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1. Introduction

The scope of this article revolves around the un-
derneath system:

Dη
τ z(τ) = Az(τ) +Bu(τ) + g(τ, z(τ), u(τ)), (1)

τ ∈ (0, a], 0 < η ≤ 1

I1−η
τ z(τ)|τ=0 = z0 ∈ Z,

where Dη
τ indicates the Riemann-Liouville ηth or-

der derivative. A : D(A) ⊆ Z → Z generates
a C0 - semigroup T (τ)(τ ≥ 0) on Z. z(τ) and
u(τ) takes value in Banach spaces Z and U re-
spectively. The linear map B is defined from
Lq([0, a];U) to Lq([0, a];Z), q > 1

η . g is a function

from [0, a]× Z × U → Z.
The study of fractional calculus has long been ad-
mired from past three decades. The first work,
exclusively committed to the study of fractional
calculus, is the book by Oldham and Spanier [1],
1974. Fractional derivatives serves as an exem-
plary mechanism for the interpretation of hered-
itable properties and memory of profuse scientific,
physical and engineering phenomena. On account
of finer accuracy and precision over integer-order

models, fractional derivatives accelerates its ap-
plications in diffusion process, biological math-
ematical models, aerodynamics, viscoelasticity,
electrical engineering, signal and image process-
ing, control theory, heat equation, electricity me-
chanics, electrodynamics of complex medium, etc.
(see [2–10]).
In domain of fractional calculus, Riemann-
Liouville and Caputo type derivatives have main-
tained to be the centre of attention for numer-
ous analysts. Riemann-Liouville derivative shows
supremacy over Caputo in the sense that it allows
the function involved to bear discontinuity at ori-
gin. Also, in turn, doesn’t allow the use of tradi-
tional initial conditions, the initial conditions in-
volved in Riemann-Liouville case are integral ini-
tial conditions. Heymans and Podlubny [11] were
the ones accredited for the manifestation of phys-
ical significance to the initial conditions used in
regard of Riemann-Liouville fractional order vis-
coelastic systems.
Controllability is the qualitative property of steer-
ing any dynamical system from initial arbitrary
position to any desired final position utilizing
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appropriate control functions within stipulated
time. Control theory, being a multidisciplinary
branch stemmed from mathematics to engineer-
ing, has wide-ranging implementation in robot-
ics, aeronautical and automobile engineering, im-
age processing, biomathematical modelling and
appreciably more. Control theory, in spaces of in-
finite and finite dimensions, have thoroughly been
discussed in [12] and [13] respectively. The con-
ception of controllability was first initiated and
established by Kalman [14] in 1963, and since
then it is the matter of prime importance for
the researchers worldwide. In due course, pro-
fuse types of controllability were examined by the
researchers in the past. Approximate controlla-
bility of semilinear fractional systems involving
Caputo derivative was established by Sakthivel
in [9] by supposing C0− semigroup T (t) to be
compact and the nonlinear function involved to be
uniformly bounded and continuous, Devies in [15]
established exact and null controllability for lin-
ear systems, Mahmudov in [16] designed partial
approximate controllability for Caputo type frca-
tional order systems, Klamka in [17] mannered
constrained controllability. Wen & Zhou [18] dis-
cussed complete and approximate controllability
of semilinear system for Caputo derivative with
control in the nonlinear part. The results of ex-
istence and controllability for various differential
systems of integral and fractional order involving
Riemann-Liouville and Caputo derivatives have
closely been demonstrated in many artefacts (re-
fer [3, 6, 9, 17,19–31] and references therein). The
article [32] discusses about the numerical treat-
ment of fractional heat equation. S. N. Bora [33]
recently established the approximate controllabil-
ity for semilinear Hilfer fractional evolution equa-
tions by relaxing the compactness of the semi-
group generated. Vijayakumar, Nisar & Shukla
[34–40] established important results of control-
lability and approximate controllability of frac-
tional evolution systems involving other new frac-
tional derivatives like Atangana-Baleanu deriva-
tive and Hilfer derivative.
This artefact explores the study for Riemann-
Liouville differential systems involving control
function in the nonlinear part and is drafted as:
Section 2 gives the briefing for basic results and
definitions. Results for the existence of solutions
are apparent in Section 3. Section 4 accords
with the sufficient assumptions and controllabil-
ity conditions. Section 5 presents an application
validating the proposed methodology. Section 6
concludes the article by summarizing the present
findings along with discussing the futuristic scope.

2. Preliminaries

This segment revisits several fundamental con-
cepts and definitions which are beneficial for the
smooth study of the paper. The considered Ba-
nach space is

C1−η([0, a];Z) = {z : τ1−ηz(τ) ∈ C([0, a];Z)}
equipped with the norm

∥z∥C1−η = sup
τ∈[0,a]

{τ1−η∥z(τ)∥Z},

where C([0, a];Z) indicates the set of all contin-
uous functions defined from [0, a] to Z. For C0 -
semigroup T (τ), let M = sup

τ∈[0,a)
∥T (τ)∥ <∞.

Definition 1. [4] The Riemann-Liouville ηth–
order fractional integral is written in terms of the
following integral

Iητ z(τ) =
1

Γ (η)

∫ τ

0
(τ − r)η−1z(r)dr, η > 0,

where Γ denotes the gamma function.

Definition 2. [4] The fractional ηth–order
Riemann-Liouville derivative is defined by the fol-
lowing expression

Dη
τ z(τ) =

1

Γ (n− η)

(
d

dτ

)n ∫ τ

0
(τ−r)n−η−1z(r)dr,

where 0 ≤ n− 1 < η < n.

Definition 3. [4] A function of the complex vari-
able w defined by

Eη(w) =
∞∑
i=0

wi

Γ(ηi+ 1)

is known as the Mittag-Leffler function in one pa-
rameter.

Definition 4. [41] A mild solution of the system
(1) is a function z ∈ C1−η([0, a];Z) satisfying the
underneath integral equation:

z(τ) = τη−1Tη(τ)z0

+

∫ τ

0
(τ − r)η−1Tη(τ − r)Bu(r)dr

+

∫ τ

0
(τ − r)η−1Tη(τ − r)g(r, z(r), u(r))dr.

(2)

where

Tη(τ) = η

∫ ∞

0
Θξη(Θ)T (τηΘ)dΘ,

ξη(Θ) =
1

η
Θ

−1−
1

ηϖη(Θ
− 1

η ),

ϖη(Θ) =
1

π

∞∑
n=1

Θ−nη−1(−1)n−1Γ(1 + nη)

n!
sin(nπη)
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with Θ ∈ (0,∞) and domain of the probability
density function ξη(Θ) is (0,∞), i.e.,
ξη(Θ) ≥ 0 and

∫∞
0 ξη(Θ)dΘ = 1.

Definition 5. Let z(τ, u) be a mild solution of
the system(1) at time τ corresponding to a control
u(.) ∈ U . The set Ka(g) = {z(a, u) ∈ Z;u(.) ∈
U} is known as the reachable set for final time
a. If Ka(g) becomes dense in Z, the system (1) is
approximately controllable on [0,a].

Lemma 1. [31] The operator Tη(τ) possesses the
underneath properties:

(i) For every fixed τ ≥ 0, operator Tη(τ) is
linear and bounded, which means, for any
z ∈ Z,

∥Tη(τ)z∥ ≤ M

Γ(η)
∥z∥.

(ii) Operator Tη(τ)(τ ≥ 0) is strongly contin-
uous.

3. Existence of mild solution

This segment establishes the existence and
uniqueness of mild solution for the system (1) uti-
lizing the Banach fixed point approach along with
the generalised Gronwall’s inequality. The results
are based on the below mentioned hypotheses:

(H1) A function ψ(·) exists in Lq([0, a];R+),
q > 1

η , and a constant b > 0, such that

∥g(τ, z, u)∥ ≤ ψ(τ)+bτ1−η∥z∥Z+∥u∥U for
a.e. τ ∈ [0, a] and all z ∈ Z.

(H2) A constant k > 0 exists in a way satisfy-
ing
∥g(τ, z, u)−g(τ, y, v)∥ ≤ k

[
∥z−y∥Z+∥u−

v∥U
]

∀ z, y ∈ Z and ∀ u, v ∈ U.

Theorem 1. The nonlinear system (1) admits
a unique mild solution in C1−η([0, a];Z) for each
control u(.) ∈ Lq([0, a];U), provided the hypothe-
ses H(1)-H(2) hold true.

Proof. Consider the operator G as

(Gz)(τ) = τη−1Tη(τ)z0

+

∫ τ

0
(τ − r)η−1Tη(t− r)

[
Bu(r)

+f(r, z(r), u(r))
]
dr. (3)

It is unchallenging to confirm that G maps
C1−η([0, a];Z) into itself under the hypotheses
H(1)−H(2).

It is now required to prove Gm is a contraction
operator on C1−η([0, a];Z) for some m ∈ N.
For any z, y ∈ C1−η([0, a];Z) and τ ∈ [0, a], it is

τ1−η∥(Gz)(τ)− (Gy)(τ)∥C1−η

≤ τ1−η

∫ τ

0
(τ − r)η−1∥Tη(τ − r)

[
g(r, z(r), u(r))

− g(r, y(r), u(r))
]
∥dr

≤ τ1−ηM

Γ(η)

∫ τ

0
(τ − r)η−1∥g(r, z(r), u(r))

− g(r, y(r), u(r))∥Zdr

≤ τ1−ηMk
Γ(η)

∫ τ

0
(τ − r)η−1rη−1r1−η∥z(r)− y(r)∥Zdr

≤ τ1−ηMk
Γ(η)

∥z − y∥C1−η

∫ τ

0
rη−1(τ − r)η−1dr

≤ Γ(η)Mkτη

Γ(2η)
∥z − y∥C1−η .

(4)

Further, by applying induction on m and using
(3), (4), it leads to

τ1−η∥(Gmz)(τ)− (Gmy)(τ)∥

≤ Γ(η)(kMaη)m

Γ[(m+ 1)η]
∥z − y∥C1−η

Therefore, Gm is shown as a contraction operator
on C1−η([0, a];Z) with the inequality obtained as

∥Gmz−Gmy∥C1−η

≤ Γ(η)(kMaη)m

Γ(m+ 1)η
∥z − y∥C1−η (5)

where (kMaη)m

Γ(m+1)η becomes the mth term of the two

parameter Mittag-Leffler series Eη,η(Mkaη) =∑∞
i=0

(Mkaη)i

Γ(iη + η)
. The series converges uniformly

on [0, a], thus for sufficiently large m,

Γ(η)(kMaη)m

Γ(m+ 1)η
< 1.

It is evident through generalisation of Banach
fixed point theorem and (5) that G possess a
unique fixed point z(·) on C1−η([0, a];Z) which
serves as the requisite solution of system (1). □

4. Controllability results

Defining the underneath operators:
The Nemytskil operator

Ωg : C1−η([0, a];Z) → Lq([0, a];Z)

is defined as
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Ωg(z)(τ) = g(τ, z(τ), u(τ)),

z(·) ∈ C1−η([0, a];Z).

and the bounded linear operator

F : Lq([0, a];Z) → Z

as

Ff =

∫ a

0
(a− r)η−1Tη(a− r)f(r)dr,

f(·) ∈ Lq([0, a];Z).

The hypotheses mentioned below are made to
prove the approximate controllability for the con-
sidered system (1):

(H3) A constant k′
> 0 exists in a way satisfy-

ing
∥g(τ, z, u)− g(τ, y, v)∥ ≤ k′[

τ1−η∥z − y∥Z
+∥u− v∥U

]
∀ z, y ∈ Z, u, v ∈ U and

τ ∈ [0, a].

(H4) The operator B is bounded below, i.e.,
a constant ℓ > 0 exists satisfying
∥u∥ ≤ ℓ∥Bu∥ ∀u ∈ U .

(H5) For any ϵ > 0 and ϑ(·) ∈ Lq([0, a], Z),
∃ a u(·) ∈ Lq([0, a];U) satisfying
∥Fϑ− FBu∥Z < ϵ,
∥Bu(·)∥Lq([0,a];Z]) < ℵ∥ϑ(·)∥Lq([0,a];Z),
where ℵ is a constant independent of
ϑ(·) ∈ Lq([0, a];Z),

Mℵk′

Γ(η)

(aq − a

qη − 1

) q−1
q

× (1 + k
′
ℓ)Eη(Mk

′
a) + ℵk′

ℓ < 1.

(6)

Lemma 2. Assuming the hypotheses (H1), (H3)
and (H4) hold true for the considered function
g, then every mild solution of the control sys-
tem (1) meets the inequalities stated below for any
u, v ∈ Lq([0, a];U):

∥z(·; 0, z0, u)∥C1−η ≤ kEη(Mab),

∥z(·)− y(·)∥C1−η ≤ ϱEη(Mk
′
a)∥Bu−Bv∥Lq ,

where

k =
M

Γ(η)

[
∥z0∥+

( q − 1

qη − 1

) q−1
q

(∥Bu∥Lq

+ ∥ψ∥Lq + ∥u∥Lq)a
1− 1

q

]
,

ϱ =
M

Γ(η)

( q − 1

qη − 1

) q−1
q

(1 + k
′
ℓ)a

1− 1
q .

Proof. Let z be a mild solution of system (1)
in accord with control u(·) ∈ Lq([0, a];U) on
C1−η([0, a];Z), then

z(τ) =τη−1Tη(τ)z0+∫ τ

0
(τ − r)η−1Tη(τ − r)Bu(r)dr

+

∫ τ

0
(τ − r)η−1Tη(τ − r)g(r, z(r), u(r))dr

For τ ∈ [0, a],

τ1−η∥z(τ)∥ ≤ ∥Tη(τ)z0∥

+ τ1−η

∫ τ

0
(τ − r)η−1∥Tη(τ − r)Bu(r)∥dr

+ τ1−η

∫ τ

0
(τ − r)η−1∥Tη(τ − r)g(r, z(r), u(r))∥dr

≤ M

Γ(η)

[
∥z0∥+ τ1−η

∫ τ

0
(τ − r)η−1∥Bu(r)∥Zdr

+ τ1−η

∫ τ

0
(τ − r)η−1[ψ(r) + br1−η∥z(r)∥Z

+ ∥u(r)∥U ]dr

]

≤ M

Γ(η)

[
∥z0∥+

(aq − a

qη − 1

) q−1
q
(∥Bu∥Lq + ∥ψ∥Lq

+ ∥u∥Lq) + ba1−η

∫ τ

0
(τ − r)η−1r1−η∥z(r)∥Zdr

]
.

(7)

Thus,

τ1−η∥z(τ)∥ ≤ k+
Mba1−η

Γ(η)

×
∫ τ

0
(τ − r)η−1[r1−η∥z(r)∥]dr.

Using generalised Gronwall’s inequality ( [42]), it
concludes to

τ1−η∥z(τ)∥ ≤ kEη(Mab).

Therefore,

∥z∥C1−η = sup
τ∈[0,a]

τ1−η∥z(τ)∥Z ≤ kEη(Mab)

Now,
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τ1−η∥z(τ)− y(τ)∥

≤ τ1−η

∫ τ

0
(τ − r)η−1∥Tη(τ − r)[Bu(r)−Bv(r)]∥dr

+ τ1−η

∫ τ

0
(τ − r)η−1∥Tη(τ − r)[g(r, z(r), u(r))

− g(r, y(r), v(r))]∥dr

≤ M

Γ(η)

[
τ1−η

∫ τ

0
(τ − r)η−1∥Bu(r)−Bv(r)∥dr

+ τ1−η

∫ τ

0
(τ − r)η−1

(
k

′
[r1−η∥z(r)− y(r)∥Z

+ ∥u(r)− v(r)∥U ]
)
dr

]

≤ M

Γ(η)

[(
q − 1

qη − 1

) q−1
q

(1 + k
′
ℓ)∥Bu(r)−Bv(r)∥a1−

1
q

+ k
′
a1−η

∫ τ

0
(τ − r)η−1r1−η∥z(r)− y(r)∥dr

]
.

(8)

Thus,

t1−η∥z(τ)− y(τ)∥Z
≤ ϱ∥Bu(r)−Bv(r)∥Z

+
Mk′

a1−η

Γ(η)

∫ τ

0
(τ − r)η−1r1−η∥z(r)− y(r)∥dr.

Again, using generalised Gronwall’s identity [42],
we have

τ1−η∥z(τ)− y(τ)∥Z ≤ ϱEη(Mk
′
a)∥Bu−Bv∥Lq

Hence,

∥z − y∥C1−η ≤ ϱEη(Mk
′
a)∥Bu−Bv∥Lq

This accomplishes the proof. □

Theorem 2. The nonlinear control system (1)
becomes approximately controllable, provided the
hypotheses (H1) and (H3) − (H5) hold true and
A generates the differentiable semigroup T (t).

Proof. It is well known that domain of A, D(A)
is dense in Z. Thus, to manifest approximate
controllability of nonlinear control system (1), it

is adequate to claim that D(A) ⊂ Ka(g), i.e.,
for any given ϵ > 0 and λ ∈ D(A), a control
uϵ ∈ Lq([0, a];U) can be found satisfying

∥λ∗ − F(Buϵ)− F(Ωg(zϵ))∥Z ≤ ϵ,

where zϵ(t) is a mild solution of system(1) in ac-
cord with the control uϵ(t) and

λ− aη−1Tη(a)z0 = λ∗ ∈ D(A)

Let ϵ > 0 be given and u1 ∈ Lq([0, a];U). Then
by hypothesis (H5), there exists u2 ∈ Lq([0, a];U)
satisfying

∥λ∗ − F(Ωg(z1))− F(Bu2)∥Z ≤ ϵ

22

where z1(τ) = z(τ, u1). Denote z2(τ) = z(τ, u2),
again by hypothesis (H5), ∃ ω2 ∈ Lq([0, a];U) sat-
isfying

∥F[Ωg(z2)− Ωg(z1)]− F(Bω2)∥Z ≤ ϵ

23

and

∥Bω2∥Lp

≤ ℵ∥Ωg(z2)− Ωg(z1)∥Lp

≤ ℵk′[
τ1−η∥z2 − z1∥+ ∥u2 − u1∥

]
≤ ℵk′

[
ϱEη(Mk

′
a)∥Bu2 −Bu1∥+ ℓ∥Bu2 −Bu1∥

]
≤

[
Mℵk′

Γ(η)

(
q − 1

qη − 1

)1− 1
q

(1 + k
′
ℓ)a

1− 1
qEη(Mk

′
a)

+ ℵk′
ℓ

]
∥Bu2 −Bu1∥Lq .

Now, define

u3(τ) = u2(τ)− ω2(τ), u3(τ) ∈ U,

then

∥λ∗ − FΩg(z2)− FBu3∥Z
≤ ∥λ∗ − FΩg(z1)− FBu2∥Z
+ ∥FBω2 − [FΩg(z2)− FΩg(z1)]∥Z

≤
(

1

22
+

1

23

)
ϵ

By applying inductions, a sequence {un} in
Lq([0, a];U) is obtained such that

∥λ∗ − FΩg(zn)− FBun+1∥Z

<

(
1

22
+

1

23
+ .........+

1

2n+1

)
ϵ,

where zn(τ) = z(τ, un(τ)) and

∥Bun+1 −Bun∥Lq

<

[
Mℵk′

Γ(η)

(
aq − a

qη − 1

)1− 1
q

(1 + k
′
ℓ)Eη(Mk

′
a)

+ ℵk′
ℓ

]
∥Bun −Bun−1∥Lq

By (6), it is evident that the sequence {Bun}n∈N
is a cauchy sequence in Lq([0, a];Z). Thus, for
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any ϵ > 0, a positive integer n0 can be found sat-
isfying

∥FBun0+1 − FBun0∥Z <
ϵ

2
.

Now,

∥λ∗ − FΩg(zn0)− FBun0∥Z
≤ ∥λ∗ − FΩg(zn0)− FBun0+1∥Z
+ ∥FBun0+1 − FBun0∥Z

≤

(
1

22
+

1

23
+ .......+

1

2n0+1

)
ϵ+

ϵ

2
< ϵ.

Hence, the approximate controllability of (1) is
proved. □

5. Example

Examine the below mentioned initial value prob-
lem for τ ∈ (0, 1] and x ∈ [0, π]:

D
2
3
τ z(τ, x) =

∂2

∂x2
z(τ, x) + u(τ)

+ g(τ, z(τ, x), u(τ)), (9)

z(τ, 0) = z(τ, π) = 0,

I
1
3

0+
z(τ, x)|τ=0 = z0(x),

Take Z = U = L2([0, π]) and A : D(A) ⊂ Z → Z
as

Az = z′′

where

D(A) =

{
z ∈ Z | z, ∂z

∂x
are absolutely continuous,

∂2z

∂x2
∈ Z and z(0) = 0 = z(π)

}
Then, A can be expressed as

Az =
∞∑

m=1

(−m2)⟨z, αm⟩αm, z ∈ D(A)

where αm(x) =
√

2
πsin mx (m ∈ N) are the eigen

functions corresponding to the eigen values −m2

respectively and {α1, α2, ......} is a basis of Z.
A differentiable semigroup T (τ)(τ > 0) in Z hav-
ing A as its infinitesimal genaerator is expressed
as

T (τ)z =

∞∑
m=1

exp−m2τ ⟨z, αm⟩αm, z ∈ Z

and ∥T (τ)∥ ≤ e−1 < 1 =M.

Let us choose the nonlinear function g as

g(τ, z(τ, x), u(τ)) = 1 + τ2 + βτγ

× [z(τ, x) + sin z(τ, x) + u(τ)],

where β and γ are constants with −1 ≤ β ≤ 1
and γ ≥ 1− η. Now,

∥g(τ, z(τ, x), u(τ))∥
≤ 1 + τ2 + |β|τγ

[∥∥[z(τ, x) + sin z(τ, x)]
∥∥+ ∥u(τ)∥

]
≤ 1 + τ2 + |β|τγ+η−1τ1−η

[
2∥z(τ, x)∥+ ∥u(τ)∥

]
≤ (1 + τ2) + 2|β|τ1−η∥z(τ, x)∥+ ∥u(τ)∥

and
∥g(τ, z(τ, x), u(τ))− g(τ, y(τ, x), v(τ))∥

≤ |β|τγ
[
∥z(τ, x)− y(τ, x) + sin z(τ, x)− sin y(τ, x)∥

+ ∥u(τ)− v(τ)∥
]

≤ |β|τγ+η−1τ1−η

[
∥z(τ, x)− y(τ, x)∥

+
∥∥∥2 cos(z(τ, x) + y(τ, x)

2

)
sin

(
z(τ, x)− y(τ, x)

2

)∥∥∥
+ ∥u(τ)− v(τ)∥

]
≤ |β|τ1−η

[
2∥z(τ, x)− y(τ, x)∥+ ∥u(τ)− v(τ)∥

]
≤ 2|β|

[
∥z(τ, x)− y(τ, x)∥+ ∥u(τ)− v(τ)∥

]
Here, the assumptions (H1) and (H2) are evi-
dently satisfied with ψ(τ) = 1 + τ2 and b = k =
2|β|. Moreover, assumption (H5) is satisfied by
choosing β sufficiently close to zero.
The abstract form of the system (1) is expressed
as:

D
2
3
τ z̃(τ) = Az̃(τ) +Bũ(τ) + g(τ, z̃(τ), ũ(τ)), τ ∈ (0, 1],

I
1
3
τ z̃(τ)|τ=0 = z̃0,

where z̃(τ) = z(τ, ·), ũ(τ) = u(τ, ·) and z̃0 = z0(·).
Approximate controllability of (1) accomplishes
from Theorem 2 as it is seen assumptions H(1)-
H(5) are satisfied.

6. Conclusion

In this paper, thorough analysis for existence
and uniqueness, and approximate controllability
of the fractional nonlinear differential system has
been performed in Banach spaces. The existence
and uniqueness results were established using con-
cepts of fractional calculus, definition [41], gen-
eralised Gronwall’s inequality, semigroup theory
and Banach’s fixed point theorem. The sufficient
condition for approximate controllability was de-
rived with the aid of Lemma 2 and iterative tech-
nique. The present findings of the paper can be
extended to stochastic fractional differential equa-
tions with or without delay in state or in the con-
trol term present in the nonlinear function of the
system. For some idea, see [34,38,39].
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