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This paper considers the regional boundary observability problem for semilin-
ear time-fractional systems. The main objective is to reconstruct the initial
state on a subregion of the boundary of the evolution domain of the consid-
ered fractional system using the output equation. We proceed by providing a
link between the regional boundary observability of the considered semilinear
system on the desired boundary subregion, and the regional observability of
its linear part, in a well chosen subregion of the evolution domain. By adding
some assumptions on the nonlinear term appearing in the considered system,
we give the main theorem that allows us to reconstruct the initial state in the
well-chosen subregion using the Hilbert uniqueness method (HUM). From it,
we recover the initial state on the boundary subregion. Finally, we provide a
numerical example that backs up the theoretical results presented in this paper
with a satisfying reconstruction error.
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1. Introduction

The analysis of distributed parameter systems
leads to the introduction of many useful con-
cepts such as controllability, stability, detectabil-
ity, and observability [1,2]. These notions permit
researchers to understand those systems and their
behaviors, which enable us to manipulate them.
In the nineties, the concept of regional analysis
was brought to life in [3,4], bringing with it many
tools for investigating real-world problems [5]. In
particular, the concept of regional observability,
which consists of finding and reconstructing the
initial state in a desired subregion of the evolu-
tion domain, has great importance in the domain
of control theory [3, 6–8].

Fractional calculus (FC) is a field of mathematics
that investigates the notions of integration and
differentiation of arbitrary or non-integer order.
By fractional systems, we mean systems in which
a fractional derivative appears. FC is growing
in a fast manner nowadays, and this is because

fractional operators present a powerful tool for
modeling real-world phenomena [9–11]. For ex-
ample, in [12], authors have generalized the lin-
ear prediction (LP) to fractional linear prediction
(FLP) and described it with applications to one-
dimensional (1D) and two-dimensional (2D) sig-
nals. They presented some numerical simulations
where, for the 1D case, authors considered stan-
dard test signals, namely the square wave, sine
wave, sawtooth wave, and real data signals such as
speech and electrocardiogram. As for the 2D case,
they choose grayscale images. The authors stated
that, for the 1D case, the proposed FLP has the
same construction as the LP, i.e. it uses linear
combinations of non-integer derivatives with non-
identical orders of derivatives. As for the 2D case,
the FLP model uses a linear combination of frac-
tional derivatives in horizontal and vertical direc-
tions. After comparing the performance of LP
and FLP, the authors concluded that FLP could
be used in processing 1D and 2D signals due to
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the comparable or better performance, using the
same or even smaller number of parameters.

Recently, FC started to penetrate the domain
of control theory [10, 13, 14]; in particular, it is
used to investigate the notion of regional observ-
ability; see [15–18] for linear fractional systems
and [19,20] for semilinear ones. In this paper, we
investigate the notion of regional boundary ob-
servability, which is basically regional observabil-
ity where the desired subregion is a part of the
boundary of the evolution domain [21, 22]. The
principal goal is to reconstruct the initial state
of the considered system, on a desired boundary
subregion B, of the evolution domain Ω. Our
contribution can be summarized in the follow-
ing: Firstly, we define a new internal subregion
ωp ⊂ Ω, such that B ⊂ ∂ωp, which enables us to
give a link between regional boundary observabil-
ity of the considered semilinear system on B, and
the regional observability of its linear part in ωp.
Secondly, we develop a method, which is based on
the Hilbert uniqueness method (HUM), in order
to reconstruct the initial state in ωp, and from it
we extract the value of the initial state on B.

The proposed method can be applied to real-
world situations; for instance, we can use it to de-
termine the initial population for a certain species
at the frontiers of some geographical place. The
diffusive logistic population growth model is given
in general by,

Dαy(x, t)−∆y(x, t) = my(x, t)

(
1− y(x, t)

b

)
,

where x is the spacial variable, t is time and Dα

is some type of a fractional derivative. The above
system is given with some boundary conditions
and an unknown initial state. The quantities m
and b are positive constants that are given de-
pending on the species under investigation.

This manuscript is organized as follows: In sec-
tion (2), we lay out the considered system and its
properties, we also give some basic definitions and
recalls covering both the field of control theory
and fractional calculus. Section (3) is reserved for
showing the link between the regional boundary
observability of the considered semilinear system
and the regional observability of its linear part
throughout the subregion ωp. In section (4), we
use an extension of the Hilbert uniqueness method
to reconstruct the considered system’s initial state
in ωp, which led us to give an algorithm that was
implemented numerically and gave us some satis-
fying numerical results.

2. Considered system and problematic

Let Ω be a bounded domain of Rn, n ≥ 2, with
smooth enough boundary ∂Ω, let [0, T ] be a time
interval and α an element of ]0, 1]. From now on,
we denote Q := Ω×]0, T [ and Σ := ∂Ω×]0, T [.
Let X = H1(Ω) be the state space and O a
Hilbert space called the observation space, we
consider the following fractional system,

C
D

α

0+y(x, t) = Ay(x, t) + Fy(x, t) in Q,
∂y

∂νA
(ξ, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω,
(1)

augmented with the output equation,

z(t) = Cy(., t), 0 ≤ t ≤ T , (2)

where :
- A is a second order linear differential operator
which generates a C0-semigroup {R(t)}t≥0 on X.
- F is a nonlinear, globally Lipschitz and contin-
uous operator.
- C : X −→ O is the observation operator, con-
sidered to be bounded.

-
C
D

α

0+y(x, t) :=
1

Γ(1− α)

∫ t

a
(t−s)−α ∂

∂s
y(x, s)ds,

is the left sided time-fractional derivative, of or-
der α, of y in the sense of Caputo and Γ(α) =∫ +∞

0
tα−1e−tdt is the Euler gamma function.

-
∂y

∂νA
is the co-normal derivative of y with re-

spect to A, see [23].
- y0 is the initial state in X, supposedly unknown.

Definition 1. [20] A function y ∈ C(0, T ;X),
is called a mild solution of (1), if it satisfies

y(., t) = (Rα(t)y0)(.) +

∫ t

0
(t− τ)α−1Wα(t− τ)Fy(., τ)dτ,

(3)

in [0, T ] , where Rα(t) =

∫ ∞

0
ϖα(θ)R(tαθ)dθ and

Wα(t) = α

∫ ∞

0
θϖα(θ)R(tαθ)dθ.

In addition,

ϖα(θ) =

∞∑
n=1

(−θ)n−1

Γ(n)Γ(1− αn)
, θ ≥ 0, (4)

is the Mainardi function.

Proposition 1. [24] The operators Rα and Wα

are strongly continuous. Furthermore,

∃M > 0, such that ∥Rα(t)∥L(X)
≤ M. (5)
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For the sake of simplicity, we define the operator

K : L
2
(0, T ;X) −−−−→ L

2
(0, T ;X) by

(Ky)(t) =

∫ t

0
(t− τ)α−1Wα(t− τ)y(., τ)dτ,

∀y ∈ L
2
(0, T ;X), ∀t ∈ [0, T ].

For the rest of this paper and without any loss of
generality, we denote y(t) := y(., t) and for every
operator A we denote its adjoint by A∗.

Let B be a non empty subset of the boundary ∂Ω
with positive Lebesgue measure. We recall the
following operators,

• γ0 : H1(Ω) −−−−→ H
1
2 (∂Ω), the trace op-

erator of order zero, from Ω, on ∂Ω. It is
defined by γ0v = v|∂Ω .

• χB : H
1
2 (∂Ω) −−−−→ H

1
2 (B), the restric-

tion operator, from ∂Ω, on B. It is defined
by χBv = v|B .

• Hα : X −−−−→ L2(0, T ;O), the observ-
ability operator which is defined as follows
(Hαx)(t) = CRα(t)x.

This manuscript aims to study the regional
boundary observability of the system (1). In other
words, we are looking to reconstruct the initial
state of system (1) on the boundary subregion
B; this is equivalent to recover the value of y0
on B, which we denote by y10. One can see that
y10 = χBγ0y0. Then, we give the following defini-
tion.

Definition 2. We say that system (1), aug-
mented with (2), is B-observable on B (B stands
for boundary), if it is possible to reconstruct y10
using the output equation (2).

Remark 1. An alternative way to define the re-
gional boundary observability on B is that for two
different measurements, z1(.) and z2(.), we obtain
two different values of y10 on B.

We associate to the considered system (1) the fol-
lowing linear system,

C
D

α

0+y(x, t) = Ay(x, t) in Q,
∂y

∂νA
(ξ, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(6)

which plays an important role in achieving the
goal of this paper. We formulate the problem of
this work as follows.

Problem: Given any system (1) with the out-
put equation (2), can we reconstruct y10?

3. Link between boundary and internal
observability

In this section, we design a method for linking the
regional boundary observability on B and the re-
gional internal observability in a well-chosen sub-
region ω ⊂ Ω, such that B ⊂ ∂ω. After recon-
structing y0 in ω, we obtain y10 by taking the re-
striction on B of the trace of the reconstructed
initial state on ∂ω.
For a sufficiently small number p > 0, we define

Up =
⋃
ξ∈B

B(ξ, p) and wp = Up

⋂
Ω,

where B(ξ, p) is the closed ball of center ξ and
radius p.

Remark 2. Notice that ωp ⊂ Ω and B ⊂ ∂Ω ∩
∂ωp.

As we did for Ω, we recall, for ωp, the following
operators:

• χωp
: H1(Ω) −−−−→ H1(ωp), the restric-

tion operator in ωp, which is defined by
χωp

v = v|ωp
.

• γ̃0 : H1(ωp) −−−−→ H
1
2 (∂ωp), the trace

operator of order zero, from ωp, on ∂ωp.
It is defined by γ̃0v = v|∂ωp

.

• χ̃B : H
1
2 (∂ωp) −−−−→ H

1
2 (B), the re-

striction operator, from ∂ωp, on B. It is
defined by χ̃Bv = v|B .

Remark 3. One can see that y10 = χBγ0y0 =
χ̃B γ̃0χωp

y0.

Remark 4. The adjoint of χωp
is given by

χ∗
ωp
g =

{
g in ωp.
0 in Ω \ ωp.

, ∀g ∈ H1(ωp).

Definition 3. [25] We say that the linear sys-
tem (6), augmented with (2), is approximately ωp-
observable if, and only if,

Ker
(
Hαχ

∗
ωp

)
= {0} .

Remark (3) allows us to deduce that in order to re-
construct y10, it is sufficient to reconstruct χωp

y0,
which is the initial state in ωp, after that, we take
the restriction on B, of its trace on ∂ωp. In order
to illustrate this, we have the following theorem.

Theorem 1. If the linear system (6), augmented
with (2), is approximately ωp-observable, then the
semilinear system (1), augmented with (2), is
B−observable on B, and y10 is the restriction on
B of the trace on ∂ωp of the restriction in ωp of
a fixed point of the function ϕ at t = 0, where
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ϕ : L
2
(0, T ;X) −−−−→ L

2
(0, T ;X) is defined, for

every (t, y) ∈ [0, T ]× L
2
(0, T ;X), as follows:

ϕ(y)(t) = Rα(t)y0 + (KFy)(t) +

Rα(t)χ
∗
ωp

[
Hαχ

∗
ωp

]† (
z(.)− (Hαy0)(.)− C(KFy)(.)

)
,

(7)
with[
Hαχ

∗
ωp

]†
:=

[(
Hαχ

∗
ωp

)∗ (
Hαχ

∗
ωp

)]−1 (
Hαχ

∗
ωp

)∗
,

is the pseudo (generalized) inverse of Hαχ
∗
ωp
.

Moreover, y0 has the value of y0 in Ω \ ωp and
zero in ωp.

Proof. Taking into account remark (4), we see
that equation (3) can be written as follows:

y(t) = Rα(t)χ
∗
ωp
χωp

y0+Rα(t)y0+(KFy)(t), (8)

Using equations (2) and (8), we have,

(Hαχ
∗
ωp
χωp

y0)(.) = z(.)−(Hαy0)(.)−C (KFy) (.),

(9)
and since (6) is approximately ωp-observable,
then, by the same arguments in [2], the oper-
ator Hαχ

∗
ωp

has a generalized inverse, denoted[
Hαχ

∗
ωp

]†
, hence:

χωp
y0 =

[
Hαχ

∗
ωp

]† (
z(.)− (Hαy0)(.)− C (KFy) (.)

)
.

(10)
So, by substituting (10) in (8), we get that:

y(t) = Rα(t)y0 + (KFy)(t) = ϕ(y)(t) +

Rα(t)χ
∗
ωp

[
Hαχ

∗
ωp

]† (
z(.)− (Hαy0)(.)− C (KFy) (.)

)
,

(11)
hence, y is a fixed point of ϕ and y(0)|ωp

= χωp
y0.

Thus y10 = χ̃B γ̃0y(0)|ωp
= χ̃B γ̃0χωp

y0. □

4. Reconstruction method

In consequence of theorem (1) and the discussion
in section (3), we shall reconstruct the initial state
in ωp. For that we use an extension of the Hilbert
uniqueness method for fractional systems. Let’s
start by introducing the following set,

E =
{
h ∈ H1(Ω)

∣∣ h = 0 in Ω \ ωp

}
,

in which we define the following semi-norm,

∥h∥E =

√∫ T

0
∥CRα(t)h∥

2

Odt,

=

√∫ T

0
∥(Hαh)(t)∥

2

Odt.

Remark 5. If g is in E, then χ∗
ωp
χωp

g = g.

For every Θ0 in E , we consider the system,
C
D

α

0+Θ(x, t) = AΘ(x, t) + FΘ(x, t) in Q,
∂Θ

∂νA
(ξ, t) = 0 on Σ,

Θ(x, 0) = Θ0(x) in Ω,
(12)

which has a unique mild solution, see [26], written
as follows,

Θ(t) = Rα(t)Θ0 + (KFΘ)(t), in [0, T ] , (13)

which we decompose as follows Θ = Θ1 + Θ2,
where Θ1 and Θ2 are given by the two systems:

C
D

α

0+Θ1(x, t) = AΘ1(x, t) in Q,
∂Θ1

∂νA
(ξ, t) = 0 on Σ,

Θ1(x, 0) = Θ0(x) in Ω,

. (14)

and



C
D

α

0+Θ2(x, t) = AΘ2(x, t) in Q,
+F (Θ1(x, t) + Θ2(x, t))

∂Θ2

∂νA
(ξ, t) = 0 on Σ,

Θ2(x, 0) = 0 in Ω,
(15)

with solutions,

Θ1(t) = Rα(t)Θ0, in [0, T ] , (16)

and

Θ2(t) = Rα(t)Θ0+(KF [Θ1+Θ2])(t), in [0, T ] .
(17)

Assumption : We assume, for the rest of this man-
uscript, that system (14), augmented with (2), is
approximately ωp-observable.

Proposition 2. [18] If the above Assumption
is satisfied, then the semi-norm ∥.∥E becomes a
norm on E.

We introduce the following auxiliary system

RL
D

α

T−Ξ(x, t) = A∗Ξ(x, t) in Q,
−FΞ(x, t)− C∗CΘ1(t)

∂Ξ

∂νA∗
(ξ, t) = 0 on Σ,

lim
t→T−

I1−α

T− Ξ(x, t) = 0 in Ω,

(18)
where

Iα

T−y(x, t) := − 1

Γ(α)

∫ T

t
(s− t)α−1y(x, s)ds,

is the right sided Riemann-Liouville time-
fractional integral of order α, and

RL
D

α

T−y(x, t) := − 1

Γ(1− α)

∂

∂t

∫ T

t
(s−t)−αy(x, s)ds,
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is the right sided Riemann-Liouville time-
fractional derivative, of order α.

If Θ0 is chosen in E such that CRαΘ0(.) = z(.),
then (18) is considered to be the adjoint system
of (12).

System (18) has a unique mild solution, given by:

Ξ(x, t) =

∫ T

t
(s− t)α−1W∗

α(s− t) [−FΞ(s)

−C∗CΘ1(s)] ds,
(19)

which we also decompose into Ξ = Ξ1+Ξ2, where
Ξ1 and Ξ2 are solutions of



RL
D

α

T−Ξ1(x, t) = A∗Ξ1(x, t) in Q,
−C∗CΘ1(t)

∂Ξ1

∂νA∗
(ξ, t) = 0 on Σ,

lim
t→T−

I1−α

T− Ξ1(x, t) = 0 in Ω,

(20)

and

RL
D

α

T−Ξ2(x, t) = A∗Ξ2(x, t) in Q,
−F [Ξ1(x, t) + Ξ2(x, t)]

∂Ξ2

∂νA∗
(ξ, t) = 0 on Σ,

lim
t→T−

I1−α

T− Ξ2(x, t) = 0 in Ω.

(21)
Furthermore, they are written as follows,

Ξ1(x, t) = −
∫ T

t
(s− t)α−1W∗

α(s− t)C∗CΘ1(s)ds,

(22)
and

Ξ2(x, t) = −
∫ T

t
(s− t)α−1W∗

α(s− t)F [Ξ1(s) + Ξ2(s)] ds.

(23)
Let’s denote by Pωp := χ∗

ωp
χωp

the projection op-

erator in E , we have:

Pωp

(
I1−α

T− Ξ(0)
)

= ΛΘ0 + LΘ0,

:= Pωp

(
I1−α

T− Ξ1(0)
)
+ Pωp

(
I1−α

T− Ξ2(0)
)
,

where:

Λ : E −→ E ,
Θ0 7−→ Pωp

(
I1−α

T− Ξ1(0)
)
,

and

L : E −→ E ,
Θ0 7−→ Pωp

(
I1−α

T− Ξ2(0)
)
.

Thus,

ΛΘ0 = Pωp

(
I1−α

T− Ξ(0)
)
− LΘ0,

and, as proven in [18], since (14) is approximately
ωp-observable, then Λ is an isomorphism. There-
fore,

Θ0 = Λ−1Pωp

(
I1−α

T− Ξ(0)
)
− Λ−1LΘ0,

:= NΘ0.
(24)

Hence, in order to reconstruct the initial state in
ωp, it is sufficient to solve the fixed point problem
(24). For that, we give the following theorem.

Theorem 2. Under the following assumptions:

• H1 - System (14), augmented with (2), is ap-
proximately ωp-observable.

• H2 - ∃c > 0, such that:

∥Fu(t)∥X ≤ c∥I1−α

T− u(t)∥X , ∀u ∈ L2(0, T ;X).

The operator N has a unique fixed point which
corresponds with the initial state in ωp.

Before proving this last theorem, let us give the
following proposition.

Proposition 3. [18] Let α be in ]0, 1], t in [0, T ]
and f in L2(0, T ;X), we have:

I1−α

T−

∫ T

t
(s− t)α−1W∗

α(s− t)f(s)ds

=

∫ T

t
R∗

α(s− t)f(s)ds. (25)

Proof. : of theorem (2)
We use Schauder’s fixed point theorem in our
proof. In other words, we need to show that N
is compact and N (B(0, s)) ⊆ B(0, s) for some
s > 0, where B(0, s) is the open ball of center
zero and radius s.

Remark that N is compact if, and only if, L is
compact. The operator L is compact if,

L (B(0, r)) =
{
LΘ0 = Pωp

(
I1−α

T− Ξ2(0)
)
, Θ0 ∈ B(0, r)

}
,

is relatively compact, for every r > 0, and since

L (B(0, r)) ⊂ Jp,

with

Jp :=
{
Pωp

(
I1−α

T− Ξ2(t)
)
, Θ0 ∈ B(0, r), t ∈ [0, T ]

}
,

hence it is sufficient to prove that Jp is relatively
compact.

Step 1: We show that Jp is uniformly bounded.

From proposition (3) and (21), we have:

I1−α

T− Ξ2(t) = −
∫ T

t
R∗

α(s− t)F [Ξ1(s) + Ξ2(s)] ds,

which gives, by using the property (5) and H2,

∥I1−α

T− Ξ2(t)∥X ≤ Mc

∫ T

0
∥I1−α

T− Ξ1(s)∥Xds
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+Mc

∫ T

0
∥I1−α

T− Ξ2(s)∥Xds.

Furthermore, from (22) and proposition (3), we
have:

I1−α

T− Ξ1(t) = −
∫ T

t
R∗

α(s− t) [C∗CΘ1] ds,

hence, by using Cauchy-Schwartz,

∥I1−α

T− Ξ1(t)∥X ≤ M∥C∥L(X,O)

∫ T

0
∥CΘ1∥Ods,

≤ M∥C∥L(X,O)
T

1
2 ∥Θ0∥E ,

(26)
thus,

∥I1−α

T− Ξ2(t)∥X ≤ M2c∥C∥L(X,O)
T

3
2 ∥Θ0∥E

+Mc

∫ T

0
∥I1−α

T− Ξ2(s)∥Xds.

By Gronwall’s inequality, we obtain,

∥I1−α

T− Ξ2(t)∥X ≤ M2c∥C∥L(X,O)
T

3
2 ∥Θ0∥EeMcT .

(27)
Therefore, the set Jp is uniformly bounded.

Step 2: We show that Jp is equicontinuous.
Let’s consider ε > 0, for t1 and t2 in [0, T ], such
that t2 > t1, we have:

I1−α

T− Ξ2(t1)− I1−α

T− Ξ2(t2)

=∫ T

t2

R∗
α(s− t2)F [Ξ1(s) + Ξ2(s)] ds

−
∫ T

t1

R∗
α(s− t1)F [Ξ1(s) + Ξ2(s)] ds

=∫ T

t2

(R∗
α(s− t2)−R∗

α(s− t1))F [Ξ1(s) + Ξ2(s)] ds︸ ︷︷ ︸
:=R1

−
∫ t2

t1

R∗
α(s− t1)F [Ξ1(s) + Ξ2(s)] ds︸ ︷︷ ︸

:=R2

,

thus,

∥I1−α

T− Ξ2(t1)− I1−α

T− Ξ2(t2)∥X ≤ ∥R1∥X + ∥R2∥X .

Since the operator Rα is strongly continuous, then
for every ε1 > 0, ∃σ > 0, such that,

|t1−t2| < σ =⇒ ∥R∗
α(s−t2)−R∗

α(s−t1)∥L(X)
≤ ε1,

hence, by using (26) and (27), we get,

∥R1∥X ≤ ε1c

∫ T

0
∥I1−α

T− Ξ2(s)∥X + ∥I1−α

T− Ξ2(s)∥Xds,

≤ ε1 ×McT
1
2 ∥C∥L(X,O)

∥Θ0∥E
[
1 +McTeMcT

]︸ ︷︷ ︸
:=Z1

,

(28)

and

∥R2∥X ≤ Mc

∫ t2

t1

∥I1−α

T− Ξ2(s)∥X + ∥I1−α

T− Ξ2(s)∥Xds,

≤ σ ×M2cT
1
2 ∥C∥L(X,O)

∥Θ0∥E
[
1 +McTeMcT

]︸ ︷︷ ︸
:=Z2

.

(29)
Since Pωp is a projection operator, then, from (28)
and (29), we have

∥Pωp

(
I1−α

T− Ξ2(t1)
)
− Pωp

(
I1−α

T− Ξ2(t2)
)
∥X

≤ ∥I1−α

T− Ξ2(t1)− I1−α

T− Ξ2(t2)∥X ,

≤ ε1Z1 + σZ2,

therefore, by taking ε1 ≤ ε

2Z1
and σ ≤ ε

2Z2
, we

conclude that:

∥Pωp

(
I1−α

T− Ξ2(t1)
)
−Pωp

(
I1−α

T− Ξ2(t2)
)
∥X ≤ ε

2
+
ε

2
,

≤ ε.

Thus, Jp is equicontinuous.

From step 1 and 2, we get that L is compact hence
so does N .

Step 3: We show that N (B(0, s)) ⊆ B(0, s) for
some s > 0.

we have that

∥NΘ0∥X ≤ ∥Λ−1∥
(
∥I1−α

T− Ξ(0)∥X + ∥I1−α

T− Ξ2(0)∥X
)
.

We know that Ξ and Ξ2 are in C(0, T ;X), then so

does I1−α

T− Ξ and I1−α

T− Ξ2, which means that they

are in L∞(0, T ;X). Thus, ∃β1, β2 > 0 such that,

∥NΘ0∥X ≤ ∥Λ−1∥ (β1 + β2) .

In other words, if we take s > ∥Λ−1∥ (β1 + β2),
we get that N (B(0, s)) ⊆ B(0, s).

By Schauder’s fixed point theorem, N admits a
fixed point.

Step 4: We show that the fixed point is unique.

Let Θ̃0 and Θ0 be two fixed points of N . Then, as
discussed in the paragraph before equation (19),
they satisfy

CRα(.)Θ0 = CRα(.)Θ̃0 = z(.),

hence, using remark 5, we have:

CRα(.)
(
Θ̃0 −Θ0

)
= CRα(.)χ

∗
ωp
χωp

(
Θ̃0 −Θ0

)
= 0,

and since (14) is approximately ωp-observable, we
obtain that:

χωp

(
Θ̃0 −Θ0

)
= 0,

since Θ̃0 and Θ0 are in E , then:
Θ̃0 = Θ0.

Finally, N has a unique fixed point. □
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Now that we recovered the initial state in ωp, we
can apply, to the recovered function, the trace op-
erator γ̃0 and the restriction operator χ̃B to obtain
the initial state on B.

5. Algorithm and numerical Simulation

This section is reserved to give an algorithm that
allows us to reconstruct the initial state in ωp

and back up our theoretical results by present-
ing a successful numerical simulation. Following
the steps of the above method, we obtain the fol-
lowing algorithm.

5.1. Algorithm

1 - Initialization of : α, ωp, ε = 10−6, Θ0.
2 - Solve (14) and get Θ1.
3 - Solve (20) and get Ξ1.
4 - Solve (21) and get Ξ2.
5 - Do Ξ = Ξ1 + Ξ2.
7 - If ∥Θ0 −NΘ0∥ > ε, then:

- Θ0 = NΘ0.
- go back to step 2.

else
- Stop.

The reconstructed initial state in ωp is χωp
Θ0.

Therefore, y10 = χ̃B γ̃0χωp
Θ0 is the reconstructed

initial state on B.

5.2. Numerical simulation

Let us take for this example Ω = [0, π] × [0, 1],
T = 2, α = 0.5, and B = {0} × [0, 1]. The
dynamic of the system, A, is considered to be

∆ =
∂2

∂x21
+

∂2

∂x22
, which has a complete set of

eigenfunctions,

{
φij(x1, x2) =

2√
π(1− λij)

cos (ix1) cos (jπx2)

}
i,j≥0

,

which forms an orthonormal basis of X,
associated with the set of eigenvalues{
λij = −

(
i2

π2 + j2
)
π2

}
i,j≥0

. The nonlinear op-

erator F is defined as follows :

Fy(x1, x2, t) =
∞∑

i,j≥0

⟨I1−α

T− y(t), φij⟩2Xφij(x1, x2).

After specifying all the needed parameters, we
consider now the semilinear system,



C
D

α

0+y(x1, x2, t) = ∆y(x1, x2, t) in Q,
+Fy(x1, x2, t)

∂y

∂ν∆
(ξ1, ξ2, t) = 0 on Σ,

y(x1, x2, 0) = y0(x1, x2) in Ω.
(30)

The output equation is given by a zonal sensor
(D, f), where D ⊂ Ω is called the geometric sup-
port (location) of the sensor and f ∈ L2(D) is its
spatial distribution. Note that O = R and (2)
takes the form:

z(t) = ⟨y(t), f⟩
L2(D)

, 0 ≤ t ≤ T.

We set f ≡ 1, D = [1.2 , 2.4] × [0.1 , 0.9],
B = {0} × [0, 1], ωp = [0 , 0.09]× [0, 1], and

y0(x1, x2) =
((x1

π
+ 1

)
ln

(x1

π
+ 1

)
− x1

π
− ln

(x1

π
+ 1

)2 )
.
(
(x2 + 1) ln(x2 + 1)− x2 − ln(x2 + 1)2

)
,

which we suppose to be unknown on B.

In order to solve the systems (14), (20), and (21),
we use a combination of two methods. The first is
the spectral method [27], where instead of solving
a fractional partial differential equation, we solve
multiple fractional ordinary differential equations.
The second method, which we use to solve the
fractional ordinary differential equations derived
from the first method, is the predictor-corrector
method presented in [28].

By applying the proposed algorithm, and after
eight iterations, we obtained the Figures (1), (2),
(3) and (4).
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Figure 1. Initial state in Ω.
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Figure 2. Reconstructed initial state in Ω.
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Figure 3. Initial state and the re-
constructed one in Ω.
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Figures 1, 2, and 3 represent, respectively, the
real initial state, the reconstructed initial state,
and both of them in Ω. By taking a vertical cut
in Figure 3 at x2 = 0, we obtain Figure 4 where
we can see the values of the two initial states on
the boundary subregion B. It is clear, in Figure 4,
that the initial state (y0) is very close to the es-
timated initial one (Θ0) on B. Furthermore, the

reconstruction error is:

∥y0 −Θ0∥2
L2(B)

= 6.41× 10−9.

In Figure 3, we remark that the two plots present
very different behaviors unless in the desired
boundary subregion, where they appear to be co-
inciding, which means that the proposed algo-
rithm does not take into consideration other re-
gions different than the desired one. This means
that the cost and time needed to observe the sys-
tem and reconstruct the initial state regionally is
less than if we do it globally.

The efficiency of the proposed method is shown
in Figure 4, where we can see that the plots of
the initial state and the reconstructed one coin-
cide. This is also backed up by the value of the
reconstruction error, which is small.

Table 1 shows how the reconstruction error
changes in the function of the sensor’s location.
We remark that the reconstruction error gets
smaller as the area of B gets smaller. This pro-
portionality proves that observing the initial state
in a subregion is less expansive than observing it
in the whole domain.

Table 1. Evolution of the recon-
struction error with respect to the
subregion B area.

Subregion B Error ∥y0 −Θ0∥2L2(B)

{0} × [0.00 , 1.00] 6.41× 10−9

{0} × [0.05 , 0.95] 5.80× 10−9

{0} × [0.10 , 0.90] 5.18× 10−9

{0} × [0.15 , 0.85] 4.55× 10−9

{0} × [0.20 , 0.80] 3.92× 10−9

{0} × [0.25 , 0.75] 3.27× 10−9

{0} × [0.30 , 0.70] 2.63× 10−9

{0} × [0.35 , 0.65] 1.67× 10−9

{0} × [0.40 , 0.60] 1.32× 10−9

{0} × [0.45 , 0.55] 6.59× 10−10

6. Conclusion

The present paper studied the regional bound-
ary observability problem for time-fractional sys-
tems. We succeeded in reconstructing the ini-
tial state of the considered system in the desired
boundary subregion by passing through an inter-
nal subregion and using the HUM approach. The
method used in this work is very effective for re-
gional boundary reconstruction problems. This is
shown in the numerical simulation, where we ob-
tained the initial state of a two-dimensional time-
fractional diffusion system on the desired bound-
ary subregion with a satisfying value of the recon-
struction error. All along this paper, we worked
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with a bounded observation operator, but we opt
to see what happens if we take an unbounded one
for future works. We are also investigating the
concept of regional gradient observability for frac-
tional systems, where the goal is to reconstruct
the gradient or flux of the initial state.
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