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1. Introduction

Dorn [5] introduced symmetric dual for quadratic
programming problems. Subsequently, symmet-
ric duality for nonlinear programming has been
studied by many researchers [4, 9, 11]. Man-
gasarian [8] considered a nonlinear program and
discussed second order duality under certain in-
equalities. Mond [10] established Mangasarian’s
duality relations assuming the kernel function to
be bonvex/boncave.

The concept of mixed duality is interest-
ing and useful both from theoretical as well
as from algorithmic point of view. Bector et
al. [3] introduced mixed symmetric dual mod-
els for a class of nonlinear multiobjective pro-
gramming problems. Ahmad [1] studied invex-
ity/generalized invexity for mixed type symmet-
ric dual in multiobjective programming prob-
lems ignoring nonnegativity constraints of Bec-
tor et al. [3]. Recently, Ahmad and Husain
[2] and Kailey et al. [6] discussed a pair of
multiobjective mixed symmetric dual programs
over arbitrary cones and established duality
results under K−preinvexity/K−pseudoinvexity

and η−bonvexity/η−pseudobonvexity assump-
tions respectively.

In this paper, we introduce a pair of second
order mixed symmetric dual problems. Weak,
strong and converse duality theorems for this pair
are established under F−convexity assumptions.

2. Preliminaries

Let ϕ(x, y) be a real valued twice differentiable
function defined on Rn ×Rm. Let ∇xϕ(x̄, ȳ) and
∇yϕ(x̄, ȳ) denote the gradient vector of ϕ with
respect to x and y at (x̄, ȳ). Also let ∇xxϕ(x̄, ȳ)
denote the Hessian matrix of ϕ(x, y) with re-
spect to the first variable x at (x̄, ȳ). The sym-
bols ∇yyϕ(x̄, ȳ), ∇xyϕ(x̄, ȳ) and ∇yxϕ(x̄, ȳ) are
defined similarly.

Definition 1. Let S ⊆ Rn. A functional
F : S × S × Rn → R is sublinear if for any
(x, x̄) ∈ S × S,

(i) F (x, x̄; (a + b)) 5 F (x, x̄; a) + F (x, x̄; b) for
all a, b ∈ Rn,

(ii) F (x, x̄;αa) = αF (x, x̄; a) for all a ∈ Rn and
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for all α ∈ R+.

Definition 2. The function ϕ(., y) is said to be
second order F−convex at x̄, for fixed y, if

ϕ(x, y)− ϕ(x̄, y) + 1
2p

T∇xxϕ(x̄, x)p

= F (x, x̄;∇xϕ(x̄, y) +∇xxϕ(x̄, y)p), ∀x ∈ Rn.

ψ is second-order F− concave at x̄ ∈ Rn for fixed
y if −ψ is second-order F−convex at at x̄ ∈ Rn

for fixed y.

3. Mixed Second Order Symmetric
Dual Programs

For N= {1, 2, 3, ..., n} and M= {1, 2, 3, ...,
m}, let J1 ⊆ N , K1 ⊆ M , J2 = N \ J1 and
K2 = M \ K1. Let |J1| denote the number of
elements in the set J1. It may be noted that if
J1 = ∅, then J2 = N , that is |J1| = 0, |J2| = n.

Let x1 ∈ R|j1|, x2 ∈ R|j2|. Then it is clear that
any x ∈ Rn can be written as x = (x1, x2). Sim-

ilarly for y1 ∈ R|J1|, y2 ∈ R|J2|, any y ∈ Rm can
be written as y = (y1, y2).

Now we formulate the following pair of mixed
symmetric dual models and discuss the duality
results.

Primal Problem (PP)

Minimize H(x1, x2, y1, y2, p, r) = f(x1, y1) +
g(x2, y2)− (y1)T [∇y1f(x

1, y1) +∇y1y1f(x
1, y1)p]

−(y2)T [∇y2g(x
2, y2) +∇y2y2g(x

2, y2)r]

−1
2p

T∇y1y1f(x
1, y1)p− 1

2r
T∇y2y2f(x

2, y2)r

subject to

∇y1f(x
1, y1) +∇y1y1f(x

1, y1)p 5 0, (1)

∇y2g(x
2, y2) +∇y2y2g(x

2, y2)r 5 0, (2)

(x1, x2) = 0, (3)

Dual Problem (DP)

Maximize G(u1, u2, v1, v2, q, s) = f(u1, v1) +
g(u2, v2)− (x1)T [∇x1f(u1, v1) +∇x1x1f(u1, v1)q]
−(x2)T [∇x2gi(u

2, v2) +∇x2x2g(u2, v2)s]
−1

2q
T∇x1x1f(u1, v1)q − 1

2s
T∇x2x2f(u2, v2)s

subject to

∇x1fi(u
1, v1) +∇x1x1f(u1, v1)q = 0, (4)

∇x2gi(u
2, v2) +∇x2x2g(u2, v2)s = 0, (5)

(v1, v2) = 0, (6)

where
(i) f : R|J1|×R|K1| → R and g : R|J2|×R|K2| → R
are differentiable functions.

(ii) p ∈ R|K1|, r ∈ R|K2|, q ∈ R|J1| and s ∈ R|J2|.

Theorem 1. (Weak Duality)
Let (x1, x2, y1, y2, p, r) be feasible for (PP) and
(u1, u2, v1, v2, q, s) be feasible for (DP). Let for

sublinear functionals F1 : R|J1| × R|J1| → R|J1|,
F2 : R|K1| × R|K1| → R|K1|, G1 : R|J2| × R|J2| →
R|J2| and G2 : R

|K2| ×R|K2| → R|K2|,

(I) F1(x
1, u1; a1) + (a1)Tu1 = 0, ∀ a1 ∈ R

|J1|
+ ;

(II) G1(x
2, u2; a2) + (a2)T y2 = 0, ∀ a2 ∈ R

|K1|
+ ;

(III) F2(v
1, y1; b1) + (b1)Tu1 = 0, ∀ b1 ∈ R

|J2|
+ ;

(IV) G2(v
2, y2; b2) + (b2)T y2 = 0, ∀ b2 ∈ R

|K2|
+ .

Suppose that

(i) f(., v1) is second-order F1−convex at u1, and
f(x1, .) is second-order F2−concave at y1,

(ii) g(., v2) is second-order G1−convex at u2, and
g(x2, .) is second-order G2−concave at y2.

Then,

H(x1, x2, y1, y2, p, r) = G(u1, u2, v1, v2, q, s).
(7)

Proof. By second-order F1−convexity of f(., v1)
at u1, we have

f(x1, y1)− f(u1, v1) + 1
2q

T∇x1x1f(u1, v1)q

= F1(x
1, u1;∇x1f(u1, v1) +∇x1x1f(u1, v1)q).

Using hypothesis (I) and the dual constraint (4),
we obtain

f(x1, y1)− f(u1, v1) + 1
2q

T∇x1x1f(u1, v1)q

= −(u1)T (∇x1f(u1, v1) +∇x1x1f(u1, v1)q). (8)

By second-order F2−concavity of f(x1, .) at y1,
we have

f(x1, y1)− f(x1, v1)− 1
2p

T∇y1y1f(x
1, y1)p

= F1(x
1, u1;−(∇y1f(x

1, y1) +∇y1y1f(x
1, y1)p).
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Using hypothesis (III) and the primal constraint
(1), we obtain

f(x1, y1)− f(x1, v1)− 1
2p

T∇y1y1f(x
1, y1)p

= −(y1)T (∇y1f(x
1, y1) +∇y1y1f(x

1, y1)p). (9)

Combining inequalities (8) and (9), we have

f(x1, y1)− (y1)T (∇y1f(x
1, y1)+∇y1y1f(x

1, y1)p)

−1

2
pT∇y1y1f(x

1, y1)p

= f(u1, v1)−(u1)T (∇x1f(u1, v1)+∇x1x1f(u1, v1)q)

−1

2
qT∇x1x1f(u1, v1)q. (10)

Similarly, by second-order G1−convexity of
g(., v2) at u2, second order G2−concavity of
g(x2, .) at y2, hypothesis (II) and (IV ), and
constraints (2) and (5), we get

g(x2, y2)−(y2)T (∇y2f(x
2, y2)+∇y2y2f(x

2, y2)q)−

1

2
rT∇y2y2g(x

2, y2)r

= f(u1, v1)(u2)T (∇x2f(u2, v2)+∇x2x2f(u2, v2)s)

−1

2
sT∇x2x2f(u2, v2)s. (11)

Adding inequalities (10) and (11), we obtain

f(x1, y1) + g(x2, y2) − (y1)T [∇y1f(x
1, y1) +

∇y1y1f(x
1, y1)p] − (y2)T [∇y2g(x

2, y2) +

∇y2y2g(x
2, y2)r]− 1

2p
T∇y1y1f(x

1, y1)p

−1

2
rT∇y2y2f(x

2, y2)r

= (u1, v1) + g(u2, v2) − (x1)T [∇x1f(u1, v1) +
∇x1x1f(u1, v1)q] − (x2)T [∇x2g(u2, v2) +
∇x2x2g(u2, v2)s]− 1

2q
T∇x1x1f(u1, v1)q

−1

2
sT∇x2x2f(u2, v2)s

or

H(x1, x2, y1, y2, p, r) = G(u1, u2, v1, v2, q, s).

Hence the result. �

Theorem 2. (Strong Duality)
Let (x̄1, x̄2, ȳ1, ȳ2, p̄, r̄) be an optimal solution for
(PP). Suppose that

(i) the matrices ∇y1y1f(x̄
1, ȳ1), ∇y2y2g(x̄

2, ȳ2)
are non singular,

(ii) one of the matrices (∂/∂y1i )(∇y1y1f(x̄
1, ȳ1),

i = 1, 2, 3, .., |K1|, and one of the matrices
(∂/∂y2i )(∇y2y2g(x̄

2, ȳ2), i = 1, 2, .., |K2| are
positive or negative definite.

Then (x̄1, x̄2, ȳ1, ȳ2, q̄ = 0, s̄ = 0) is feasi-
ble for (DP) and the corresponding objective
function values are equal. If in addition the
hypotheses of Theorem 1 hold for all feasible
solutions of primal and dual problems, then
(x̄1, x̄2, ȳ1, ȳ2, q̄ = 0, s̄ = 0) is an optimal solu-
tion for (DP).

Proof. Since (x̄1, x̄2, ȳ1, ȳ2, p̄, r̄) is an optimal
solution of (PP), by the Fritz John necessary
optimality conditions [7], there exist α ∈ R,

β ∈ R|K2|, γ ∈ R|K2|, η1 ∈ R|J1| and η2 ∈ R|J2|

such that the following conditions are satisfied at
(x̄1, x̄2, ȳ1, ȳ2, q̄, s̄):

α(∇1
xf(x̄

1, ȳ1)) +∇y1x1f(x̄1, ȳ1)[β − αȳ1]

+∇x1(∇y1y1f(x̄
1, ȳ1)p̄)[β−α(ȳ1+

1

2
p̄)]− η1 = 0,

(12)
α(∇2

xg(x̄
2, ȳ2)) +∇y2x2g(x̄2, ȳ2))[β − αȳ2]

+∇x2(∇y2y2g(x̄
2, ȳ2)r̄)[β − α(ȳ2 +

1

2
r̄)]− η2 = 0,

(13)
∇y1y1f(x̄

1, ȳ1)[β − α(ȳ1 + p̄]

+∇y1(∇y1y1f(x̄
1, ȳ1)p̄)[β − α(ȳ1 +

1

2
p̄)] = 0,

(14)
∇y2y2g(x̄

2, ȳ2)[β − α(ȳ2 + r̄]

+∇y2(∇y2y2g(x̄
2, ȳ2)r̄)[γ−α(ȳ2+1

2
r̄)] = 0, (15)

∇y1y1f(x̄
1, ȳ1)[β − α(ȳ1 + p̄] = 0, (16)

∇y2y2g(x̄
2, ȳ2)[γ − α(ȳ2 + r̄] = 0, (17)

βT [∇y1f(x̄
1, ȳ1) +∇y1y1f(x̄

1, ȳ1)p̄] = 0, (18)

γT [∇y2g(x̄
2, ȳ2) +∇y2y2g(x̄

2, ȳ2)r̄] = 0, (19)

ηT1 x̄
1 = 0, (20)

ηT2 x̄
2 = 0, (21)

(α, β, γ, η1, η2) = 0, (22)

(α, β, γ, η1, η2) ̸= 0. (23)

Using hypothesis (i), equations (16) and (17) im-
ply

β = α(ȳ1 + p̄), (24)

γ = α(ȳ2 + r̄). (25)
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Now suppose, α = 0. Then equation (24) and(25)
imply β = 0, γ = 0, which along with equations
(12) and (13) yield η1 = 0, η2 = 0.

Thus (α, β, γ, η1, η2) = 0, which contradicts (25).
Hence

α > 0. (26)

Now using equations (24) and (25) in (14) and
(15), we get

∇y1(∇y1y1f(x̄
1, ȳ1)p̄)[αp̄] = 0,

∇y2(∇y2y2g(x̄
2, ȳ2)r̄)[αr̄] = 0.

Therefore hypothesis (ii) and (26) yield

p̄ = 0, (27)

r̄ = 0. (28)

From (24), (25), (27) and (28), we get

β = αȳ1, (29)

γ = αȳ2. (30)

Using (26), (27) and (29) in (12), we obtain

α[∇x1f(x̄1, ȳ1)]− η1 = 0,

or
∇x1f(x̄1, ȳ1) =

η1
α

= 0, (31)

and

(x1)T [∇x1f(x̄1, ȳ1)] =
(x1)T η1

α
= 0, (32)

(using equation (20)).

Further, from (26), (28) and (30), we get

α[∇x2g(x̄2, ȳ2)]− η2 = 0,

or
∇x2g(x̄2, ȳ2) =

η2
α

= 0, (33)

and

(x2)T [∇x2f(x̄1, ȳ1)] =
(x2)T η2

α
= 0, (34)

(using equation (21)).

Finally, from (29) and (30),

ȳ1 = 0 and ȳ2 = 0.

Thus (x̄1, x̄2, ȳ1, ȳ2, q̄ = 0, s̄ = 0) satisfies the
dual constraints (4)-(6), and so it is a feasible
solution for the dual problem (DP).

Now using (26), (27), (29) in (18), we obtain

(y1)T [∇y1f(x̄
1, ȳ1)] = 0, (35)

Similarly, using (26), (28), (30) in (19), we get

(y2)T [∇y2f(x̄
1, ȳ1)] = 0, (36)

Therefore, using (27), (28), (32) and (34)- (36),
we get

H(x̄1, x̄2, ȳ1, ȳ2, p̄ = 0, r̄ = 0)

=f(x̄1, ȳ1) + g(x̄2, ȳ2)− (ȳ1)T [∇ȳ1f(x̄
1, ȳ1)

+∇y1y1f(x̄
1, ȳ1)p̄]− (ȳ2)T [∇y2g(x̄

2, ȳ2)

+∇y2y2g(x
2, y2)r̄]− 1

2
p̄T∇y1y1f(x̄

1, ȳ1)p̄

− 1

2
r̄T∇y2y2f(x̄

2, ȳ2)r̄

=f(x̄1, ȳ1) + g(x̄2, ȳ2)− (x̄1)T [∇x1f(x̄1, ȳ1)

+∇x1x1f(x̄1, ȳ1)q̄]− (x̄2)T [∇x2g(x̄2, ȳ2)

+∇x2x2g(x̄2, ȳ2)r̄]−
1

2
q̄T∇x1x1f(x̄1, ȳ1)q̄

− 1

2
s̄T∇x2x2f(x̄2, ȳ2)s̄

=G(x̄1, x̄2, ȳ1, ȳ2, q̄ = 0, s̄ = 0).

That is, the two objective function values are
equal. By using weak duality it can be easily
shown that (x̄1, x̄2, ȳ1, ȳ2, q̄ = 0, s̄ = 0) is an
optimal solution for (DP).

�

Theorem 3. (Converse Duality)
Let (ū1, ū2, v̄1, v̄2, q̄, s̄) be an optimal solution for
(DP). Suppose that

(i) the matrices ∇x1x1f(ū1, v̄1), ∇x2x2g(ū2, v̄2)
are non singular,

(ii) one of the matrices (∂/∂x1i )(∇x1x1f(ū1, v̄1),
i = 1, 2, 3, .., |J1|, and one of the matrices
(∂/∂y2i )(∇y2y2g(ū

2, v̄2), i = 1, 2, .., |J2| are
positive or negative definite.

Then (ū1, ū2, v̄1, v̄2, p̄ = 0, r̄ = 0) is feasi-
ble for (PP) and the corresponding objective
function values are equal. If in addition the
hypotheses of Theorem 1 hold for all feasible
solutions of primal and dual problems, then
(ū1, ū2, v̄1, v̄2, p̄ = 0, r̄ = 0) is an optimal solu-
tion for (PP).
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Proof. The proof follows on the lines of Theo-
rem 2.

�
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