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 Wireless capsule endoscopy (WCE) is used for imaging and diagnosing diseases 

in the gastrointestinal (GI) system. The location of the disease detected by WCE 

is still an important problem. Location information is very important for the 

surgical or drug treatment of the detected disease. In this study, RSS-based 

centroid algorithm has been used in order to accurately predict the capsule position 

on a sample data set. The effect of different parameters such as number of sensors 

used on the proposed mathematical model, location of sensors on positioning is 

analyzed in detail. The results show that a precise position detection is possible 

with fewer sensors positioned correctly. As a result, the positioning error with the 

correctly selected sensors is reduced by approximately 55%. In addition, the 

performance of the proposed method was compared with the classical centroid 

algorithm and more than 50% improvement was achieved. 
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1. Introduction 

Wireless capsule endoscopy (WCE) is fast becoming 

an important technique in modern medical imaging, 

allowing parts of the human body (such as the small 

intestine) that could not be effectively imaged using 

conventional techniques [1]. WCE allows the diagnosis 

of illnesses such as colorectal cancer, celiac disease, 

Crohn’s disease, the sites of intestinal bleeding and 

other types of pathologies in the gastrointestinal (GI) 

tract [2, 3]. A very attractive characteristic of WCE is 

that, unlike conventional endoscopy techniques, it 

causes little to no discomfort for the patient; the patient 

simply has to swallow a pill-shaped camera (i.e. the 

endoscopy capsule), which contains all the electronics 

for imaging and transmission of the image data to an 

on-body recording unit (see Figure 1 for the general 

system structure). The pill-shaped camera naturally 

moves through the GI tract and is naturally excreted out 

of the body.  The images captured by the capsule are 

sent via an on-board radio transmitter to on-body 

receiving antennas and from there to a recording 

system. The images can then be reviewed offline by a 

medical specialist. Although the current generation of 

WCE systems use the medical implant communications 

system (MICS) band, there are proposals calling for the 

use of Ultra Wide Band (UWB) technology as well [4].  

The primary advantage of UWB is the low power 

consumption due to simple transceiver structures 

required [5, 6]. In another type of WCE, camera is 

replaced with sensors such as temperature, pressure, 

Potential of Hydrogen or light spectrum analyser 

sensors [7, 8]. WCE could locate the abnormalities in 

GI system. Image processing algorithms detect diseases 

and notify the doctors [9]. Also, some works have 

focused on other external localization techniques based 

on magnetic field [10, 11]. 

Current WCE systems have a significant problem in the 

sense that there is no way to localize the capsule as it 

moves through the GI tract [12]. This means that if any 

of the images reveal a potentially abnormal condition 

(such as a tumor or a lesion) there is no way to know 

just where in the GI tract the condition exists, making 

subsequent surgical interventions very difficult and 

more risky for the patient [13]. Thus, it is critical to 

come up with techniques to accurately localize the 

endoscopy capsule as it moves through the GI tract. 

Localization of a source emitting a radio frequency 

(RF) signal on the basis of received signal 

characteristics is a well-investigated topic that has 

received much attention in the literature [14, 15]. One 

example of received signal characteristics that can be 

used for localization purposes is the received signal  

http://www.ams.org/msc/msc2010.html
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Figure 1. General system structure 

 

strength (RSS). The usage of the RSS for localization 

purposes is attractive, as RSS is a very simple 

parameter to measure. This is why RSS has been 

preferred for challenging applications such as indoor 

localization [16]. For the in-body localization of an 

endoscopy capsule, however, RSS-based localization 

can be challenging. The in-body environment is highly 

non-homogeneous, consisting of different types of 

tissue, whose electrical conductivity and permittivity 

are frequency-dependent. For example, tissues such as 

skin, muscle, kidney, liver may have higher dielectric 

constant and conductivity (since these tissues contain a 

high amount of water), while dielectric constant and 

conductivity in tissues such as fat and bone with less 

water content may be lower. It is important to note that 

these parameters are also dependent on frequency [17]. 

This non-homogeneous environment can seriously 

distort UWB signals as documented by several prior 

studies in this area [18, 19, 20]. One way to combat 

these detrimental effects and obtain consistent accuracy 

in localization is to use more sensors (more receiving 

antennas) distributed over the body surface. This can 

provide performance gains, in a similar fashion to the 

diversity concept commonly used in other types of 

wireless communication systems [21, 22]. 

To explain this concept more clearly, consider the 

scenario of Figure 1, where the patient swallows the 

capsule and the signal emitted by the capsule is sensed 

by N antennas distributed over the body surface. 

Because of the inhomogeneity in the body 

environment, not all of these N antennas will be able to 

provide RSS measurements at the same quality; some 

will be of higher quality than others. The basic idea is 

to combine the measurements in such a way that higher-

quality measurements have more impact on the final 

location estimate, while the lower-quality 

measurements are de-emphasized or excluded from the 

final location estimate altogether. There are two key 

questions that need to be answered in this context. First, 

considering the inhomogeneous nature of the in-body 

environment, which and how many of these N sensors 

should be used? Second, how should the measurements 

be combined to give an accurate location estimate? In 

this paper, we address these questions. To address the 

first question, we present a systematic analysis of 

which sensors have the greatest contribution to a high-

accuracy location estimate. To the best of our 

knowledge, this paper represents the first time in open 

literature that such a systematic analysis has been 

undertaken. For the second question, we propose a 

nonlinear analytical model for the RSS measurements, 

which can be used to estimate the location of the 

capsule. An analysis of the localization accuracy for the 

proposed model is also given, on the basis of a 

computerized 3-D body model. In this study, centroid 

algorithm was used to calculate the location of the 

capsule from the RSS measurement data on the human 

body model. Although the centroid algorithm was used 

mostly for indoor and WSN positioning operations [23, 

24], we used this algorithm for in-body localization. 

The rest of this paper is organized as follows. Section 2 

gives details of the simulation environment which is 

used for performance evaluation and details the 

proposed nonlinear RSS model. Results are presented 

in Section 3. Section 4 concludes the paper. 

2. Methods and procedures 

2.1. The simulation environment 

In order to evaluate positioning performance within the 

body, a 3-D voxel model of the human body is required 

first. For this purpose, 3-D human model obtained from 

Visible Human Project is used [25]. The 3-D human 

body model adopted for this study came integrated into 

the analysis software. This model contains the location 

of all tissues in the human body as well as all 

electromagnetic properties of all tissues such as 

dielectric permittivity and conductivity. Since this 

study focused on the small intestine region, the organs 

such as the head, arm and leg were not included in the 

model in order to reduce simulation time. Figure 2 

shows the 3-D voxel model of the whole body and the 

truncated body model to reduce the simulation time, 

respectively. To analyze the behavior of the 

electromagnetic signals in the voxel model, XFDTDTM 

software from Remcom Inc. was used. This software 

uses Finite Difference Time Domain (FDTD) 

techniques to numerically solve Maxwell equations and 

obtain the electric and magnetic field intensities in the 

working area by considering material properties and 

boundary conditions. 

 

Figure 2. The whole-body model and the truncated body 

model used at simulations 
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In order to solve Maxwell's equations numerically, the 

body model is divided into small parts, or cells. The 

size of these cells, or cell size, must be calculated based 

on the smallest wavelength value of the signal. 

This constraint, called the Courant limit, is "10 cells per 

wavelength", meaning that the side of each cell should 

be 10  or less at the highest frequency (shortest 

wavelength) of interest [18, 26]. In accordance with the 

Courant limit, the FDTD cell size used in the simulation 

was set to 1.2 mm in the x, y and z directions. The 

Perfectly Matched Layer (PML) boundary condition 

with 7 absorbing layers was also applied to prevent the 

reflection of the signals to the body environment. After 

defining the body model, the elliptic dipole type UWB 

antenna was placed in the simulation model. This 

antenna, which measures 20x12x4 mm, consists of two 

elliptical conductors and a dielectric case that isolates 

it from the body tissues [27]. A modulated gaussian 

pulse with center frequency of 4.1 GHz and -10 dB 

band width of 1.4 GHz was applied to the gap between 

two ellipses of the antenna. Also, the antenna input 

impedance was set to 50 ohm and the input power was 

fixed at 1mW. This applied signal satisfies to the 

frequency between 3.1 GHz and 4.8 GHz that known as 

"UWB Low Band" [28]. This band is in a range where 

signal attenuation is less when compared to the entire 

UWB band. 

In the simulations, the antenna was placed in 64 

different positions in the small intestine characterize 

the electric and magnetic field intensities within this 

region, as shown in Figure 3. The data for 48 of these 

64 antenna position was used to optimize the parameter 

set for the localization algorithm and the remaining 16 

positions were used to test the performance of the 

algorithm. In Figure 3, red and green antenna positions 

indicate the training and testing localizations, 

respectively. 

   
Figure 3. Small intestine in the model, test and train 

positions of the antenna 

 

In order to determine the position of the wireless 

capsule within the small intestine, 256 point sensors are 

defined in the software on the body surface to observe 

the electric and magnetic field intensition. In 

telecommunications, particularly in radio, signal 

strength refers to the magnitude of the electric field at a 

reference point that is at a significant distance from the 

transmitting antenna. This structure, defined as a point 

sensor in the program, represents small-size sensors 

that measure the amplitude and strength of 

electromagnetic signals in the time domain. As shown 

in Figure 4, each point sensor is on the body surface and 

sensors are arranged in 8 rows. The sensors were 

distributed around the body with 48 sensors on the front 

side, 80 on the back, 48 on the right side and 48 on the 

left. 

  
Figure 4. Sensor placement on the body model 

 

Sensors placed on the body were used to calculate the 

Poynting vector. The Poynting vector, which is the 

vector cross product of the electric field and magnetic 

field intensity, is defined as, 

( ) ( ) ( )t t t= P E H                     (1) 

where ( )tE  and ( )tH  are the electric and magnetic 

intensities respectively and both are time dependent. 

The Poynting vector measured from each sensor gives 

the power density per unit area (W/m2). 256 Poynting 

vectors were calculated in each of the 64 different 

transmitting antenna positions in the small intestine 

which resulted 64 x 256=16.384 data sets. The integral 

of the Poynting vector results in signal energy density 

(J/m2)  given as, 

( )
t

e t dt=  P                        (2) 

The energy density values obtained from the sensors 

were used to determine the position of the wireless 

capsule in the small intestine. Thus, the antenna 

position estimation was performed using a RSS-based 

mathematical model determined in the next section. 

2.2. RSS-based in body localization using the 

centroid algorithm 

In RSS-based positioning, energy values measured by 

the sensors placed on the body and the location of the 

sensors are used to obtain the localization of the 

capsule. The centroid algorithm used in positioning 

calculation has some similarities to the calculation of 

the center of the gravity for an object [29]. In this 

model, the energy intensity value measured by all 

sensors is associated with their location and the energy 

intensity center is calculated. Later, the position of this 

X
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center point is determined as the position of the 

transmitter capsule antenna. In order to derive the RSS 

based mathematical model, the following template was 

proposed. 
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where ( )ˆ ˆ ˆ, ,k k kX Y Z  are the estimated coordinates of k-

th transmitting antenna in the small intestine, 

( ), ,
i i iS S SX Y Z  are the coordinates of i-th sensor on the 

body, 
iE  is energy density which computed at Eq. (2) 

for i-th sensor. Also , ,x y z
 =      is defined as 

exponent that gives nonlinearity for all coordinates and 

N is the total number of sensors with the highest energy 

used at model. With this model, the position of the 

antennas in the intestine were estimated by the known 

positions of the sensors and the energy density values 

obtained from these sensors.  

The energy density values obtained from the point 

sensors were arranged in order of magnitude for 

effective localization for each transmit antenna 

position. Then N sensors with the highest energy 

density values were selected from the sorted data set. 

Thus, in the estimation of the antenna position, the 

effect of sensors with higher energy density values 

were higher, while those with lower energy density 

were ignored. In addition, the vector of exponents  , 

which model the nonlinear effects of the human body 

environment on energy density [19], increases the 

sensitivity of the RSS-based model. There are different 

types of tissues in the body and the behavior of each 

one is frequency dependent. This makes the human 

body extremely nonlinear from the perspective of 

electromagnetic wave propagation [19]. For this 

reason, nonlinearity parameter was added to the 

proposed model and the results were examined. In the 

next section, the effect of   on positioning accuracy is 

examined in more detail. The performance of the 

localization model was evaluated together with range 

estimation errors. The localization error can be 

calculated using the following equation: 

( ) ( ) ( )
2 2 2

ˆ ˆ ˆ
k k k k k k kX X Y Y Z Z= − + − + −   (4) 

where ( ), ,k k kX Y Z  is the real antenna location and k  

is the localization error of k-th antenna location. 

3. Results 

The results obtained in this article are examined under 

three main headings. For the best performance, the 

results for the number of sensors, sensor topology and 

  parameters are examined. Firstly, how many of the 

256 point sensors placed on the body will be used in the 

positioning calculation is determined. Then, effect of 

the sensors distributed around the body on the 

positioning accuracy is examined according to the body 

region where the sensor is located. Finally, the effect of 

parameter  , described in the previous section, on 

positioning accuracy was examined. These 3 topics are 

discussed in detail in this section. 

3.1. Effect of the number of sensors 

As mentioned in the previous sections, energy values 

were obtained from 256 point sensors placed on the 

body surface. At this point, how many of these sensors 

should be included in the algorithm? In order to find the 

answer to this question, firstly, the effect of N used in 

the Eq. (3) on the localization error were investigated. 

While examining the effect of the number of sensors, 

  was kept constant [1,1,1]. Considering   to be 

constant is only for the purposes of investigating the 

effect of the number of sensors (N) on localization. The 

relationship between the number of sensor (N) and 

localization error is presented in Figure 5. Here, the 

effect of using a variable number of sensors for 64 

different capsule positions is examined and the RMS 

value of 64 capsule localization errors for each N value 

is calculated by Eq. (4). 

 

Figure 5. The relationship between number of point sensors 

(N) and localization error 

 

From Figure 5, it is clearly seen that using a large 

number of sensors (N) does not affect the positioning 

error after a certain point. There is a 2.6% difference 

between using 20 sensors and 256 sensors in the model. 

Therefore, N=20 was selected in the following sections 

to reduce the complexity of the model. On the other 

hand, another important issue is that the X, Y and Z 

errors are different in the antenna position estimation. 

The next question is: what is the reason for these high 

localization errors? To answer this question coordinate 

estimation errors are calculated separately and plotted 

in Figure 6. 
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Figure 6. The relationship between number of point sensors 

(N) and coordinate estimation errors 

 

As seen in Figure 6, the highest contribution to the 

localization error is from the Y coordinate estimate. 

When N parameter set to 20, the total localization error 

is 79.77 mm while the X, Y and Z antenna position 

estimation errors are 34.62 mm, 69.85 mm and 16.89 

mm respectively. To improve these results, we have 

noticed that it is not sufficient to just change the number 

of sensors, and therefore different processes will be 

performed for estimating each coordinate of the capsule 

in the following sections. 

3.2. Effect of the selected sensor region 

As the localization error was very high in the previous 

section, we tried to reduce this error with new 

approaches. In order to determine the location of the 

capsule in the intestine, the region of the sensors were 

also taken into account. In other words, the effect of 

sensors located in different parts of the body on 

positioning performance has been examined. 4 

different regions were examined for 256 sensors 

distributed around the body. As mentioned in Section 

2.1, sensors were distributed around the body with 80 

sensors on the front side, 80 on the back, 48 on the right 

side and 48 on the left as shown in Figure 7. 

In this scenario, the objective is to select 20 sensors to 

be used in positioning calculation only from the 

specified body regions, not from all sensors around the 

body. The sensors to be included in the positioning 

calculation in the relevant regions are selected 

according to the energy density values. Thus, 20 

sensors reporting the highest energy density values are 

included in the calculation each time. As a result, 

location estimation is made for 64 different capsule 

locations and the RMS localization errors obtained are 

shown in Table 1.  

Figure 7. The final localization flow diagram 

 

The results of Table 1 indicate that the body region on 

which the sensors are placed has a great influence on 

the positioning error. The bold marked values in the 

table represent the lowest errors obtained in the relevant 

coordinate. When the 80 sensors in front of the body 

are used, the X position error is 15.45 mm and the Z 

position error is 16.24 mm, which means a 55.4% and 

3.8% improvement respectively compared to results 

presented in Figure 6. Also in case of the 48 sensors on 

the left side of the body being used, the Y position error 

is 28.14 mm and this provides a 59.7% improvement. 

According to the coordinate system given in Figure 4, 

the Y coordinate gives the depth information towards 

the inside of the body and the positioning error is higher 

compared to the X and Z coordinates. This is because 

the body is not homogeneous, and the sensor spacing 

and number are not the same in the lateral and anterior 

planes. On the other hand, it is seen that the Right-side 

sensors have a negative effect on the calculation of the 

X position and the Back sensors on the Y, Z positions. 

As a result, some sensors provide the better results for 

some coordinates, while they may have a negative 

impact on the other coordinates. Therefore, using all 

sensors together doesn't make any sense for localization 

estimate. The data taken from the sensors which are 

based on the RSS-based measurement were subjected 

to a flow diagram as in Figure 7. 

The main takeaways from these results so far are as 

follows. First, it does not make sense to just use all the 

sensors distributed on the body surface, as they do not 

all provide measurements at the same quality. 

Table 1. Effect of the selected sensor region on the positioning error 

Sensor Location 
RMS Coordinate Estimation Error RMS Localization 

Error (mm) X (mm) Y (mm) Z (mm) 

Front 15,45 85,75 16,24 88,63 

Left Side 126,90 28,14 49,17 138,98 

Back 39,50 190,87 78,37 210,08 

Right Side 187,02 35,34 59,63 199,45 

Front + Left Side 35,34 72,71 16,30 82,47 

Front + Right Side 19,24 83,47 16,77 87,29 

Front + Back 16,19 79,87 16,93 83,24 

Left Side + Right Side 85,31 28,97 36,66 97,27 

All 34,62 69,85 16,89 79,77 
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The use of a more limited subset (selected in 

accordance with the flow diagram of Figure 7 will 

result in more accurate estimates of the capsule 

location. Furthermore, it is possible to accomplish this 

accuracy improvement at a lower overall system cost, 

as less on-body sensors will now need to be used. 

Having said that, it is possible to improve the accuracy 

even further by making adjustments on how the energy 

readings from the various sensors are incorporated into 

the final location estimate, as will become clear from 

the results of the next section. 

3.3. The effect of the   parameter 

All the data so far has been obtained for 

1x y z= = =   . As previously mentioned,   

provides a nonlinear characteristic for the mathematical 

model. Setting the   parameter to 0 means ignoring 

the effect of the energy density at the mathematical 

model. Similarly, making the   parameter 1 means 

that the energy density will provide a linear effect, 

making it >1 shows energy density more effective and 

making it <1 energy density less effective. 

Some of the antenna locations to examine the effect of 

this parameter on the positioning error have been 

reserved to test the performance of algorithm. As a 

result, antenna locations have been decomposed for 16 

and 48 antennas, as previously described in Section 2.1. 

Thus, the 16 antenna positions have been used to test 

the performance of the algorithm and remaining were 

used to derive the   parameters. For each alpha value, 

RMS value of error data obtained in 16 different 

capsule test positions was calculated. The test positions 

of the capsule were previously shown in Figure 3 (green 

positions). Figure 8 shows the effect of the parameter 

  on the individual positioning error for X, Y and Z. 

 
Figure 8. Alpha ( ) parameter effect on the coordinate 

estimation errors for test points 

 

At the Figure 8, it was tried to optimize the value of   

between -5 and 5 for the test antenna locations and 

optimum results were obtained as 0.42x = , 

1.20y = , 0.64z =  values. In addition, when the 

graph was examined in a wider range between -100 and 

100, it was seen that the error remained constant at very 

low or very large values of  . 

In order to achieve the final improvement rate, these   

values were used at the test locations as shown in Table 

2. As a result, the RMS localization errors obtained for 

the number of N=20 sensors (explained in Section 3.1), 

the sensors selected from the body regions shown in 

Figure 7 (explained in Section 3.2) and the calculated 

optimum   values are given in Table 2. 

Table 2. Effect of the ideal   parameters on the positioning 

error (
1 [1,1,1]=  and 

2 [0.42, 1.2, 0.64]= ) 

Data Type 
RMS(mm) % 

Improvement 1  
2  

Train Antenna Loc 35,21 33,15 5,85 

Test Antenna Loc. 38,19 36,88 3,43 

All Antenna Loc. 35,98 34,12  5,17 

 

From the Table 2, we can obviously find that the 

inclusion of 3 different alpha parameters in the 

mathematical model, improvement of 5.85% and 

3.43% was obtained for the training and testing antenna 

locations, respectively. Consequently, maximum 

RMSE localization error of 36,88 mm has been 

achieved. 

For a different perspective on these results, we can infer 

from Table 1 in Section 3.2 that, the localization error 

using all sensors is the 79.77mm. On the other hand, in 

the case of using Left-side sensors for Y data and Front 

sensors for X and Z data, the localization error falls to 

35.98 mm for all antenna locations. Here, it is clear that 

a 54.9% improvement in position error of wireless 

capsule was achieved. Thus, it can be said that the total 

improvement is 57.2% by including the results obtained 

in Section 2.2 into the mathematical model. 

3.4. Comparison of the proposed algorithm with 

the classical centroid algorithm 

Although the centroid algorithm is frequently used in 

indoor positioning and WSN (Wireless Sensor 

Network) scenarios, it is not widely used in in-body 

localization. It may be instructive to compare the results 

to other UWB-based localization of the endoscopic 

capsule in the small intestine operating for the in-body 

context. Unfortunately, in the course of our literature 

search, we were unable to find any other works except 

[30] dealing with UWB-based in-body localization 

throuh centroid algorithm that would allow a direct 

comparison. In the [30], the path loss model was used 

together with the centroid algorithm for positioning, but 

the effects of body tissues and sensor topology on 

positioning were not studied. In this respect, our study 

fills the gap in the literature in terms of both using a 

realistic human model and providing capsule 

positioning using the RSS data directly in the centroid 

algorithm. For these reasons, we compared the 

proposed centroid algorithm with the classical centroid 

algorithm used in indoor positioning and examined its 

performance. 

The classical centroid algorithm used in [31, 32] studies  
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Figure 9. Localization errors of classical and proposed algorithms 

 

is given as in Eq. 5. 

1 1 1

ˆ ˆ ˆ, ,i i i

N N N
S S S

k k k

i i i

X Y Z
X Y Z

N N N= = =

= = =          (5) 

where N is sensor number, ( )ˆ ˆ ˆ, ,k k kX Y Z  are the 

estimated coordinates of k-th transmitting antenna, 

( ), ,
i i iS S SX Y Z  are the coordinates of i-th sensor. This 

equation basically calculates the average of the 

positions of N sensors with the best energy value. While 

comparing the performance with the classical centroid 

algorithm, the energy density values of 256 sensors 

around the body were measured for each capsule 

position, and the positions of the 20 sensors with the 

strongest energy density were used. As a result, the 

RMS positioning errors of the proposed centroid 

algorithm and the classical centroid algorithm for 64 

capsule positions are shown in Figure 9. As can be seen 

in the Figure 9, errors are higher in the classical 

centroid algorithm. In terms of RMS values of X, Y, 

and Z localization error, the error values of the 

proposed  centroid algorithm are 59.5%, 58.8% and 

3.9% less than classic centroid algorithm, respectively. 

In another comparison, the cumulative probability 

function of the distance estimation errors was obtained 

as in Figure 10.   

 

Figure 10. Comparative CDF values of localization errors 

 

When Figure 10 is examined, the distance estimation 

error of the classical centroid algorithm is much higher, 

for example, the distance estimation error with 80% 

probability is below 44mm for the proposed centroid 

algorithm, while the error in the classical algorithm is 

below 104mm under the same conditions. 

We end this section with comments as to how the 

techniques outlined in this paper can be applied in 

practice. If this technique is used in real life, it is 

possible to localize the capsule that moves within the 

intestine with a low error with the sensor set physically 

placed on the body and the simple centroid algorithm. 

The proposed Centroid algorithm implementation is 

simple, has low computational load and provides 

positioning with only energy density measurements. 

The disadvantage of this algorithm is that if the sensor 

positions are measured incorrectly, the positioning 

performance will be greatly reduced. 

4. Conclusion 

In this paper, we have presented a detailed study on a 

new RSS-based mathematical model applicable for 

UWB-based wireless capsule localization in the small 

intestine. Relationships for the mathematical model 

parameters, namely the N sensor number, the exponent  

  and the energy density have been presented. We 

have used the proposed mathematical model to 

determine the optimal location and number of the 

received signal sensors to improve localization 

accuracy. The results indicate that usage of a large 

number of sensors distributed all over  the body surface 

has no beneficial impact  on positioning accuracy, as all 

the sensors will not provide measurements at the same 

quality.  Opportunistic deployment of a lesser number 

of sensors in certain parts of the body (such as the front 

and left sides of the torso), are seen to result in a 

reduction of the overall localization error, and will no 

doubt reduce the overall system-cost. In addition, the 

performance of the proposed method was compared 

with the classical centroid algorithm and more than 

50% improvement was achieved. These results shed 

light on precise, cost-effective positioning of the 

wireless endoscopy capsule in the gastrointestinal tract 

with a simple RSS technique in the future. 
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