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In this study, the stability analysis of systems with fractional order delay is
presented. Besides, PI controller design using particle swarm optimization
(PSO) technique for such systems is also presented. The PSO algorithm is
used to obtain the controller parameters within the stability region. As it
is known that it is not possible to investigate the stability of systems with
fractional order delay using analytical methods such as the Routh-Hurwitz
criterion. Furthermore, stability analysis of such systems is quite difficult.
In this study, for stability testing of such systems, an approximation method
previously introduced in the literature by the corresponding author is used. In
addition, the unit step responses have been examined to evaluate the systems’
performances. It should be noted that examining unit step responses of systems
having fractional-order delay is not possible due to the absence of analytical
methods. One of the aims of this study is to overcome this deficiency by using
the proposed approximation method. Besides, a solution to the question of
which controller parameter values should be selected in the stability region,
which provides the calculation of all stabilizing PI controllers, is proposed
using the PSO algorithm.
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1. Introduction

In practice, many dynamic systems cannot be
satisfactorily modeled with ordinary differential
equations. Actually, in many systems, the future
behaviors of state variables depend on both their
current values and their past values [1]. Such sys-
tems are called time delay systems. Time delay
systems can occur in practice for many reasons.
So, many processes contain dead time in their in-
ner dynamics. Due to the increasing demands of
dynamic performances, we need models behaving
more like the real process. Therefore, the no-
tion of time delay keeps on growing attraction for
many scientific disciplines such as control engi-
neering.

Analysis and control of systems having time delay
are more complicated than integer order ones [2].
However, describing systems without using time

delay component may lead to incorrect conclu-
sions in terms of evaluating and obtaining desired
control aims. Thus, analysis and control of time
delay systems are very important, and consider-
able attention and effort have been given to the
stability of linear time delay systems during the
past 30 years [1, 3] (and references therein). It
is still an active research area in the literature.
However, to the best knowledge of the authors
of this article, studies related to the stability of
control systems having fractional order time delay
are not extensive. Only particular cases such as
a special class of distributed parameter systems
have been given in [4–7].

Distributed parameters and/or delay elements de-
scribed by partial differential equations can be
seen in many industrial systems such as fluid
lines, transmission lines, nuclear rocket engines,
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diffusion processes and chemical processes etc.
[5–8]. The distributed parameter approach pro-
vides more accurate design results than lumped
parameter approach [6]. Transfer functions of dis-
tributed parameter systems contain

√
s or e−hs,

e−(ks0.5) functions, where, real h ≥ 0 and k ≥ 0
stand for time delay and distributed lag, respec-
tively [6,8]. Calculating the inverse Laplace trans-
forms of these functions is an extremely complex
matter [8]. Distributed parameter systems can
be considered as a special form of fractional or-
der systems when

√
s term is used. The stabil-

ity analysis of systems with distributed parame-
ters, i.e., fractional order systems has some chal-
lenges since their mathematical descriptions have
irrational functions of “s” [5, 6]. The analytic
methods to evaluate time response of irrational
transfer functions are inadequate. Furthermore,
to solve this problem, used graphical methods are
inaccurate [8]. These are important shortcom-
ings of the works have been done on this topic.
In the literature, there are some important stud-
ies. In [9], necessary and sufficient conditions for
the B.I.B.O. (Bounded Input Bounded Output)
stability and the asymptotic stability of systems
whose transfer functions are functions of s,

√
s,

and e
√
Ts are established, where T is a positive

constant. An algorithm for the inverse Laplace
transform to obtain time response of irrational
transfer functions is developed in [8] by using the
Fast Fourier transform. The Hurwitz stability
test is extended to lumped-distributed RC net-
works in [10]. An algebraic test procedure such
as Routh algorithm and Hurwitz determinant is
improved to a certain class of distributed param-
eter systems with multiple delays in [4, 5]. Two-
dimensional stability criterion to a special class of
distributed parameter systems has been studied
in [6]. It has been showed that the conditions of
stability for such systems are independent of time
delay and distributed lag [6]. Similarly, a stability
test independent of distributed lag and another
stability test to find the intervals of distributed
lag are proposed for a special class of distributed
parameter systems in [7]. First order plus frac-
tional diffusive delay is studied in [11]. How-
ever, the works in this area are mostly focused on
systems containing terms e−hs or

√
s. The cur-

rent studies on e−
√
s consist of complex stability

test procedures. What is more, the time-response
analysis of such systems is quite a few [12] One
of the motivations of this study is to examine the
unit step responses of systems having fractional
order delay. Various methods have been used in
the literature to determine the parameters of PI
controllers for time-delay systems [12–16]. One

of these methods is the weighted geometrical cen-
ter method, and the other is the centroid of the
convex stability region method. In this study, a
method based on the centroid of the convex sta-
bility region is presented. In this new method,
the most optimum PI controller parameters are
obtained by creating a triangular area under the
stability curve of the system and searching this
area with PSO algorithm. The first application
of this method can be found in [17].

This paper is organised as follows. A brief intro-
duction of fractional order calculus and fractional
order systems are given in section 2. Fractional
order systems with fractional order delay are also
introduced in section 2. Brief information about
particle swarm optimization is given in section 3.
PI controller design for systems with fractional or-
der delay and a stability test procedure for such
systems are given in section 4. Finally, numerical
examples are given in section 5.

2. Fractional order calculus and
fractional order systems

Fractional order calculus, namely, non-integer or-
der calculus of control systems is gaining more
and more attention from many science disciplines.
The notion of non-integer order calculus which
is related to the development of regular calculus
has been known for 300 years [18]. But it has
mostly remained as a subject studied by promi-
nent mathematicians owing to its complex struc-
ture. There are studies in various fields related
to fractional expressions, especially in mathemat-
ics [11, 19–22]. Since it requires advanced math-
ematical analysis techniques, engineers and other
science disciplines could not use it effectively till
the development of analyzing and solution meth-
ods [18]. After obtaining important achievements
in fractional calculus recently, the real order of dy-
namic systems can be investigated. In fractional
calculus, the order of derivatives or integrals can
be real or complex number [11]. Thus, the or-
der of the fractional integrals and derivatives can
be considered as a function of time or some other
variable [23]. Using the fractional order models to
describe real-world systems has some advantages
in terms of both having more degrees of freedom
in the model and having an unlimited memory
which is very important to predict and influence
present and future behaviors. Fractional order
systems and their applications are one of the most
popular research topics of today. Recently, it has
been reported that fractional order representation
is more accurate to describe real world systems
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than those of integer order models since the real-
world processes are generally and/or most likely
fractional order [24]. It is known that using in-
teger order model to define a system can lead to
distinction between mathematical model and ac-
tual system [24].

A fractional order system (FOS) has transfer
function consisting of fractional order derivatives
sα, where α ∈ R. In the literature, many studies
conducted on FOS use integer order approxima-
tions due to the lack of analytical solution meth-
ods. There are some integer order approximation
methods of FOS such as continued fraction ex-
pansion, Oustaloup etc. (Details can be found
in [25]). Stability analysis of such systems is one
of the most challenging problems. To the best
knowledge of the authors, there are no analytical
stability test procedures such as Routh that can
be applied to such systems, directly. Although us-
ing integer order approximations provide the sta-
bility analysis of such systems, time domain anal-
ysis has remained the most challenging and im-
portant problem. However, some important stud-
ies to obtain inverse Laplace transform and time
response of FOS have been studied in [26,27], re-
cently.

2.1. Fractional order systems with
fractional order delay

A system represented by a differential equation
where the orders of derivatives can take any real
number not necessarily integer number can be
considered FOS. Thus, FOS can be defined by the
fractional-order transfer function with fractional
order time delay. The transfer function of the
system non-integer order time delay is defined by

Gp(s) = G(s)e−
√
τs = N(s)

D(s)e
−
√
τs

= bmsβm+bm−1s
βm−1+...+b0sβ0

ansγn+an−1s
γn−1+...+a0sγ0

e−
√
τs

(1)

or in general form, it can be described as follows.

Gp(s) = G(s)e−(τs)α = N(s)
D(s)e

−(τs)α

= bmsβm+bm−1s
βm−1+...+b0sβ0

ansγn+an−1s
γn−1+...+a0sγ0

e−(τs)β
(2)

where τ is fractional order time delay, ak (k =
0, ..., n) and bk (k = 0, ...,m) are constants, γk
(k = 0, ..., n) and βk (k = 0, ...,m) are arbitrary
real numbers. And, also βm > βm−1 > .... > β0,
γn > γn−1 > .... > γ0 without loss of generality.
As stated before, the studies related to systems
with fractional order time delay are not exten-
sive. Thus, new studies need to be done on this
research topic.

3. Particle swarm pptimization

Particle Swarm Optimization (PSO) is a power-
ful metaheuristic optimization technique based on
the movement and intelligence of swarms. PSO
algorithm is inspired by flocks of birds and schools
of fish in nature. For instance, when birds flying
and searching randomly for food, they help each
other in the flock to find the best food place. In
1995, Dr. Kennedy and Dr. Eberhart have dis-
covered PSO algorithm by examining the behav-
ior of bird flocks [28].

The PSO algorithm can consider like a flock of
birds. Particles come together to form a swarm.
PSO algorithm can find problems’ minimum or
maximum value. In other words, it is finding
the optimum value of the problem. PSO algo-
rithm has individuals also referred to as particles.
These particles are solution sets of a problem. In
PSO, particles generate randomly between prob-
lems boundaries.

In the PSO algorithm, it is necessary to evaluate
whether the particles are suitable for the result
according to a certain criterion. This is done by
the fitness function. The fitness function tests the
fitness of particles. In some previous studies, per-
formance indexes such as “ISE”, “IAE”, “ITSE”,
“ITAE” were used as fitness functions [29–31].
These fitness functions are chosen according to
the problem. If it is desired to reach the mini-
mum point in the problem, the best particle of
the solution set, which gives the minimum value
of the fitness function, is selected. However, if it is
desired to reach the maximum point in the prob-
lem, the maximum value of the fitness function
should be selected. PSO algorithm is an iterative
algorithm, so it needs to be updated some param-
eters about the problems. There are two updates
in the PSO algorithm. The first one is velocity up-
date and the second one is position update. The
velocity update formula is given in Eq. (3) [28].

vij = ϵ∗vij+c1∗r1∗(xPb
ij −xij)+c2∗r2∗(xSbij −xij)

(3)

ϵ: Coefficient of inertia
c1: Cognitive coefficient
c2: Social coefficient
r1, r2: Random coefficient(0-1)
xij : Position of particle

xPb
ij : Position of the best particle

xSbij : Position of the best of the swarm

The velocity equation can be handled in three dif-
ferent parts. In the first part, every particle has
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inertia and wants to maintain its motion. The
expression ϵ ∗ vij is used to express this situation.
In the second part, the particle wants to reach its
best position. The expression c1 ∗ r1 ∗ (xPb

ij − xij)
is used to express this situation. In the last part,
the particle seeks to reach the best position of the
swarm. The expression c2 ∗ r2 ∗ (xSbij −xij) is used
to express this. The combination of all these com-
ponents gives us a new velocity. This process is
done for all particles. After the velocity update,
the position update is done.

∆v =
∆x

∆t
=

∆x

1
⇒ ∆v = ∆x (4)

Position update formula is given in Eq. (4). In
this equation, one unit time change in the PSO
algorithm is equal to one iteration cycle. Thus
Eq. (5) is used when updating the position [28].

xij = xij + vij (5)

After the position update, the PSO algorithm
tests the new positions of the swarm to avoid
leaving the determined search space. For points
outside the search space, a correction is made so
that they fall back into the search space. Oth-
erwise, the algorithm may give incorrect results
when it leaves the search space. When the iter-
ation is complete or the PSO algorithm satisfies
the stopping condition, the outputs of the PSO
algorithm are the best solutions for a problem.

4. PI controller design for systems with
fractional order delay and stability
analysis

PID controllers are the most common controller
type in practical systems due to their simple
structure. And, they have been applied to many
complex systems. They are widely used in prac-
tice even today despite significant development
in control theory [13]. A large number of studies
have been carried out to determine appropriate
parameters for these popular controllers and some
methods have been developed in [32–34]. In gen-
eral, the studies to obtain optimum controller
parameters are still in progress and the concept
of the best approach is not yet available. Thus, it
is still a research topic for control engineering. In
this section, PI controller design is presented for
the systems having fractional order time delay.
To obtain stabilizing controller parameters, the
PSO algorithm has been combined with the cen-
troid of the convex stability region concept based

on the stability boundary locus method [33]. To
explain PI controller design procedure, first, we
need to obtain some equations. Consider the sin-
gle input single output (S.I.S.O.) control system
as shown in Figure 1

Figure 1. A S.I.S.O. control system.

where

Gp(s) = G(s)e−(τs)α =
N(s)

D(s)
e−(τs)α (6)

is the plant to be controlled and C(s) is a PI

controller of the form

C(s) = kp +
ki
s

=
kps+ ki

s
(7)

The closed loop characteristic polynomial ∆(s)

of the system of Figure 1, i.e. the numerator of
1 + C(s)Gp(s) can be written as

∆(s) = sD(s) + (kps+ ki)N(s)e−(τs)α (8)

Separating the numerator and the denominator

polynomials of G(s) in Eq. (6) into even and odd
parts, and substituting s = jω in the equation
provides the following

G(jω) =
Ne(−ω2) + jωNo(−ω2)

De(−ω2) + jωDo(−ω2)
(9)

In the rest of the paper, (−ω2) notation will not

be used in the following equations for the simplic-
ity. Using Eq. (10), Eq. (12) can be obtained
instead of Eq. (11).

(jω)α = ωα(cos
π

2
α+ j sin

π

2
α) (10)

e−(sτ)α = e−(jω)ατα (11)

e−[(cos
π
2
α+j sin π

2
α)ωατα]

= e−(cos π
2
α)ωατα−j(sin π

2
α)ωατα

= e−(cos π
2
α)ωατα .e−j(sin π

2
α)ωατα

(12)

Where the first term which is a constant, and
the second term can be written as follows, respec-
tively.

e−(cos π
2
α)ωατα (13)

e−j(sin π
2
α)ωατα (14)

The second term can be rearranged as in Eq. (15).
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e−j(sin π
2
α)ωατα

= cos[(sin π
2α)ω

ατα]− j sin[(sin π
2α)ω

ατα]
(15)

Substituting Eqs. (16) and (17) in Eq. (11) the
closed loop characteristic polynomial of Eq. (8)
can be written as in Eq. (18)

e−(cos π
2
α)ωατα = e−m (16)

ωατα(sin
π

2
α) = n (17)

∆(jω) = −ω2Do − ω2kpNoe
−m cos(n)

+kiNee
−m cos(n) + ωkpNee

−m sin(n)
+ωkiNoe

−m sin(n)
+j[ωkpNee

−m cos(n) + ωkiNoe
−m cos(n)

+ω2kpNoe
−m sin(n)− kiNee

−m sin(n) + ωDe]
(18)

Then, equating the real and imaginary parts of
∆(jω) to zero, one obtains

kp[−ω2Noe
−m cos(n) + ωNee

−m sin(n)]
+ki[Nee

−m cos(n) + ωNoe
−m sin(n)] = ω2Do

(19)

and

kp[ω
2Noe

−m sin(n) + ωNee
−m cos(n)]

+ki[ωNoe
−m cos(n)−Nee

−m sin(n)] = −ωDe

(20)

Eqs. (19) and (20) can be rearranged as follows.

kpX3(ω) + kiX4(ω) = X1(ω) (21)

kpX5(ω) + kiX6(ω) = X2(ω) (22)

Where

X1(ω) = ω2Do (23)

X2(ω) = −ωDe (24)

X3(ω) = −ω2Noe
−m cos(n) + ωNee

−m sin(n)
= e−m[−ω2No cos(n) + ωNe sin(n)]

(25)

X4(ω) = Nee
−m cos(n) + ωNoe

−m sin(n)
= e−m[Ne cos(n) + ωNo sin(n)]

(26)

X5(ω) = ω2Noe
−m sin(n) + ωNee

−m cos(n)
= e−m[ω2No sin(n) + ωNe cos(n)]

(27)

X6(ω) = ωNoe
−m cos(n)−Nee

−m sin(n)
= e−m[ωNo cos(n)−Ne sin(n)]

(28)

From Eqs. (21) and (22), kp and ki can be ob-
tained as in Eqs. (29) and (30).

kp =
X1(ω)X6(ω)−X2(ω)X4(ω)

X3(ω)X6(ω)−X5(ω)X4(ω)
(29)

ki =
X2(ω)X3(ω)−X1(ω)X5(ω)

X3(ω)X6(ω)−X5(ω)X4(ω)
(30)

The stability boundary locus represented as
l(kp, ki, ω) can be obtained in the (kp, ki) plane
using Eqs. (29) and (30) when the denominator
X3(ω)X6(ω) − X5(ω)X4(ω) ̸= 0. It should be
noted that it is necessary to investigate whether
stabilizing controllers exist or not since the stabil-
ity boundary locus l(kp, ki, ω) and the line ki = 0
can divide the (kp, ki) plane into sub-regions as
stable and unstable [33] (Details can be found in
[33,35]).

Using Eqs. (29) and (30), PI controller parame-
ters kp and ki are obtained as follows.

kp =

(ω2NoDo +NeDe) cos(ω
ατα(sin π

2α))
+ω(NoDe −NeDo) sin(ω

ατα(sin π
2α))

−e−(cos π
2
α)ωατα(Ne

2 + ω2No
2)

(31)

ki =

ω2(NoDe −NeDo) cos(ω
ατα(sin π

2α))
−ω(NeDe + ω2NoDo) sin(ω

ατα(sin π
2α))

−e−(cos π
2
α)ωατα(Ne

2 + ω2No
2)

(32)

Exponential functions have an infinite number of
isolated roots [36]. The stability analysis of time
delay systems is difficult. Moreover, when the
system has a fractional order time delay, the sta-
bility analysis becomes much more complicated.
Recently, an approximation method has been pro-
posed in the literature to analyze the stability and
time response of such systems in [12, 37]. Sta-
bility analysis of such systems is possible with
this method. Besides, using this method time
response analysis of these systems can be ob-
tained. The 1st, 2nd and 3rd order approximations
of e−(sτ)α are given in Eqs. (33), (34) and (35),
respectively [12,37].

First order approximation:
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−(sτ)α

2 + 1
(sτ)α

2 + 1
(33)

Second order approximation:

(sτ)2α

12 − (sτ)2α

2 + 1

(sτ)2α

12 + (sτ)2α

2 + 1
(34)

Third order approximation:

− (sτ)2α

120 + (sτ)2α

10 − (sτ)2α

2 + 1

− (sτ)2α

120 + (sτ)2α

10 − (sτ)2α

2 + 1
(35)

The value of α is in the range of 0 ≤ α ≤ 1. In Fig-
ure 2, in order to see the efficiency of this approxi-
mation method, the stability regions are drawn by
taking α = 0.999 and α = 1 in the transfer func-
tion of the system given by (1/(s+1))e−(s)α . Here,
the second order approximation for the fractional
order time delay is used. The higher the approxi-
mation degree, the more the system’s approxima-
tion model will resemble the real system model.
However, the higher the degree of approximation,
the more difficult the system model will be to ana-
lyze. We used the second-order approximation for
the fractional order time delay in Examples 1 and
2. With the help of this approximation method,
analysis related to a system with a fractional or-
der time delay can be made easily. More detailed
information can be found in [12,37].

Figure 2. Stability regions for α = 0.999 and
α = 1 using second order approximation.

5. Numerical examples

5.1. Example 1

Consider the control system of Figure 1 with the
transfer function of Eq. (36)

Gp(s) =
1

s+1e
−
√
s (36)

The characteristic equation of the system without
using PI controller is obtained as follows.

∆(s) = s+ 1 + e−
√
s (37)

This equation can be rearranged as

∆(s) = (
√
s)2 + 1 + e−

√
s (38)

For the stability test of the system in Eq.(36), if
the second order approximation given by Eq.(34)
is substituted for the fractional order time delay
in Eq.(38), the new characteristic equation will be
as in Eq.(39).

∆(s) = (
√
s)2 + 1 +

s
12 − s

2 + 1
s
12 + s

2 + 1
(39)

If Eq.(39) is set to zero, Eq.(40) is obtained.

s2 + 6s
√
s+ 14s+ 24 = 0 (40)

In Eq.(40), the q =
√
s transform is performed

to find the roots of the characteristic equation.
Thus, the following equation is obtained.

q4 + 6q3 + 14q2 + 24 = 0 (41)

The roots of Eq.(41) are obtained as follows.
q1,2 = −3.2937± 2.3575i = 4.0504∠± 144.406
q3,4 = 0.2937± 1.1733i = 1.2095∠± 75.9465

The roots of the characteristic equation are shown
in Figure 3. As seen from the figure, the system is
stable. (Details about the stability can be found
in [37]).

Figure 3. Roots of the characteristic equation
in q =

√
s plane.

As stated before, conventional stability test meth-
ods such as Routh-Hurwitz cannot be applied to
the analysis of distributed systems whose transfer
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functions are irrational in s. However, to inves-
tigate the stability of fractional order systems,
geometric techniques based on the principle of ar-
gument can be applied. These techniques provide
information about the number of singularities
of the function by observing the development of
the function’s argument. The argument princi-
ple (Nyquist diagram) is a curve surrounding the
right half plane of the Riemann main sheet [38],
the stability of the system can be obtained by
determining the number of cycles of this curve
around the origin.

The Nyquist curve of the system has been shown
in Figure 4. As seen from Figure 4, the system
is stable because it does not include critical point
(-1, j0). The Nyquist curves for different values
of α, and constant value of τ = 1 are presented in
Figure 5. As seen from Figure 5, while the value
of α increases for constant τ , i.e., it gets closer
to 1, a curve similar to the time delay (e−s) in
the classical calculation is obtained. The Nyquist
curves for different values of τ , and constant value
of α = 0.9 are given in Figure 6. It can be seen
from Figure 6, when τ increases for the constant
value of α, the Nyquist curve approaches to the
critical point (-1, j0).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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0.5
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Nyquist Diagram

Figure 4. Nyquist diagram of Example 1.
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Figure 5. Nyquist diagram of Example 1 for dif-
ferent values of α, and fixed τ = 1.
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Figure 6. Nyquist diagram of Example 1 for dif-
ferent values of τ , and fixed α = 0.9.

To compute all stabilizing PI controllers for the
system, kp and ki are obtained as follows.

kp =
cos(0.707ω0.5)− ω sin(0.707ω0.5)

−e−0.707ω0.5 (42)

ki =
−ω2 cos(0.707ω0.5)− ω sin(0.707ω0.5)

−e−0.707ω0.5 (43)

Stability region and unit step responses for the
system can be seen in Figures 7 and 8, respec-
tively. Any point selected within the stability
region guarantees system stability. However, in
order to ensure a good result in terms of system
performance, it is necessary to determine new cri-
teria to choose controller parameters from the sta-
bility region. For this purpose, a tuning method
presented in [17] is used. Thus, a triangular re-
gion which is known as convex stability region has
been determined in the stability curve as shown
in Figure 7. In this region, the optimum point
search is made with the PSO algorithm. In the
PSO algorithm, the number of swarms is taken
as 100 and the number of iterations is taken as
300. The number of swarms and the number of
iterations are obtained by trial and error method
according to the ITAE performance index.
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Figure 7. Stability Region and convex stability
region of Example 1

Step responses of Example 1 are shown in Fig-
ure 8. As seen in Figure 8, the PSO algorithm
provides a very good result.

Figure 8. Unit step responses of Example 1
for kp = ki = 5 and PSO parameters kp =
6.0417, ki = 2.3146.

Using a PI controller in Example 1, the charac-
teristic equation is given by Eq.(44) when kp =
ki = 5.

s3+6s2
√
s+18s2− 24s

√
s+77s− 30

√
s+60 = 0

(44)

Substituting q =
√
s in Eq.(44), Eq.(45) is found.

q6+6q5+18q4−24q3+77q2−30q+60 = 0 (45)

The roots are obtained as follows.

q1,2 = −3.8401± 3.6049i = 5.2670∠± 136.8094
q3,4 = 0.8401± 1.2071i = 1.4707∠± 55.1634
q5,6 = 0± i = 1∠± 90

The roots of the system are shown in Figure 9.
As seen in Figure 9, the system is stable.

Figure 9. The roots of the PI controlled system.

5.2. Example 2

Consider the fractional order control system of
Figure 1 with the transfer function of Eq.(46).

Gp(s) =
1

s1.5 + 1
e−

√
s (46)

The characteristic equation of the system without
controller is obtained as

∆(s) = s1.5 + 1 + e−
√
s (47)

This equation can be rearranged as follows.

∆(s) = (
√
s)3 + 1 + e−

√
s (48)

The Nyquist plot of Example 2 is shown in Fig-
ure 10. As seen from Figure 10, the system is
stable since it does not include critical point (-1,
j0). The stability region is shown in Figure 11.
The triangular region under the stability curve is
also obtained for Example 2. As shown in Figure
11, the PSO algorithm has been searched for the
optimum point within the triangular region. The
swarm number of the PSO algorithm was taken
as 100 and the number of iterations was taken
as 300. ITSE performance index was used as a
fitness function. The unit step changes of the
system for kp = 1, ki = 0.7 and PSO parameters
kp = 0.229, ki = 0.4267 are given in Figure 12. As
seen from this figure, the PSO algorithm provides
a better result than the selected point.



The processes with fractional order delay and PI controller design using particle swarm optimization 89

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Re

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Im

Nyquist Diagram

Figure 10. Nyquist Diagram for Example 2

Figure 11. Stability region for Example 2

Figure 12. Unit step responses of Example
2 for kp = 1, ki = 0.7 and PSO parameters
kp = 0.229, ki = 0.4267

6. Conclusion

In this paper, stability analysis and PI controller
design for the systems with fractional order time
delay are presented. it is known that analysis of
the stability and time response of systems having

fractional order delay is not possible using classi-
cal methods. To overcome this difficulty, an ap-
proximation method to investigate the stability
of such systems is used. Using this approxima-
tion method, time response analysis can also be
made for these systems. As for PI controller de-
sign part, a new tuning algorithm is aimed. This
tuning method uses the PSO algorithm under the
stability region. Thus, it has been shown that op-
timum PI controller parameters can be obtained
with the PSO algorithm. This tuning method
provides very good results as seen from the nu-
merical examples. For future works, tuning of
different controller types such as fractional order
PI, PD and PID can be investigated for systems
having fractional order delay. Since the reported
studies are very restricted for such systems, these
investigations would be very important.
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