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This paper is devoted to the study of ecosystem based fisheries management.
The model represents the interaction between prey and predator population
with Holling II functional response consisting of different carrying capacities
and constant intrinsic growth rates. We have considered the continuous har-
vesting of predator only. It is observed that if the intrinsic growth rate of
predator population crosses a certain critical value, the system enters into
Hopf bifurcation. Our observations indicate that tax, the management object
in fisheries system play huge impacts on this system. The optimal harvesting
policy is disposed by imposing a tax per unit of predator biomass. The optimal
harvest strategy is determined using Pontryagin’s maximum principle, which is
subject to state equations and control limitations. The implications of tax are
also examined. We have derived different bifurcations and global stability of
the system. Finally, numerical simulations are used to back up the analytical
results.
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1. Introduction

Ecosystems are made up of live creatures, plants,
and non-living things that coexist and ‘interact’
with one another. Fish are part of the marine
ecosystem since they do not live in isolation. They
have a strong connection to their physical, chem-
ical, and biological environments. They rely on
the environment to supply the necessary condi-
tions for their growth, reproduction, and survival.
They also serve as a food supply for other species
such as seabirds and marine mammals, making
them an essential component of the marine food
chain.

Fishing activity has an impact not just on the fish
populations, but also on the habitat in which the
fish dwell. Fishing has both direct and indirect
effects on the ecosystem. As a result of fishing,
other species are caught and/or discarded, and
fishing gear affects the seabed. Fishing can have

an indirect influence on the ecosystem by harvest-
ing fish from the marine food chain, for example.
The ecosystem approach to fisheries recognises
that fisheries must be managed as part of its
ecosystem and that their environmental impact
should be kept to a minimum. It is well known
that interspecies competition between multi-fish
species is vary much complicated. Competition
between two fish species with the combined har-
vesting have been discussed in [1]. The authors
in [2] have studied the combined harvesting of
two-species predator-prey model with discrete
time delay in fishery system. However, restrict-
ing to harvest fishes above a certain age or size
only can help the fishery and prevent its extinc-
tion. Harvesting of two competing fish species in
the presence of toxicity has been discussed in [3].
The authors studied bionomic equilibrium and
optimal harvesting policy with help of control
theory. The author in [4] have analyzed a coral
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reef ecosystem to explore the effects of changes
in economic, biological, and social parameters
in a multiple-species coral-reef ecosystem with
adaptive harvesters. Recently, the authors in [5]
and [6] have developed a bio-economic model that
combines a model of competition and a model of
prey-predator of multi-fish populations. They
have calculated the fishing effort which maxi-
mizes the income of the fishing fleet. In ecology,
a stochastic differential fishery game for a two
species fish population has been studied in [7].
Recently, several aspects of the optimal harvest
of a stage structured model of a fishery have been
discussed in [8]. The authors also looked at how
changes in costs and harvesting technologies will
affect whether the optimal harvesting strategy is
to target one age group, the other age group, or
both age groups. The authors in [9] have empha-
sized the importance of age-structured modelling
in practical fishery economics. In [10], a prey-
predator type fishery model with solely prey har-
vesting was investigated. Also many papers on
prey-predator model with harvesting have been
studied in [11–22]. In [23] and [24], have explored
deterministic chaos vs stochastic oscillation in
a prey-predator model and global stability of a
three-species food chain model with diffusion,
respectively. Recently, in [25], local and global
stability have been examined in a fractional prey-
predator model in presence of harvesting rate.

Motivated by the above theoretical and experi-
mental literatures, the dynamics of such system
in which implications of tax on harvesting of
predator is studied. It should be noted from the
aforementioned literature review that no attempt
has been made to research prey-predator fish-
ery harvesting with taxation as a control device.
The present paper investigates a dynamic reac-
tion model in the context of a prey-predator type
fishery system in which only the predator species
are harvested. The imposition of a tax serves as
a deterrent to fishermen while also protecting the
predator from over-exploitation. The main goal
of this paper is to determine the proper taxation
strategy that will benefit the community as much
as possible through harvesting while preventing
the extinction of the predator.
The main target in present manuscript is to in-
vestigate the subsequent biological topics:
• How does carrying capacity of both population
influence the prey-predator dynamics.
• Can imposing tax influence to stabilize the fish-
ery system.
• How does constant price per unit biomass of

predator influence the prey-predator dynamics.

In this paper, we present a new deterministic
prey-predator model. It incorporates a feature
that appears for the first time in this situation,
the emergence of a Holling type II response func-
tion that has only been suggested by [26] in pres-
ence of harvesting of predator with taxation as a
control instrument. The use of a Holling type II
functional response is however in contrast to other
models, such as [27], where the predation term
of the model exhibits ratio-dependent type. In
contrast to other current models [26], we account
for an alternative food source for the predator,
which helps in stabilizing the system. In the
present article, predator do not only depend on
prey but also grow logistically. In this plankton-
fish interaction model, two logistic growth rates of
the phytoplankton and zooplankton populations
are incorporated in [28].

In this paper, a prey-predator interaction model
in presence of harvesting is described in fishery
management. The stability of equilibrium point
is analyzed. Conditions for globally asymptoti-
cally stable of coexistence equilibrium have been
studied. We also found the requirements for sys-
tem instability near the coexiestence equilibrium
and Hopf bifurcation. We analyze the optimal tax
policy by using Pontryagin’s maximum principle.
To back up our analytical result, we ran numeri-
cal simulations with a set of parametric variables.
The paper comes to a close with a brief conclu-
sion.

2. The mathematical model

Let x(t) be the concentration of the prey pop-
ulation at time t with carrying capacity K1 and
constant intrinsic growth rate r1. Let y(t) denotes
the predator population at time t with carrying
capacity K2 and constant intrinsic growth rate r2.

Let α1 be the maximal prey’s ingestion rate and
β1 be the maximal conversion rate for the growth
of predator population respectively (β1 ≤ α1).
Let d1, d2 be the mortality rates of the prey and
predator population respectively. To characterise
the grazing phenomenon, we use the Holling type
II functional form with a1 as half saturation con-
stant.

The predator’s catchability coefficient is constant
c1 in this case and E is harvesting effort. In this
paper, we consider E to be a dynamic (i.e. time-
dependent) variable regulated by the equation

E(t) = µ1Q(t), 0 ≤ µ1 ≤ 1, (1)
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dQ

dt
= I(t)− γ1Q(t), Q(0) = Q0, (2)

where I(t) is the gross investment rate at time t.
The amount of capital invested fishery at time t is
Q(t) and constant rate of depreciation of capital
is γ1. A regulatory agency controls exploitation
of the fishery by imposing a tax τ1(> 0) per unit
biomass of the predator. Here τ1(< 0) be the sub-
sidy given to the fisherman. The net economic
revenue to the fisherman is [c1(p1 − τ1)y − C]E,
where p1 is the constant price per unit biomass
of predator species and C is the constant cost
per unit of harvesting effort. Moreover, we as-
sume that the gross rate of investment of capital
is proportional to the net economic revenue to the
fisherman. Therefore we can write

I(t) = µ2 [c1(p1 − τ1)y − C]E(t), 0 ≤ µ2 ≤ 1.
(3)

Equation (3) shows that the maximum investment
rate at any time equals the net economic revenue
(for µ2 = 1) at that time. By virtue of (2) and
(3) yield the result

dE

dt
= {µ1µ2 [c1(p1 − τ1)y − C]− γ1}E. (4)

In this paper, we consider tax as the management
objective when discussing the impact of harvest-
ing in the fishery system and assume p1 − τ1 > 0.
Let m = µ1µ2; as a result, the following system
of equation is given by :

dx

dt
= r1x(1−

x

K1
)− α1xy

a1 + x
− d1x ≡ G1,

dy

dt
= r2y(1−

y

K2
) +

β1xy

a1 + x
− d2y − c1yE ≡ G2,

dE

dt
= {m [c1(p1 − τ1)y − C]− γ1}E ≡ G3,

(5)
where Gi = Gi(x, y, E), i=1,2,3. The system (5)
will be analyzed with the following initial condi-
tions,

x(0) = X1 ≥ 0, y(0) = X2 ≥ 0, E(0) = X3 ≥ 0.
(6)

3. Some preliminary results

3.1. Positive invariance

By setting X = (x, y, E)T ∈ R3 and G(X) =

[G1(X), G2(X), G3(X)]T , with G : R+
3 → R3

and G ∈ C∞(R3), equation (5) becomes

Ẋ = G(X), (7)

together with X(0) ∈ R+
3. It is easy to check

that whenever X(0) ∈ R+
3 with Xi ≥ 0, for

i=1, 2, 3, then Gi(X) |Xi=0≥ 0. Then any
solution of equation (7) with X0 ∈ R+

3, say
X(t) = X(t;X0), is such that X(t) ∈ R+

3 for
all t > 0.

Lemma 1. All the non negative solutions of the
system (5) are ultimately bounded.

Proof. From the first equation of the system (5)

we have dx
dt

≤ r1x
(

1− x
K1

)

, which gives x(t) →
K1 as t → ∞.
Therefore, corresponding to ǫ1 > 0, there exists
tǫ1 > 0 such that x(t) ≤ K + ǫ1 for all t ≥ tǫ1 .
For all t ≥ tǫ1 , from the second equation of (5), we

have dy
dt

≤ y
[

r2(1− y
K2

) + β1(K1+ǫ1)
a1+K1+ǫ1

]

and so, cor-

responding to ǫ2 > 0 there exists tǫ2 > 0 such that

y(t) ≤ K2+
β1(K1+ǫ1)K2

r2(a1+K1+ǫ1)
for all t ≥ max {tǫ1 , tǫ2}.

This gives, lim
t→∞

{x(t) + y(t)} ≤ K1 + K2 +

β1K1K2

r2(a1+K1)
. Using the previous conditions in the

third equation of system (5) we can easily to ver-
ify that E is bounded and less than some positive
constant when t → ∞.
Now we consider, w(t) = x(t) + y(t) + 1

m(ρ1−τ1)
E.

The time derivative of w along the solutions of is
dw
dt

≤ r1x(1 − x
K1

) + r2y(1 − y
K2

) − d1x − d2y −
(mc+γ1)
(ρ1−τ1)m

E,
dw
dt

≤ −D0w + r1x(1 − x
K1

) + r2y(1 − y
K2

) where

Do = Min{d1, d2, (mc+ γ1)},
dw
dt

+D0w ≤ r1K1

4 + r2K2

4 .
Integrating the above inequality and using ini-
tial condition we get, 0 < w(t) ≤ w(0)e−D0t +

( r1K1+r2K2

4 )(1− e−D0t).
As t → ∞, the above inequality simplifies to
0 < w(t) ≤ ( r1K1+r2K2

4 ). Hence, all the solutions
of the system is uniformly bounded.

�

3.2. Equilibria

The system (5) possesses the following equilibria:

(i) The prey-predator equilibrium S0 = (0, 0, 0).
(ii) The predator free equilibrium S1 =

(x1, 0, 0) = (K1(r1−d1)
r1

, 0, 0), which exists if r1 >

d1.
(iii) The prey free equilibrium in absence of har-

vesting effort S2 = (0, y2, 0) = (0, K2(r2−d2)
r2

, 0),
which exists if r2 > d2.
(iv) The prey free equilibrium in presence
of harvesting effort S3(0, y3, E3) with y3 =

γ1+Cm
mc1(p1−τ1)

, E3 = K2mc1(p1−τ1)(r2−d2)−r2(γ1+Cm)
K2mc1(p1−τ1)

,

which exists if p1 > Max{τ1, τ1 + r2(γ1+Cm)
K2mc1(r2−d2)

}.
(v) The harvesting effort free equilibrium

S4(x4, y4, 0) with x4 =
a1(d2−r2+

r2y4
K2

)

β1−(d2−r2+
r2y4
K2

)
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and y4 =
[r1(1−

x4
K1

)−d1][a1+x4]

α1
, which exists if x4 <

r1−d1
K1

and (r2−d2)K2

r2
< y4 <

K2(β1−d2+r2)
r2

.

(vi) The coexistence equilibrium S∗ = (x∗, y∗, E∗)

with y∗ = γ1+Cm
mc1(p1−τ1)

,

E∗ =
r2(1−

y∗

K2
)−

β1x
∗

a1+x∗

c1
− d2

c1
and x∗ satisfies x∗2 +

{K1d1
r1

+ (a1 − K1)}x∗ + K1α(γ1+Cm)
γ1mc1(p1−τ1)

+ a1K1d1
r1

−
a1K1 = 0.
Let x1 and x2 be the roots of above equation. We
only consider that x1, x2 have only one positive

root then x1x2 =
K1α1(γ1+Cm)
γ1mc1(p1−τ1)

+a1K1d1
r1

−a1K1 < 0

=⇒ τ1 <
a1K1(r1−d1)mc1p1−K1α1(γ1+Cm)

aK1(r1−d1)mc1
, and

∆ = {K1d1
r1

+ (a1 − K1)}2 + 4{a1K1 − a1K1d1
r1

−
K1α1(γ1+Cm)
γ1mc1(p1−τ1)

} > 0.

Hence, x∗ exists as a positive root: x∗ = 1
2 [

K1d1
r1

+

(a1 −K1) +
√
∆]. Thus, the coexistence equilib-

rium exists if x∗ > 0, y∗ > 0 and E∗ > 0 i.e.

τ1 < Min{a1K1(r1−d1)mc1p1−K1α1(γ1+Cm)
aK1(r1−d1)mc1

, p1}.

3.3. Stability analysis of the system (5)

In this section, local stability analysis of the sys-
tem around the biologically feasible equilibria is
performed. Let S = (x, y, E) be any arbitrary
equilibrium. Then the Jacobian matrix about S

is given by

V =

[

v11 −
α1x

a1+x
0

a1β1y

(a1+x)2
v22 −c1y

0 mc1(p1 − τ1)E v33

]

,

where v11 = r1(1 − 2x
K1

) − a1α1y
(a1+x)2

− d1, v22 =

r2(1− 2y
K2

)+ β1x
a1+x

−d2− c1E and v33 = m[c1(p1−
τ1)y − C]− γ1.

By calculating the Jacobian matrix for the equi-
librium S0 of the system (5). We see that the
eigenvalues of the variational matrix V0 are λ1 =
r1−d1 > 0, λ2 = r2−d2 > 0, λ3 = −mC−γ1 < 0.
Clearly S0 is always unstable. It is clear that
S0(0, 0, 0) is always unstable.

Lemma 2. If R0 = β1K1(r1−d1)
(d2−r2)[a1r1+K1(r1−d1)]

> 1

then the predator free steady state S1 of the sys-
tem (5) is unstable.

Proof. Now again computing the Jacobian ma-
trix for the equilibrium S1 of the system (5) we
find that the eigenvalues of the Jacobian matrix
V1 are λ11 = −(mC+γ1) < 0, λ12 = −r1+d1 < 0

and λ13 = r2+
β1K1(r1−d1)

a1r1+K1(r1−d1)
−d2. It is clear that

λ13 < 0 if β1K1(r1−d1)
(d2−r2)[a1r1+K1(r1−d1)]

< 1 i.e. R0 < 1

where R0 =
β1K1(r1−d1)

(d2−r2)[a1r1+K1(r1−d1)]
.

So, S1 is asymptotically stable if and only if
R0 < 1. Clearly if R0 > 1 , then predator free

steady state S1 is unstable which indicates the
proof of lemma 1. �

Lemma 3. There exists a feasible prey free steady
state S2 in absence of harvesting effort of predator
of the system (5) which is unstable if

R1 =
a1r2(r1 − d1)

α1K2(r2 − d2)
> 1. (8)

Proof. Now again computing the Jacobian ma-
trix for the equilibrium S2 of the system (5) we
find that the eigenvalues of the Jacobian matrix
V2 are λ

1
11 = −(mC+γ1) < 0, λ

′

12 = −r2+d2 < 0

and λ
′

13 = r1 − d1 − α1K2(r2−d2)
a1r2

. It is clear that

λ
′

13 < 0 if a1r2(r1−d1)
α1K2(r2−d2)

< 1 i.e. R1 < 1 where

R1 =
a1r2(r1−d1)
α1K2(r2−d2)

.

So, S1 is asymptotically stable if and only if
R1 < 1. Clearly, if R1 > 1 , then prey free with-
out harvesting effort steady state S2 is unstable
which indicates the proof of lemma 2. �

Lemma 4. There exists a prey free steady state
S3 of the system (5) which is unstable if

R2 =
a1mc1(r1 − d1)(p1 − τ1)

α1(γ1 + Cm)
> 1. (9)

Proof. Further the eigenvalues of the Jacobian
matrix V3 around the equilibrium S3 of the sys-
tem (5) are θ1, θ2 which are the roots of the
equation θ2 + r2y3

K2
θ +mc21(p1 − τ1)y3E3 = 0 and

θ3 = r1−d1−α1y3
a1

. Clearly, θ1 and θ have negative

real parts for equilibrium point S3(0, y3, E3). So,
prey free equilibrium S3 is asymptotically stable

if θ3 < 0 i.e. a1mc1(r1−d1)(p1−τ1)
α1(γ1+Cm) < 1, i.e. R2 < 1

where R2 = a1mc1(r1−d1)(p1−τ1)
α1(γ1+Cm) . Therefore, S3 is

unstable if condition (9) i.eR2 > 1 is satisfied. �

Lemma 5. The harvesting effort free equilibrium
of the (5) is locally asymptotically stable if Bi > 0
where i=1,2,3 and B1B2 −B3 > 0.

Proof. The Jacobian matrix of system (5)
around the harvesting effort free equilibrium S4 =
(x4, y4, 0) is

V ∗ =





m11 m12 0
m21 m22 m23

0 0 n33



 ,

where m11 = r1− 2r1x4

K1
− a1α1y4

(a1+x4)2
− d1 = − r1x4

K1
+

α1x4y4
(a1+x4)2

, m12 = − α1x4

a1+x4
< 0,m21 = a1β1y4

(a1+x4)2
>

0, m22 = − r2y4
K2

< 0, m23 = −c1y4 < 0, m33 =

m[c1(p1 − τ1)y4 − C]− γ1 > 0.
The characteristic equation is given by

Q3
1 +B1Q

2
1 +B2Q1 +B3 = 0,
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where B1 = −(m11+m22+m33), B2 = m11m22+
m11m33+m22m33−m12m21, B3 = m33m12m21−
m33m11m22.

Case 1: If m11 < 0, which shows that B3 < 0.
Then S4 is unstable.
Case 2: If m11 > 0, Then B1 = −(m11 +
m22 + m33) > 0 if m22 < m11 + m33). Also
B2 = m11m22 +m11m33 +m22m33 −m12m21 > 0
if m11m33 − m12m21 > −(m11m22 + m22m33)
since m11m22 < 0, m11m33 > 0, m22m33 < 0
and m12m21 < 0. Clearly B3 = m33m12m21 −
m33m11m22 > 0 if m33m12m21 > m33m11m22

since m33m12m21 < 0 and m33m11m22 < 0. Now
B1B2 − B3 > 0 if B1B2 > B3. Therefore, ac-
cording the Routh-Hurwitz criteria, all roots of
above equation have negative real parts. Thus S4

is locally asymptotically stable. �

Lemma 6. The coexistence equilibrium of the
system (5) is locally asymptotically stable if Θi >

0 where i=1,2,3 and Θ1Θ2 −Θ3 > 0.

Proof. The Jacobian matrix of system (5)
around the positive interior equilibrium S∗ =
(x∗, y∗, E∗) is

V ∗ =





n11 n12 0
n21 n22 n23

0 n32 0



 ,

where n11 = r1 − 2r1x∗

K1
− a1α1y

∗

(a1+x∗)2
− d1 = − r1x

∗

K1
+

α1x
∗y∗

(a1+x∗)2
, n12 = − α1x

∗

a1+x∗ < 0, n21 = a1β1y
∗

(a1+x∗)2
>

0, n22 = − r2y
∗

K2
< 0, n23 = −c1y

∗ < 0, n32 =

mc1(p1 − τ1)E
∗ > 0.

The characteristic equation is

Q3 +Θ1Q
2 +Θ2Q+Θ3 = 0,

where Θ1 = −(n11+n22), Θ2 = n11n22−n32n23−
n12n21, Θ3 = n11n32n23.

Case 1: If n11 > 0, which shows that Θ3 < 0.
Then S∗ is unstable.
Case 2: If n11 < 0, Then Θ1 = −(n11 + n22) > 0
Also, Θ2 = n11n22 − n32n23 − n12n21 > 0 since
n11n22 > 0, n32n23 < 0 and n12n21 < 0. Clearly,
Θ3 = n11n32n23 > 0. Now Θ1Θ2 − Θ3 > 0
if Θ1Θ2 > Θ3. Therefore according the Routh-
Hurwitz criteria, all roots of above equation have
negative real parts. Thus S∗ is locally asymptot-
ically stable. �

The analytical results are summarized in the Ta-
ble 1.

Theorem 1. When the intrinsic growth rate of
predator r2 crosses a critical value, say r∗2, the
system (5) enters into a Hopf-bifurcation around
the coexistence equilibrium, which induces oscilla-
tions of the populations.

Proof. If the Hopf-bifurcation exists for r2 =
r∗2, the following are the necessary and suffi-
cient conditions: (i) Θi(r

∗

2) > 0, i = 1, 2, 3
(ii)Θ1(r

∗

2)Θ2(r
∗

2)−Θ3(r
∗

2) = 0 and (iii) the eigen-
values of above characteristic equation should be
of the form λi = ui + ivi, and

dui

dr2
6= 0, i = 1, 2, 3.

The Hopf-bifurcation condition (iii) will now be
tested by putting λ = u + iv in the above equa-
tion, we get

(u+iv)3+Θ1(u+iv)2+Θ2(u+iv)+Θ3 = 0. (10)

On distinguishing the real and imaginary parts
and removing v, we get

8u3+8Θ1u
2+2u(Θ2

1+Θ2)+Θ1Θ2−Θ3 = 0. (11)

From the foregoing, it is apparent that u(r∗2) = 0
iff Θ1(r

∗

2)Θ2(r
∗

2)−Θ3(r
∗

2) = 0. Further, at r2 = r∗2,
u(r∗2) is the only root, since the discriminant 8u2+
8Θ1u+2(Θ2

1+Θ2) = 0 if 64Θ2
1−64(Θ2

1+Θ2) < 0.
Further, differentiating (11) with respect to r2, we
have
24u2 du

dr2
+16Θ1u

du
dr2

+2(Θ2
1+Θ2)

du
dr2

+2u[2Θ1
dΘ1

dr2
+

dΘ2

dr2
] + dS

dr2
= 0 where S = Θ1Θ2 −Θ3.

Since at r2 = r∗2, u(r
∗

2) = 0 we get
[

du
dr2

]

r2=r∗
2

=

−
dS
dr2

2(Θ2
1
+Θ2)

6= 0.

This ensures that the above system has a Hopf-
bifurcation around the coexistence equilibrium
E∗.

�

Theorem 2. If the coexistence equilibrium S∗ ex-
ists, then (x∗, y∗, E∗) is globally asymptotically
stable in the x− y − E plane.

Proof. Let’s start by defining a Lyapunov func-
tion

W (x, y, E) =

∫

x∗

x ξ − x∗

ξ
dξ

+D1

∫

y∗

y η − y∗

η
dη +D2

∫

E∗

E ρ− E∗

ρ
dρ,

(12)

where D1 and D2 are positive constants.
It is easy to examine that W (x, y, E) is zero
at the equilibrium point and the positive for all
other positive values of W (x, y, E).
The time derivative of W along the trajectories of
the subsystem is

dW

dt
=

dx

dt

[

x− x∗

x

]

+D1

[

dy

dt

] [

y − y∗

y

]

+D2

[

dE

dt

] [

E − E∗

E

]
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Table 1. The table depicting thresholds and stability of steady states.

Thresholds S0(0, 0, 0) S1(x1, 0, 0) S2(0, y2, 0) S3(0, y3, E3) S4(x4, y4, 0) S∗(x∗, y∗, E∗)
(R0, R1, R2)

R0 < 1 Unstable Asymptotically Not feasible Not feasible Not feasible Not feasible
stable

R0 > 1, R1 < 1 Unstable Unstable Asymptotically Not feasible Not feasible Not feasible
stable

R1 > 1, R2 < 1 Unstable Unstable Unstable Asymptotically Not feasible Not feasible
stable

R2 > 1 Unstable Unstable Unstable Unstable Asymptotically Not feasible
stable

S∗ > 0,Θi > 0, i = 1, 2, 3.,Θ1Θ2 −Θ3 > 0. Unstable Unstable Unstable Unstable Unstable Asymptotically
stable

= [x− x∗]

[

r1(1−
x

K1
)− α1y

a1 + x
− d1

]

+D1

[

r2(1−
y

K2
) +

β1x

a1 + x
− d2 − c1E

]

[y − y∗] +D2 [mc1(p1 − τ1)y −mC] [E − E∗]

= [x− x∗][− r1

K1
(x− x∗)−

α1

(a1 + x)(a1 + x∗)
[(a1 + x∗)(y − y∗)− y∗(x− x∗)]]

+D1

[

r2(1−
y

K2
) +

β1x

a1 + x
− d2 − c1E

]

[y − y∗]

+D2 [mc1(p1 − τ1)y −mC] [E − E∗]

=

[

− r1

K1
+

α1y
∗

(a1 + x)(a1 + x∗)

]

(x− x∗)2

−α1(x− x∗)(y − y∗)

a1 + x

−r2D1

K2
(y − y∗)2 +D1(

β1x

a1 + x
− β1x

∗

a1 + x∗
)(y − y∗)

−D1c1(E − E∗)(y − y∗)

+D2mc1(p1 − τ1)(E − E∗)(y − y∗).

Now here we choose arbitrary constants D1 and

D2 such as D1 =
α1(a1+x∗)

a1β1
, D2 =

α1(a1+x∗)
a1mβ1β(p1−τ1)

.

Then

dW (x, y, E)

dt
=

[

− r1

K1
+

α1y
∗

(a1 + x)(a1 + x∗)

]

× (x− x∗)2 − r2

K2

α1(a1 + x∗)

a1β1
(y − y∗)2.

Clearly, the second term is negative. Now af-
ter some calculation in first term we see that if
x∗ > (K1−a1)−D1K1

r1
then dW (x,y,E)

dt
≤ 0. Clearly,

dW (x,y,E)
dt

= 0 if and only if x = x∗ and y = y∗

which yields E = E∗. Hence, dW (x,y,E)
dt

= 0 if
and only if x = x∗, y = y∗ and E = E∗. So
from Lasalle invariant principle we say that S∗ is
globally asymptotically stable. �

4. Optimal Taxation policy

Biologically, we care more about the coexistence
equilibrium in the presence of harvesting in order
to ensure the existence of both species. Our main

goal is to save each species while also maximis-
ing the monetary and social benefits. The profits
(revenues) received by the fisherman and regula-
tory agency are saved to the society through the
fishery in a large society. The entire economic
revenue is

(c1p1y−C)E = [c1(p1−τ1)y−C]E+τ1c1yE. (13)

It is equal to the sum of the entire fisherman’s
economic revenue and the regulating agency’s eco-
nomic revenue. It is obvious that

π(x, y, E) = (c1p1y − C)E. (14)

In order to maximise the present value J of a con-
tinuous time steam of revenues, we analyse opti-
mal harvest policy

J =

∫

∞

0
e−δt(c1p1y − C)Edt, (15)

where δ be the instantaneous annual rate of dis-
count [29–31].
Now we want to discover the path tracked by
(x(t); y(t);E(t)) with the tax policy τ1 so that if
fish populations and harvesting effort stay on this
path, the regulatory authority will be assumed to
have accomplished its goal.

Our goal is to use Pontryagin’s maximal principle
[32] to determine a tax policy τ1 = τ1(t) that max-
imises J under the state equation (5). The con-
trol variable τ1(t) is subjected to the constraints
min τ1 ≤ τ1 ≤ max τ1. When min τ1 < 0, we can
explore subsidies, which in this case would have
the effect of increasing the rate of expansion of
the fishery.
Hamiltonian function is defined as follows:

H = e−δt(c1p1y − C)E + λ1
dx

dt
+ λ2

dy

dt
+ λ3

dE

dt
.

(16)
where λ1, λ2 and λ3 are the adjoint variables.
Hamiltonian (16) must be maximized when τ1 ∈
[min τ1,max τ1]. We assume that the optimal
solution does not occur at τ1 = min τ1 or max τ2
which imply that constraints are not binding.
Therefore, singular control is represented by

δH

δτ1
= −λ3mc1yE =⇒ λ3 = 0. (17)
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The adjoint equations, according to Pontryagin’s
maximal principle, are

dλ1

dt
=

δH

δx
,
dλ2

dt
=

δH

δy
,
dλ3

dt
=

δH

δE
. (18)

As a result of the substitution and simplification,
we arrive at
dλ1

dt
= −δH

δx
= −λ1

[

r1(1−
2x

K1
)− a1α1y

(a1 + x)2
− d1

]

−λ2
a1β1y

(a1 + x)2
,

(19)
dλ2

dt
= −δH

δy
= −e−δtc1p1E + λ1

α1x

a1 + x

−λ2

[

(r2 −
2r2y

k2
) +

β1x

a1 + x
− d2 − c1E

]

,

(20)

dλ3

dt
= −δH

δE
= −(c1p1y − C)e−δt + λ2c1y = 0.

(21)
The solution of (21) is described in the following
in order to obtain an optimal equilibrium solu-
tion by considering the coexisting equilibrium as
follows:

λ2 = e−δt(p1 −
C

c1y∗
). (22)

Let

A1 = −
[

r1 −
2r1x

∗

K1
− a1α1y

∗

(a1 + x∗)2
− d1

]

,

A2 =
a1β1y

∗

(a1 + x∗)2
(p1 −

C

c1y∗
)e−δt,

A3 = c1p1E
∗ − A2

A1 + δ

α1x
∗

a1 +X∗
− r2y

∗

α2
(p1 −

C

c1y∗
).

(23)
Now the equations (19) and (20) can be written
as

dλ1

dt
= A1λ1 −A2e

−δt dλ2

dt
= −A3e

−δt. (24)

Solving the above linear differential equation we
get

λ1 =
A2

A1 + δ
e−δt, λ2 = −A3

δ
e−δt. (25)

Substituting the value of λ2 from (22) into (25),
we get

(p1 −
C

c1y∗
) =

A3

δ
. (26)

Now putting the value of x∗, y∗ and E∗ into (26),
we get an equation for τ1; let τ

∗

1 be a solution of
this equation. We get the optimal equilibrium so-
lutions x = x(τ∗1 ), y = y(τ∗1 ) and E = E(τ∗1 ) by
using the value of τ1 = τ∗1 . As a result, we have es-
tablished the existence of an optimal equilibrium
solution that satisfies the necessary conditions of
the maximum principle. From the above analysis
carried out in this section, we observe the follow-
ing.

From (21), we get

λ2c1y = (c1p1y − C)e−δt = e−δt δπ

δE
. (27)

Putting the value of λ2(t) into (27), we get

c1p1y −
A3

δ
c1y = C. (28)

When δ −→ ∞, (28) leads to the results c1p1y =
C, which implies that the economic rent is com-
pletely dissipated.
(ii) By (26) we get the optimal equilibrium pop-
ulations x = x(τ∗1 ), y = y(τ∗1 ), E = E(τ∗1 ), hence,
we have

π = (c1p1y − C)E =
A3

δ
c1yE. (29)

Thus π is a decreasing function of δ we, there-
fore, conclude that π leads to maximization when
δ leads to 0.

5. Numerical simulations

In this section, some numerical simulations are
performed with the help of used RK4 schemes to
discuss the dynamical behavior of system (5) and
to verify analytical results. To examine the dy-
namic of fishery system, we start with a set of
parametric values (Ref. [26])

r1 = 7, r2 = 1 K1 = 3, K2 = 20, α1 = 1.5,

β1 = 0.8, d1 = 0.01, d2 = 0.01, m = 0.8, c1 = 1.2,

p1 = 0.7, τ1 = 0.08, C = 0.49, a1 = 0.05, γ1 = 0.1.

(30)
Considering the parametric values, we find the co-
existence equilibrium point S∗ = (2.81, 0.83, 1.44)
which is locally asymptotically stable (cf. Figure
1a (black line)). Taking K2 = 200, the system (5)
exhibits oscillation around S∗ (cf. Figure 1a (red
line)). In case of K2 = 0.4, then Figure 1a (blue
line) shows the system switches to harvesting ef-
fort free equilibrium S4.

Further from Figure 1b (black line), it follows
tax per unit biomass of the predator, τ1 = 0.52,
the equilibrium S3 is locally asymptotically sta-
ble. Increasing the value of τ1 = 0.7, the sys-
tem switches to prey free equilibrium S2 in ab-
sence of harvesting effort (cf. Figure 1b (blue
line)). It is observe that the system switches to
stable to oscillatory behavior around S∗ due to
low value of r2 = 0.2 (cf. Figure 1c). But in
both case of r1 = 1 and K1 = 0.3 the system
switches to prey free equilibrium simultaneously
(cf. Figure 1d) . Figures 3a,3b and 3c illus-
trate the different steady state behaviour of each
species in the system (5) for the parameter τ1.
We note that Hopf point (red star (H)) situated
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Table 2. Natures of equilibrium points.

Parameters Values Eigenvalues Equilibrium points
τ1 0.436074 (4.23719,±0.900417i) Hopf (H)

0.557934 (0,−0.0901945± 0.92798i) Limit Point (LP)
p1 0.343926 (4.23719,±.900417i) Hopf (H)

0.222066 (0,−0.0901945± 0.92798i) Limit Point (LP)
2.279571 (0,−0.005825± 0.693768) Branch Point (BP)
4.942273 (0, 1.52281,−10.147, ) Branch Point (BP)

(τ1, r1) (0.046608, 2.014876) (0.8937,±0.934174i) Generalized Hopf (GH)
(p1, r1) (0.733392, 2.014876) (0.8937,±0.934174i) Generalized Hopf (GH)

(1.010732, 1.443315) (0.655091,±0.936168i) Generalized Hopf (GH)
(p1,K2) (1.590494, 0.669121) (1.64826,±0.688981i) Generalized Hopf (GH)
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Figure 1. (a) Phase plane diagram showing local stability of S∗ for K2 = 20 (black solid
line), oscillatory behavior around S∗ for K2 = 200 (red solid line) and local stability at S4 for
K2 = 0.4 (blue solid line). (b) The solution of trajectory approaches to two different equi-
librium points S3 and S2 for τ1 = 0.52 (black line) and 0.7 (blue line) respectively. (c) The
system switches to oscillatory behavior for r2 = 0.2. (d) Phase plane diagram indicating the
local stability of S3 for r1 = 1 (red solid line) and K1 = 0.3 (black line) respectively.

at 0.436074 with two complex parts of eigenval-
ues ≈ 0. We also observe that at that particu-
lar point, the value of first Lyapunov coefficient is
positive 0.01112548 which indicates unstable limit
cycle bifurcates from Hopf point. To proceed fur-
ther, we have a limit point (LP) at τ1 = 0.557934
with eigenvalues 0, 0.0901945 ± 0.92798i. From
Figures 3d, it is evident that at τ1 = .4360747 and
0.4578429 we have two Limit point cycle (LPC)
and Branch Point cycle (BPC).

Figures 4a, 4b and 4c depict different behavior of
each species when p1 is a free parameter. Here we
observe that a Hopf points (H), two Branch points

(BP) and one Limit point (LP). In this case, Hopf
point is situated at 0.343929 with first Lyapunov
coefficients a .01112584 indicating subcritical bi-
furcation. Further, it is observed that one LP
and two Branch points are located at 0.222066,
2.279571 and 4.942273 respectively. Starting from
Hopf point and proceed further, a family of un-
stable limit cycle is generated (cf. Figure 4d).

To demonstrate the clear picture of changes in
dynamical system when K2 and r2 be the free pa-
rameters, we plot two bifurcation diagrams (cf.
Figure 2a, 2b) respectively. Finally, we draw two
parameter bifurcation diagrams for τ1−r1, p1−r1
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Figure 2. (a) Bifurcation diagram for K2. (b) Bifurcation diagram for r2.
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Figure 3. (a) Different steady state behavior of prey for the effect of τ1. (b) Different steady
state behavior of predator for the effect of τ1. (c) Different steady state behavior of harvesting
effort for the effect of τ1. (d)The family of limit cycles bifurcating from the Hopf point H for
τ1.

and p1 − K2 (cf. Figure 5a, 5b and 5c). In
each cases, we have generalized Hopf (GH) point.
Actually, two branches of sub and supercritical
Andronov-Hopf bifurcations split at GH point.

6. Conclusion

We investigate the interspecies competition of
prey and predator in a fishery system in this work.
We assumed that predator undergo exploitation
due to consume of prey. This work has a dual
goal, namely economic and ecological. The eco-
nomic goal is to maximize monetary benefit to
society while also preventing the predator from

extinction. Here we implement a tax to regulate
the harvesting effort in order to preserve the eco-
logical balance.

As a result, one of the most important features
of this approach is the harvesting effort and net
economic revenue to the fisherman. The first step
is to perform analytical conditions for the exis-
tence and stability of various steady states. We
also look into the global stability of coexistence
equilibrium while the tax remains certain thresh-
old value. The outcome of global stability shows
that when a tax provides a sustainable threshold
value, predator are not from a body of water at
a rate greater than that the species can replenish
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Figure 4. (a) Different steady state behavior of prey population for the effect of p1. (b)
Different steady state behavior of predator population for the effect of p1. (c) Different steady
state behavior of harvesting effort for the effect of p1. (d)The family of limit cycles bifurcating
from the Hopf point H for p1.
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Figure 5. (a) The two parameters bifurcation diagram for τ1 − r1. (b) The two parameters
bifurcation diagram for p1 − r1. (c) The two parameters bifurcation diagram for p1 −K2.

its population naturally. We note the following observations by numerical simulation:
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Two different scenarios are shown when changing
the value of carrying capacity of predator. Here
we observe that each fish species are present in
the system in absence of harvesting efforts for low
values of carrying capacity of predator. On the
other hand, because to the high value of preda-
tors’ carrying capacity, all species become unsta-
ble. Due to high tax levels, coexistence equilib-
rium switches to different boundary equilibrium,
which is related to transcritical bifurcations. The
system becomes oscillate due to low values of in-
trinsic growth rate of predator. Our research also
shows that maintaining carrying capacity and im-
posing a tax on harvesting of predator are criti-
cal factors in keeping predator exploitation under
control. In addition, we impose a tax to study
the the optimal harvesting policy for harvesting
predator. When the monetary social benefit is
subject to maximisation, it is demonstrated by
utilising Pontryagin’s maximal principle. We es-
tablished the optimal equilibrium solution by us-
ing optimal tax τ1 = τ∗1 . It has been demon-
strated that zero discounting maximises economic
revenue and that an infinite discount rate causes
economic rent to dissipate completely. It should
be noted that in this paper, several crucial factors
are disregarded, including ecological fluctuations,
refuge, allee effect etc. Therefore, further study
is required to meet the demands in this area.
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