. Davis and Wilson [4], in turn, stud-
ied differentiated product competition in an equi-
librium framework.

2. Supply Chain Network Structure

Assume that multiproduct supply chain network
involves a firm A, as depicted in figure 1. Let,
G = [N,L], denote the graph consisting of nodes
[N ] and directed links [L]. Firm A is involved
in the production, storage, and distribution of J
products, denote typical product by superscript
j. Assume that, firm A, has nM manufactur-
ing facilities, M1, · · · ,MnM and nD1 distribution
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centers that are denoted byD1,1, · · · , DnD,1 with-
out storage and nD2 distribution center with stor-
ages are denoted byD1,2, · · · , DnD,2. A path con-
sists of a sequence of links originating at a node
A and denotes supply chain activities comprising
manufacturing, storage, and distribution of the
products to the retail nodes. Assume that, node
A, to be the origin, Rk, k = 1, . . . , nR be the des-
tinations and every origin-destination pair, O/D,

be denoted by w. Let xjp, denote the nonnegative

flow of product j, on path p, f j
a , flow of product j

on link a and let pw, denote the set of paths con-
necting the origin/destination pair w. Also, let
P , denote the set of all paths in the network and
W , denote the set of all O/D pairs of nodes. The
path flows group into the vector x and link flows
into the vector f . In other words, the following
notations is used:

x ≡ {xp : p ∈ P}, xp ≡ (x1p, . . . , x
J
p )

f ≡ {fa : a ∈ L}, fa ≡ (f1
a , . . . , f

J
a )

Assume that, djRk
, denote the demand for

product j; j = 1, . . . , J at retail outlet Rk;
k = 1, . . . , nR associated with firm A; that is

briefly denoted by djw along with

D ≡ {dw : w ∈ W}, dw ≡ (d1w, . . . , d
J
w).

The links from the top-tiered A, to the manu-
facturing nodes M1, . . . ,MnM , in figure 1, repre-
sent the manufacturing links. The links from the
manufacturing nodes, in turn, to the distribution
center nodes, correspond to the shipment links.
The links joining first distribution center nodes
and second distribution center nodes correspond
to the storage links for the products. Finally,
the links joining second distribution center nodes
to retails correspond to the storage links for the
products.

In this paper, supply chain model is con-
structed to include several products and flow of
each product effects other products so that each
product has an individual cost function and, at
the same time, contributes to its own and other
product’s cost function in a particular way. An
extended equilibrium algorithm is developed to
construct an optimal flow pattern in which the
total cost in network is minimized. Modified
equilibrium algorithm is defined as composition
of operators for several products in the same net-
work in comparison with prior methods that first,
the multiproduct supply chain network was con-
verted into single-product network. Therefore,
this method needs a few number of iteration for
converging in comparison with other methods as
discussed in [8].

Let, cja(f1
a , . . . , f

J
a ), denote the cost of one unit

shipment of product j, j = 1, . . . , J on link a,
which is a function of other product’s flows on
same link. That is:

cja = cja(f
1
a , . . . , f

J
a ), j = 1, . . . , J, ∀a ∈ L.

(1)
In other word,

C ≡ {ca : a ∈ L}, ca ≡ (c1a, . . . , c
J
a )

The total cost shipment f j
a unit for j prod-

uct on link a that are denoted by ĉja(f1
a , . . . , f

J
a ),

define as follows:

ĉja(f
1
a , . . . , f

J
a ) = cja(f

1
a , . . . , f

J
a )× f j

a . (2)

That is, the total cost on a link a, is equal to
the link cost on the link times the flow on the
link. The total cost on a path p, Ĉp, is given by
the sum of the product costs on the links that
comprise the path, that is:

Ĉj
p =

∑
a∈L

ĉja(f
1
a , . . . , f

J
a )δap, ∀p ∈ P, (3)

where δap = 1, if link a is contained in path P
and δap = 0, otherwise.

In the system optimized problem, the total
cost in network is minimized, where the total cost
in network is given by:∑

a∈L

J∑
j=1

ĉja(f
1
a , . . . , f

J
a ). (4)

Perhaps, the simplest nontrivial example of a cost
function is provided by linear model:

cja(f
1
a , . . . , f

J
a ) =

J∑
l=1

gjla f
l
a+hja, ∀a ∈ L, j = 1, . . . , J

(5)
And accordingly, the total cost functions are non-
linear (quadratic), given by:

ĉja(f
1
a , . . . , f

J
a ) =

J∑
l=1

gjla f
j
af

l
a + hjaf

j
a , (6)

for all a ∈ L and j = 1, . . . , J , where gjla , hja are
given constants.

The following conservation of flow equations
must hold for firm A in which, each product j,
and each retail outlet Rk:∑
p∈PRk

xjp = djRk
, j = 1, . . . , J, k = 1, . . . , nR,

(7)
That is, the demand for each product must sat-
isfy each retail outlet.

A flow pattern x, with the demand D, is called
feasible, if equation (7) satisfies for every w ∈ W .

Every flow pattern x, generates a load pattern
f and x is called compatible with f .
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A flow pattern f , is called feasible, if there
exists at least one feasible flow pattern x, com-
patible with f and following flow equation holds:

f j
a =

∑
p∈P

xjpδap, j = 1, . . . , J, ∀a ∈ L, (8)

where δap = 1, if link a is contained in path P
and δap = 0, otherwise.

Expression (8) states that the flow on a link a
is equal to the sum of all the path flows on path
p containing link a.

The path flows must be nonnegative, that is:

xjp ≥ 0, j = 1, . . . , J, ∀p ∈ P. (9)

Assume that, the total cost function for each
product on each link is convex, continuously dif-
ferentiable, and it has bounded third order par-
tial derivatives. The multiproduct supply chain
cost minimization problem can be formulated
jointly as follows:

Minimize
∑
a∈L

J∑
j=1

ĉja(f
1
a , . . . , f

J
a ) (10)

Subject to :∑
p∈PRk

xjp = djRk
, j = 1, . . . , J, k = 1, . . . , nR

∑
p∈P

xjpδap = f j
a , j = 1, . . . , J, ∀a ∈ L

xjp ≥ 0, j = 1, . . . , J, ∀p ∈ P

Observe that, this problem is a system optimiza-
tion problem.

The triple T = (G,D,C) will be called a sup-
ply chain network, where G is a directed network,
D is a demand vector and C is a cost vector as
defined before.

Definition 1. For a given multiproduct supply
chain network T = (G,D,C), a feasible flow pat-
tern x that minimizes the total cost function

TC =
∑
a∈L

J∑
j=1

ĉja(f
1
a , . . . , f

J
a ), (11)

is called a system optimization flow pattern.

Theorem 1. For a given multiproduct supply
chain network T = (G,D,C), suppose that in
(10), TC(f), is strictly convex and its feasible
set is convex. Then, there is a unique system-
optimizing flow pattern, such that TC(f) is the
minimum of TC.

Proof. Straight forward. �

Theorem 1, concludes that, every feasible
flow pattern x, compatible with f is a system-
optimizing flow pattern. Thus, a system-
optimizing flow pattern always exists and, in par-
ticular, is unique, if and only if there exists a
unique feasible flow pattern x compatible with
f .

In addition to the above existence and unique-
ness theorem, the assumption of convexity of
TC(f) implies that the system-optimizing flow
pattern satisfies the (K.K.T.)1 conditions [1].

Theorem 2. For a given T = (G,D,C), x, is
a system-optimizing flow pattern if and only if
it enjoys the following property. Let w ∈ W ,
be connected by the paths p1, . . . , pm, then these
paths can be numbered as:

Ĉ ′
p1(f) = · · · = Ĉ ′

ps(f) (12)

= λw ≤ Ĉ ′
ps+1

(f) ≤ · · · ≤ Ĉ ′
pm(f)

xpr > 0 r = 1, . . . , s

xpr = 0 r = s+ 1, . . . ,m,

where the total marginal cost is denoted by

Ĉ ′
p(f) ≡

J∑
j=1

J∑
l=1

∑
a∈L

∂ĉla(f
1
a , . . . , f

J
a )

∂f j
a

δap, (13)

Proof. Straight forward. �

Therefore, all used paths have equal and min-
imal total marginal costs and unused paths have
higher (or equal) total marginal costs than those
of the used paths.

In fact, a system-optimizing solution corre-
sponds to Wardrop’s second principle [7] and is
one that minimizes the total cost and all utilized
paths connecting each O/D pair have equal and
minimal marginal total costs.

3. Algorithm

In this section, an extended variant of well-known
equilibrium algorithm is developed to find the
system optimization pattern for a multiproduct
supply chain network. The algorithm constructs
a system-optimizing flow pattern by iteration,
i.e., starting from an arbitrary initial feasible flow
pattern 2 x0, it generates a sequence {xn} of feasi-
ble flow patterns converging to the set of system-
optimizing flow patterns. The passage from xn−1

to xn is attained by applying an operator E, i.e.,
xn = Exn−1. Once E has been defined, the de-
scription of the algorithm is complete.

1Karush-Kuhn-Tucker
2Such a flow pattern can be obtained with all-nothing assignment method.
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Let Z[T ] stand for the set of all feasible flow
patterns of the supply chain network T . An op-
erator

E : Z[T ] → Z[T ] (14)

is defined as the composition

E = Ew(m) ◦ . . . ◦ Ew(1) (15)

of operators

Ew(l) : Z[T ] → Z[T ], l = 1, . . . ,m, (16)

where w(1), . . . , w(m) is an arbitrary ordering of
the set W . In turn, Ew(l) will be defined as the
composition

Ew(l) = EJ
w(l) ◦ · · · ◦ E

1
w(l) (17)

of operators

Ej
w(l) : Z[T ] → Z[T ], j = 1, . . . , J, (18)

where Ej
w sends a feasible flow pattern x to an-

other feasible flow pattern x̂ = Ej
wx, which is

constructed by the following procedure.
Among the elements of Pw, determine the

paths q and r requiring with minimum and max-
imum total marginal cost

Ĉ ′j
q (f) = min

p∈PRk

{Ĉ ′j
p (f)}

Ĉ ′j
r (f) = max

p∈PRk
,xj

p>0
{Ĉ ′j

p (f)}
(19)

where Ĉ ′j
p (f) denotes the total marginal cost on

path p for product j, given by

Ĉ ′j
p (f) ≡

J∑
l=1

∑
a∈L

∂ĉla(f
1
a , . . . , f

J
a )

∂f j
a

δap, (20)

and then set

x̂lp = xlp l ̸= j, p ∈ P

x̂jp = xjp p ̸= q, p ̸= r

x̂jq = xjq + δ

x̂jr = xjr − δ,

(21)

where δ is selected so that the total cost TC(f̂) is
minimized over the class of admissible load pat-
terns f̂ that are induced by the class of flow pat-
terns x̂ given by (8). In the case of the quadratic
model, δ can be determined explicitly through
the formula

δ = min{xjr,
Ĉj′
r (f)− Ĉj′

q (f)

2
∑

a∈L gjja (δaq − δar)2
}. (22)

In fact, the equilibrium algorithm conveys the
flow from paths with positive and maximum flow
to paths with minimum flow till the flow in net-
work is equilibrated.

Theorem 3. Let f be the (unique) system op-
timizing flow pattern. For any x0 ∈ Z, let
xn ≡ Enx0 where fn denotes the flow pattern
induce by xn. Then

fn → f as n → ∞.

Proof. The proof is similar to the proof of The-
orem 3.1 in Dafermos and Sparrow [3]. �

4. Numerical Example

In this section, a numerical example is presented
to demonstrate the algorithm for a simple 2-
typical-product supply chain network so that the
reader can become familiar with the realization
of the operators Ej

w , Ew, and E.
In practice it is important to decide for which

n.xn is sufficiently close to a system-optimizing
flow pattern in order to stop the algorithm.

Characteristics of the Network

Set of nodes: N = {A,M1,M2, D1,1, D1,2, R1, R2}
Set of links: L = {1, 2, 3, 4, 5, 6, 7} as defined in
Table 1
Set of admissible paths: P = {p1, p2, p3, p4},
p1 = (1, 3, 5, 6), p2 = (1, 3, 5, 7), p3 = (2, 4, 5, 6),
p4 = (2, 4, 5, 7).
Set of connected pair of nodes: W = {w1, w2}
with w1 = (A,R1), w2 = (A,R2)
Set of paths which connect w1 : Pw1 = {p1, p3}
Set of paths which connect w2 : Pw2 = {p2, p4}
Cost structure: Suppose that the quadratic
model is applied, i.e., the total shipment cost for
products of typical j on a link a of the network
is of the form

ĉja =

2∑
l=1

gjla f
j
af

l
a + hjaf

j
a , ∀a ∈ L, j = 1, 2,

where, gjla , hja are given constants.
Also, the set of demands are given by D =

{dw1 , dw2}, dw1 = {d1w1
, d2w1

}, dw2 = {d1w2
, d2w2

}
with d1w1

= d2w1
= d1w2

= d2w2
= 5. The marginal

costs correspond to the products of each typical
product along the paths of the network is evalu-
ated by using equation (20) and then application
of the algorithm can be performed. First, an ini-
tial feasible flow pattern x0 is selected, so that, it
equally distributes the demands among the avail-
able paths, i.e.,

x11 = x21 = x12 = x22 = x13 = x23 = x14 = x24 = 2.5,

where xji is an abbreviation of xjpi , i = 1, 2, 3, 4.
The resulting feasible flow pattern is

f1
1 = 5, f1

2 = 5, f1
3 = 5, f1

4 = 5,
f1
5 = 10, f1

6 = 5, f1
7 = 5,

f2
1 = 5, f2

2 = 5, f2
3 = 5, f2

4 = 5,
f2
5 = 10, f2

6 = 5. f2
7 = 5.
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Now by applying operators E1
w1
, E2

w1
, E1

w2
, E2

w2
,

the feasible flow pattern can be improved. Until,
a system-optimizing flow pattern is obtained.

The paths with minimum and maximum total
marginal costs in network and the total marginal
costs for these paths and δ values in each itera-
tion was reported in Table 2.

Table 3 and 4 contain the link and path flow
patterns obtained when E1

w1
through E2

w2
are ap-

plied, so that the resulting optimal flow patterns
in Table 5 are the system-optimizing flow pat-
terns for this network.

Therefore, the minimum total cost in supply
chain network for optimal flow pattern is ob-
tained as following:

TC(f) =
∑
a∈L

J∑
j=1

J∑
l=1

gjla f
j
af

l
a + hjaf

j
a

5. Conclusion

In this paper, multiproduct supply chain net-
work model is constructed utilizing a system-
optimization perspective and the total cost is
minimized in the network. Therefore, system-
optimizing pattern is necessary in order to op-
timize the network. Since the deal is with
multiproduct, modified equilibrium algorithm is
defined as composition of operators. In fact,
system-optimizing flow pattern can be deter-
mined with the extended equilibrium algorithm,
so that total cost for sending products in supply
chain network is minimized.
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Table 1. Definition of links and associated personal link cost functions

Linka FromNode ToNode ĉ1a(f
1
a , f

2
a ) ĉ2a(f

1
a , f

2
a )

1 A M1 1(f1
1 )

2 + 2f2
1 f

1
1 + 11f1

1 2(f2
1 )

2 + 2f1
1 f

2
1 + 8f2

1

2 A M2 2f1
2 )

2 + 2f2
2 f

1
2 + 8f1

2 1(f2
2 )

2 + 2f1
2 f

2
2 + 6f2

2

3 M1 D1,1 3(f1
3 )

2 + 2.5f2
3 f

1
3 + 7f1

3 4(f2
3 )

2 + 2.5f1
3 f

2
3 + 7f2

3

4 M2 D1,1 4(f1
4 )

2 + 1.5f2
4 f

1
4 + 3f1

4 3(f2
4 )

2 + 1.5f1
4 f

2
4 + 11f2

4

5 D1,1 D1,2 1(f1
5 )

2 + f2
5 f

1
5 + 6f1

5 4(f2
5 )

2 + f1
5 f

2
5 + 11f2

5

6 D1,2 R1 3(f1
6 )

2 + 1.5f2
6 f

1
6 + 4f1

6 4(f2
6 )

2 + 1.5f1
6 f

2
6 + 10f2

6

7 D1,2 R2 4(f1
7 )

2 + f2
7 f

1
7 + 7f1

7 2(f2
7 )

2 + 2f1
7 f

2
7 + 8f2

7

Table 2. The paths with minimum and maximum total marginal costs in network and δ values
in each iteration by applying E1

w1
through E2

w2

Apply E1
w1

E2
w1

E1
w2

E2
w2

q p1 p3 p2 p4
r p3 p1 p4 p2

Ĉ ′j
q (f) 198 297.45 208.40 252.5475

Ĉ ′j
r (f) 201 264.45 228.55 267.6675
δ 0.15 1.65 1.0075 0.756

Table 3. The resulting path flow patterns by applying E1
w1

Through E2
w2

Path P E1
w1
. x1p E1

w1
. x2p E2

w1
. x1p E2

w1
. x2p E1

w2
. x1p E1

w2
. x2p E2

w2
. x1p E2

w2
. x2p

p1 2.65 2.5 2.65 0.85 2.65 0.85 2.65 0.85
p2 2.35 2.5 2.35 2.5 3.3575 2.5 3.3575 1.744
p3 2.5 2.5 2.5 4.15 2.5 4.15 2.5 4.15
p4 2.5 2.5 2.5 0.85 1.4925 2.5 1.4925 3.256

Table 4. The resulting links flow patterns by applying E1
w1

Through E2
w2

Link a E1
w1
. f1

a E1
w1
. f2

a E2
w1
. f1

a E2
w1
. f2

a E1
w2
. f1

a E1
w2
. f2

a E2
w2
. f1

a E2
w2
. f2

a

1 5 5 5 5 5 3.35 6.0075 3.35
2 5 5 5 5 5 6.65 3.9925 6.65
3 5 5 5 5 5 5 6.0075 3.35
4 5 5 5 5 5 6.65 3.9925 6.65
5 10 10 10 10 10 10 10 10
6 5.15 5 5.15 5 5.15 5 5.15 5
7 4.85 5 4.85 5 4.85 5 4.85 5

Table 5. The resulting optimal flow patterns

Link a FromNode ToNode f1∗
a f2∗

a

1 A M1 5.4219 0.8000
2 A M2 4.5781 9.2000
3 M1 D1,1 5.4219 0.8000
4 M2 D1,1 4.5781 9.2000
5 D1,1 D1,2 10.0000 10.0000
6 D1,2 R1 5.0000 5.0000
7 D1,2 R2 5.0000 5.0000
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Figure 1. Supply chain network of firm A

Figure 2. Supply chain network topology for the numerical example


