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Abstract. This paper deals with the problem of determining the economic order quantity (EOQ)
in the interval sense. A purchasing inventory model with shortages and lead time, whose carrying
cost, shortage cost, setup cost, demand quantity and lead time are considered as interval numbers,
instead of real numbers. First, a brief survey of the existing works on comparing and ranking any
two interval numbers on the real line is presented. A common algorithm for the optimum production
quantity (Economic lot-size) per cycle of a single product (so as to minimize the total average cost) is
developed which works well on interval number optimization under consideration. A numerical example
is presented for better understanding the solution procedure. Finally a sensitive analysis of the optimal
solution with respect to the parameters of the model is examined.
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1. Introduction

Today many names are crowded with the eco-
nomic order quantity(EOQ) model, the most fun-
damental one in inventory control theory of which
Harris [3] was the pioneer. Generally we face in-
ventory problems in manufacturing maintenance
service and business operations. Making com-
panies succeed their goals and targets with re-
gards to ensuring delivery, avoiding shortages,
helping sales at competitive prices and solving
many other problems, inventory control plays a
particularly prominent role in supply chain man-
agement. A proper control of inventory is im-
perative when a company targets a good deal of
profit. In spite of the fact that the EOQ model
has played a crucial role in the field of control
theory, we find difficulties in applying the EOQ
model from paper to soil because, if we try to get

the exact values of carrying cost, shortage cost,
setup cost and demand quantity, the demand and
these inventory costs often change slightly from
one cycle to another. For example, inventory
carrying cost may be different in rainy seasons
from summer or winter seasons (costs of taking
proper action to prevent deterioration of items
in different seasons and also the labour charges
in different seasons are different). Ordering cost
being dependent on the transportation facilities
may also vary from season to season. Changes
in price of fuels, mailing and telephonic charges
may also make the ordering cost variable. Unit
purchase cost is highly dependent on the costs
of raw materials and labour charges and it may
fluctuate with time. Similarly the customer’s de-
mand also differs on various season. For example,
the demands of soft-drinks, ice-cream, refriger-
ators, etc. generally increase in summer while
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rain-coat and umbrella are needed mostly in the
rainy season. So we can know the values only ap-
proximately. Usually, researchers [18, 16, 17] con-
sider parameters either as constant or dependent
on time or probabilistic in nature. Generally,
uncertainties are considered as randomness and
are handled by probability theory in conventional
inventory models. In stochastic approach, the
parameters are assumed to be random variables
with known probability distribution. But we can-
not estimate the exact probability distribution
due to lack of pre-existing data. To solve the
problem with such imprecise numbers, fuzzy and
fuzzy-stochastic approaches may be used. Re-
cently, much attention has been focused on EOQ
models with fuzzy carrying cost, fuzzy shortage
cost, fuzzy set-up cost, fuzzy demand etc; this
means that elements of carrying cost, shortage
cost, setup cost and demand are fuzzy numbers
[2, 4, 9, 10, 15]. In fuzzy approach, the parame-
ters, constraints and goals are considered as fuzzy
sets with known membership functions. On the
other hand, in fuzzy-stochastic approach, some
parameters are viewed as fuzzy sets and others,
as random variables. However, in reality, it is not
always easy to specify the membership function
or probability distribution in an exact environ-
ment. We choose the interval numbers instead of
the fuzzy numbers due to the following facts.

(i)If the membership function of the fuzzy vari-
able is complex, for example, when a trapezoidal
fuzzy number and a Gaussian fuzzy number co-
exist in a model, it is hard to obtain the exact
membership function of the total cost, this lack
of accuracy will affect the quality of the solution
obtained.

(ii) An interval number can be throughout an
extension of the concept of a real number and also
a subset of a real line ℜ ([12]). Zimmermann [7]
shows that α-cut of a fuzzy number is an interval
number. As the coefficients of an interval signi-
fies the extent of tolerance (or a region) that the
parameter can possibly take.

(iii) To define a fuzzy number, three param-
eters are required when for an interval number,
two parameters are used. The notation of inter-
val numbers has the advantage of being simple
and at the same time it is a better model to rep-
resent the values in the situation like “is or lies
between α and β”. So the interval numbers [12],
serve our required purpose better.

Thus, the interval number theory, rather than
the traditional probability theory and fuzzy set
theory, is better suited to solve the inventory
problem. According to the decision makers’

points of view under changeable conditions, we
may replace the real numbers by the interval
valued numbers to solve the problems easily.
Since, the optimal total average cost of the model
should be interval-valued and no study has yet
been carried out for interval valued purchasing
inventory models with shortages and with non-
zero lead time, we intend to examine the above
mentioned problem in this paper.

In this paper, we have proposed an optimiza-
tion technique based on the division criteria of
prescribed/accepted search region to solve the
problems with the help of finite interval arith-
metic and interval order relations developed re-
cently in Mahato and Bhunia [14].

We organize the paper as follows : In section
2, we give some basic definitions, notations and
comparison on interval numbers. In section 3, we
give the model formulation and we present the so-
lution procedure in section 4. Finally a numerical
example is presented and sensitive analysis of the
optimal results with respect to the parameters of
the model is performed in section 5.

2. Interval Number

Let ℜ be the set of all real numbers. An interval,
Moore [12], may be expressed as

a = [aL, aR] = {x : aL ≤ x ≤ aR, aL, aR ∈ ℜ}

where aL and aR are called the lower and upper
limits of the interval a, respectively. If aL = aR
then a = [aL, aR] is reduced to a real num-
ber a, where a = aL = aR . Alternatively an
interval a can be expressed in mean-width or
center-radius form as a = ⟨m(a), w(a)⟩, where
m(a) = 1

2(aL + aR) and w(a) = 1
2(aR − aL) are

respectively the mid-point and half-width of the
interval a. The set of all interval numbers in ℜ
is denoted by I(ℜ).

2.1. Properties of interval

The intervals are precisely the connected subsets
of ℜ. It follows that the image of an interval by
any continuous function is also an interval. This
is one formulation of the intermediate value the-
orem. The intervals are also the convex subsets
of ℜ. The interval enclosure of a subset X ⊆ ℜ is
also the convex hull of X. The intersection of any
collection of intervals is always an interval. The
union of two intervals is an interval if and only
if they have a non-empty intersection or an open
end-point of one interval is a closed end-point of
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the other. Any element X of an interval I de-
fines a partition of I into three disjoint intervals
I1, I2, I3 respectively, the elements of I that are
less than X, the singleton [x, x] = {x} and the
elements that are greater than x. The parts I1
and I3 are both non-empty (and have non-empty
interiors) if and only if x is in the interior of I.
This is an interval version of the trichotomy prin-
ciple.

2.2. Basic interval arithmetic

Let a = [aL, aR] = ⟨m(a), w(a)⟩ and b =
[bL, bR] = ⟨m(b), w(b)⟩ ∈ I(ℜ), then

a+ b = [aL + bL, aR + bR]

= ⟨m(a) +m(b), w(a) + w(b)⟩. (1)

The multiplication of an interval by a real
number c ̸= 0 is defined as

ca = [caL, caR]; if c > 0

= [caR, caL]; if c < 0 (2)

ca = c⟨m(a), w(a)⟩ = ⟨cm(a), |c|w(a)⟩ (3)

The difference of these two interval numbers is

a− b = [aL − bR, aR − bL]. (4)

The product of these two distinct interval
numbers is given by

a.b = [min {aL.bL, aL.bR, aR.bL, aR.bR} ,
max {aL.bL, aL.bR, aR.bL, aR.bR}] (5)

The division of these two interval numbers
with 0 ̸∈ b is given by

a/b =

[
min

{
aL
bL

,
aL
bR

,
aR
bL

,
aR
bR

}
,

max

{
aL
bL

,
aL
bR

,
aR
bL

,
aR
bR

}]
(6)

The power of an interval a = [aL, aR] is given
by

ak = [1, 1]; if k = 0,

= [akL, a
k
R]; if aL ≥ 0 or if k is odd ,

= [akR, a
k
L]; if aR ≤ 0 or if k is even ,

= [min{aL.ak−1
R , aR.a

k−1
L }, {akL, akR}];

if aL ≤ 0 ≤ aR, k is even (7)

The addition and multiplication operations are
commutative, associative and sub-distributive.

2.3. Order relations of interval numbers

In this section, we shall discuss the developments
of order relations of interval numbers. Any two
closed intervals A and B may be of the following
types.

Type I: Non-overlapping intervals.

Type II: Partially overlapping intervals.

Type III: Fully overlapping intervals.

Moore [12] first pointed out two transitive
order relations of the interval numbers. Then
Ishibuchi and Tanaka [6] defined the order re-
lations of two closed intervals which are par-
tially order related. Generalizing the definitions
of Ishibuchi and Tanaka [6], Chanas and Kuchta
[13] proposed the concept of t0t1-cut of an inter-
val and defined new order relations. Sengupta
and Pal [1] gives another approach of ranking of
two closed intervals, defining by the acceptability
function A : I × I → [0,∞) for the intervals A
and B as

A(A,B) =
m(b)−m(a)

w(b) + w(a)
, where w(b)+w(a) ̸= 0

A(A,B) may be regarded as a grade of accept-
ability of the ‘first interval to be inferior to the
second’. The acceptability index is only a value-
based ranking index and it can be applied par-
tially to select the best alternative from the pes-
simistic point of view of the decision maker. So,
only the optimistic decision maker can use it com-
pletely. Recently Mahato and Bhunia [14] intro-
duced the revised definition of order relations be-
tween interval costs (or times) for minimization
problems and interval profits for maximization
problems in the context of optimistic and pes-
simistic decision making. As usual, let the in-
tervals A and B represent the uncertain interval
costs (or times) or profits in center-radius form.

Optimistic decision making: For mini-
mization problems the order relation ‘ ≤′

omin be-

tween the intervals A and B is
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(i) A ≤omin B iff aL ≤ bL,

(ii) A <omin B iff A ≤omin B and A ̸= B.

This implies that A is superior to B and A is
accepted. This order relation is not symmetric.

Pessimistic decision making: In this
case, the decision maker expects the minimum
cost/time for minimization problems according
to the principle ‘Less uncertainty is better than
more uncertainty’.

For minimization problems the order relation
‘ <′

pmin between the intervals A = [aL, aR] =

⟨m(a), w(a)⟩ and B = [bL, bR] = ⟨m(b), w(b)⟩ is
(i) A <pmin B iff m(a) < m(b), for type-I and

type-II intervals,

(ii) A <pmin B iff m(a) ≤ m(b) and w(a) <

w(b), for type-III intervals.

However, for type-III intervals with m(a) <
m(b) and w(a) > w(b), the pessimistic decision
cannot be taken. Here, the optimistic decision is
considered.

3. Model Formulation

The purpose of the EOQ model is to find the op-
timal order quantity of inventory items at each
time such that the sum of the order cost, the car-
rying cost and the shortage cost, i.e., total cost
is minimal.

Notations : For the sake of clarity, the following
notations are used throughout the paper.

t1, is the time for reordering for next cycle.
i.e., reorder point ;

t2, is the time of the inventory cycle when on
hand inventory reaches zero ;

t3, length of each cycle ;
t3 − t2, is the duration of the inventory cycle

when stock out occurs ;
Q, is the order quantity, which enters into

inventory at time t = 0 ;
Q1, is the on hand inventory at time t = t1,

that is, at reorder point ;
Q2, is the shortages amount inventory after

time t = t3, that is, after one cycle ;
C(Q), total cost in the plan period ;
D = [dL, dR], demand rate per unit time ;
C1 = [c1L, c1R], carrying cost or holding cost

per unit item per unit time ;
C2 = [c2L, c2R], shortage cost per unit item

per unit time ;
C3 = [c3L, c3R], ordering or setup cost per

order ;
l = [lL, lR], represents the lead time ;

Assumptions : We have the following assump-
tions:

(i) Shortages are allowed.

(ii) The inventory planning horizon is infinite
and the inventory system involves only one item
and one stocking point.

(iii) Only a single order will be placed and the
entire lot is delivered in one batch.

(iv) The lead time l is non-zero.

(iv) The quantities C1, C2, C3, D and l are as-
sumed to be interval number, belongs to I(ℜ).

A typical behavior of the EOQ purchasing in-
ventory model with uniform demand and with
lead time and shortage is depicted in Figure 1.
Replenishment is received at time t = 0 when
inventory level reaches at its maximum, Q. At
time t = t2, the inventory level at zero. The time
t = t1 is the reorder point when order is placed
for the next cycle. At time t = t1, the inventory
level reaches at Q1(< Q). Thus order should be
placed for the next cycle when on hand inventory
become Q1. The inventory level reaches zero at
time t = t2 and shortages starts and continues
till time t = t3 when the order for the next cy-
cle, which was placed at time t = t1 is added
into the inventory. Thus the entire demand dur-
ing the period (t3 − t2) is backlogged. Let Q2 be
the shortages inventory level. In the Fig. 1 the
area of △BCE represents the failure to meet the
demand and the area of △FOB represents the
inventory. Therefore, the total cost X (say) in
the plan period [0, t3] can be expressed as (see in
appendix)
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Figure 1. Graphical presentation of
inventory system.

X = C3 +
1

2
C1Dt22 +

1

2
C2D(t3 − t2)

2.

Therefore total average cost C(t1, t2, t3) is
given by
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C(t1, t2, t3) =
X

t3

=
1

t3

[
C3 +

1

2
C1Dt22 +

1

2
C2D(t3 − t2)

2

]
.

Since t3 = t1 + l so we have,

C(t1, t2) =
1

t1 + l

×
[
C3 +

1

2
C1Dt22 +

1

2
C2D(t1 + l − t2)

2

]
.(8)

By using calculus, we optimize C(t1, t2) and
get optimum values of C, t1 and t2 as

C∗ =

√
2C1C2C3D

C1 + C2
,

t∗1 =

√
2C3(C1 + C2)

C1C2D
− l,

t∗2 =

√
2C2C3

C1(C1 + C2)D

by using these values we get the optimum values
of Q1, Q, t3.

Usually, in mathematical programming we
deal with the real numbers which are assumed
to be fixed in value. In usual models costs and
demand are always fixed in value. But in real
life, business cannot be properly formulated in
this way due to uncertainty. In such cases de-
mand and other costs are assumed to be interval
valued. But in interval oriented system, we can-
not use the calculus method for optimization.

3.1. Deterministic representation of the
proposed EOQ model

Let us assume interval valued demand by D =
[dL, dR], carrying cost by C1 = [c1L, c1R], short-
age cost by C2 = [c2L, c2R] and set up cost
by C3 = [c3L, c3R], where first term within the
bracket denotes lower limit and 2nd term within
the bracket denotes the upper limit of the vari-
able. Replacing D by [dL, dR], C1 by [c1L, c1R],
C2 by [c2L, c2R] and C3 by [c3L, c3R] in equation
(8) we have,

C(t1, t2) =
1

t1 + [lL, lR]

{
[c3L, c3R] +

1

2
[c1L, c1R]

[dL, dR]t
2
2 +

1

2
[c1L, c1R][dL, dR]

(t1 + [lL, lR]− t2)
2
}

(9)

Addition and other composition rules (seen in
the section 2.2 in this paper) on interval numbers
are used in this equation. In interval oriented sys-
tem as we cannot use the calculus method for op-
timization of C(t1, t2) we have presented a new
method dependent on interval computing tech-
nique (multi-section method) to solve the uncon-
strained optimization problems, and for that if
we take t1 = [t1L, t1R] and t2 = [t2L, t2R] then
the expression (9) becomes,

C (t1, t2) =
1

[t1L, t1R] + [lL, lR]
{[c3L, c3R]

+
1

2
[c1L, c1R][dL, dR][t

2
2L, t

2
2R]

+
1

2
[c2L, c2R][dL, dR] ([t1L, t1R]

−[t2L, t2R] + [lL, lR])
2
}

(10)

By using multi-section method we are to find
t∗1 = [t∗1L, t

∗
1L], and t∗2 = [t∗2L, t

∗
2L], for which

C(t1, t2) have the optimal (minimum) value.

4. Solution Procedure

Here, we use the multi-section algorithm, the ba-
sis of this method is the comparison of intervals
(as described in the section 2.3 of this paper) ac-
cording to the DM’s point of view.

Let us consider a bound unconstrained opti-
mization (maximization or minimization) prob-
lem with fixed coefficients as follows:

z = f(x), l ≤ x ≤ u,

where x = (x1, x2, . . . , xn), l = (l1, l2, . . . , ln), u =
(u1, u2, . . . , un), and n represents the number
of decision variables, the jth decision variable
xj ; (j = 1, 2, . . . , n) lies in the prescribed inter-
val [lj , uj ]. Hence, the search space of the above
problem is as follows:

S = x ∈ ℜn : lj ≤ xj ≤ uj , j = 1, 2, . . . , n.

Suppose that, an industry divides the sales
season into λ periods. Now our object is to split
the accepted (reduced) region (for the first time,
it is the given search space or assumed if the
search space is not given ) into finite number of
distinct equal subregions R1, R2, . . . , Rλ to select
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the subregion containing the best function value.

Let f(Ri) = [fi, fi]; i = 1, 2, . . . , λ be the inter-

val valued objective function f(x) in the ith sub-
region Ri, where fi, fi denote the upper and lower
bounds of f(x) in Ri, computed by the applica-
tion of finite interval arithmetic. Now, comparing
all the interval-valued values of objective func-
tion, f(x) in Ri(i = 1, 2, . . . , λ) with the help of
interval order relations mentioned in earlier sec-
tion, the subregion containing the best objective
function value is accepted. Again, this accepted
subregion is divided into other smaller distinct
subregions R′

i(i = 1, 2, . . . , λ) by the aforesaid
process and applying the same acceptance crite-
ria, we get the reduced subregion. This process
is terminated after reaching the desired degree
of accuracy and finally, we get the best value of
the objective function and the corresponding val-
ues of the decision variables in the form of closed
intervals with negligible width.

Hence the overall procedure to solve the op-
timization problem (14) with an interval valued
carrying cost, shortage cost, set up cost and de-
mand, the interval valued cost function has the
following structure.

4.1. Algorithm for interval optimization

Input: n(number of variables), λ(number of
divisions), lj and uj , (j = 1, 2, · · · , n) are the
lower and upper bounds respectively.

Output: The optimum values t∗1, t
∗
2, Q

∗
, Q

∗
1

and C
∗
.

Step 1: Initialize lmin and umin, the lower
and upper value of interval valued cost function

Step 2:[Calculation of step lengths]

Step 2.1: For i = 0 to n− 1
calculate hi = (ui − li)/λ
Set li = ai
end for

Step 3:[Division of region S into equal
subregions Ri]

Step 3.1: For j = 0 to λ− 1
Calculate
l0 = ai + j ∗ hi and u0 = ai + (j + 1) ∗ hi

Step 3.2: For j1 = 0 to λ− 1
Calculate

l1 = ai + j1 ∗ hi and u1 = ai + (j1 + 1) ∗ hi

Step 3.3:[Call the function fl and fu ].

By using basic interval arithmetic defined in
the section (2.2), Calculate fl and fu, the lower
and upper values of the interval C(t1, t2) respec-
tively, obtained by as in equation (10)

Step 3.4: Applying pessimistic order relation
(defined in the section 2.2) between any two in-
terval numbers [fl, fu] and [lmin, umin] choose the
optimal interval number.

end j1 loop

end j loop

Step 3.5: choose the subregion Ropt among
Ri(i = 1, 2, . . . , λ) which has better objective
function value by comparing the interval values
f(Ri), i = 1, 2, 3, . . . , λ to each other.

Step 4: Calculation of widths

Step 4.1: For i1 = 0 to n− 1
Calculate widths wi1 = ui1 − li1

Step 4.2: While wi1 > ε

break

Step 4.3: Set Ropt ← Ri

Return to step 1.2

end for

end while.

Output

5. Computational Results

In this section, we illustrate that the solution pro-
cedure proposed in Algorithm 4.1 can be easily
implemented on a computer and we show that,
with such an implementation, the optimal solu-
tions can be obtained. To serve our purpose, we
make out a computer programming using C++
on a PENTIUM 4 personal computer.

The preceding solution procedure can be il-
lustrated by the following numerical example.
Consider an inventory model with the values
of the parameters: C1 = [2.5, 3.5], C2 =
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[7.5, 8.5], C3 = [245, 255], D = [77.5, 82.5]
and l = [0.75, 0.85]. The optimal solu-

tions are t∗1 = 0.9351, t∗2 = 1.2501, Q
∗

=

[96.8827, 103.1332], Q1
∗
= [24.4100, 25.9848] and

C
∗
= [252.8625, 344.7752].

5.1. Sensitivity analysis

Based on the numerical example considered
above, we now calculate the corresponding out-
puts for changing the input parameters one by
one. While taking one parameter at a time to
change we keep the remaining parameters un-
changed as it is shown in the table 1. We now
study the effects of changing the values of input
parameters C1, C2, C3, l and D on the outputs
t∗1, t

∗
2, Q

∗
, Q1

∗
and C

∗
.

The sensitivity analysis is performed by chang-
ing mid value of each parameter C1, C2, C3, D
and l by +50%,+25%,−25% and −50%; tak-
ing one parameter at a time and keeping the re-
maining parameters unchanged. The changes of
t∗1, t

∗
2, Q

∗
, Q1

∗
and C

∗
are analyzed in the table 2.

From Table 2, it is seen that

(i) t∗1, t
∗
2, Q

∗
and Q1

∗
is fairly sensitive while C

∗

is moderately sensitive to changes in the value of
the carrying cost C1.

(ii) Each of t∗1, t
∗
2, Q

∗
and C

∗
are not much sen-

sitive but Q1
∗
is very high sensitive to changes in

the value of the shortage cost C2.

(iii) Each of t∗1, t
∗
2, Q

∗
, Q1

∗
and C

∗
are mod-

erately sensitive to changes in the value of the
setup cost C3.

(iv) Changes in the demand rate D include

less changes in Q
∗
, and C

∗
in comparison with

considerable changes of t∗1, t
∗
2, Q1

∗
.

(v) Each of t∗1 and Q
∗
1 are very high sensi-

tive while t∗2, Q
∗
and C

∗
are insensitive for the

changes in the lead time l.

6. Conclusion

In this paper, we have presented an inventory
model with shortage, where carrying cost, short-
age cost, ordering or setup cost and demand are
assumed as interval numbers instead of crisp or
probabilistic in nature. We have considered the
nature of these quantities as interval numbers to
make the inventory model more realistic. At the
present time, the presence of inventory has mo-
tivational effect on the people around it. These

observations are attracted by the interest of re-
searchers in marketing and behavioral science.
At first, we have formulated a solution proce-
dure to optimize a general function with coef-
ficients as interval valued numbers using inter-
val arithmetic and then we have proposed opti-
mization methods depending on splitting crite-
ria of the accepted subregion or prescribed re-
gion (initially), finite interval arithmetic and the
revised definitions of order relations. This tech-
nique does not require any derivative information
of the objective function. It is also different from
any stochastic method or any heuristic or meta-
heuristic methods. In this splitting criteria, the
whole accepted subregion is divided into several
equal distinct subregions with respect to all the
edges simultaneously. From the numerical exper-
iments, it is observed that the methods possess
the merits of global exploration. Also, by using a
C++ computer program on a PENTIUM 4 per-
sonal computer we can find the optimal solutions
with small computation time. The algorithm has
been tested using numerical example and which
shows that our algorithm is rather accurate and
rapid. For future research, one may apply the
same methodology of interval computing tech-
nique for constrained optimization problems and
different branches of Operations Research. If
demand rate, lead time and the related inven-
tory costs namely holding cost, shortage cost and
setup cost are assumed as fuzzy numbers [5], by
using Grzegorzewski [11] we can transform these
parameters as interval numbers and then we can
apply our proposed method serving us a better
result in short time. When the replenishment
rate is considered as finite, it gives another inven-
tory model which can be solved by our proposed
method. The proposed model can be extended
in several ways. In addition, we could consider
the demand as a function of time, whose coeffi-
cients are considered as interval numbers. Some
numerical examples are studied to illustrate the
theoretical results. To study the effect of the op-
timal time t∗1 and t∗2, on the optimal order quan-

tity Q
∗
, Q

∗
1 and on the optimal annual total cost

C
∗
there are some managerial phenomena from

table 2 which are discussed previously.
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Table 1. Various outputs for the changes in the input parameters (taking one parameter at a
time to change and keeping the remaining parameters unchanged).

% Values of t∗1 t∗2 Q
∗

Q1
∗

C
∗

change parameter
+50 c1=[4, 5] 0.709 0.951 [73.740, 78.498] [18.768, 19.979] [295.177, 391.460]
+25 c1=[3.25, 4.25] 0.767 1.041 [80.737, 85.946] [21.258, 22.630] [276.632, 370.005]
-25 c1=[1.75, 2.75] 1.263 1.632 [126.483, 134.644] [28.606, 30.452] [221.392, 317.066]
-50 c1=[1, 2] 1.828 2.274 [176.266, 187.638] [34.613, 36.846] [176.339, 286.610]
+50 c2=[11.5, 12.5] 0.972 1.415 [109.644, 116.718] [34.289, 36.502] [263.978, 365.566]
+25 c2=[9.5, 10.5] 0.853 1.250 [96.883, 103.133] [30.790, 32.777] [259.681, 355.244]
-25 c2=[5.5, 6.5] 1.069 1.250 [96.883, 103.133] [14.033, 14.938] [242.506, 330.175]
-50 c2=[3.5, 4.5] 1.250 1.167 [90.421, 96.255] [-6.878, -6.462] [224.306, 306.607]
+50 c3=[370, 380] 1.408 1.618 [125.407, 133.498] [16.297, 17.348] [313.710, 417.784]
+25 c3=[307.5, 317.5] 1.198 1.458 [113.029, 120.321] [20.155, 21.456] [284.771, 383.200]
-25 c3=[182.5, 192.5] 0.664 1.042 [80.737, 85.946] [29.247, 31.134] [216.582, 302.255]
-50 c3=[120, 130] 0.381 0.833 [64.591, 68.758] [35.052, 37.313] [173.050, 252.615]

+50 D=[117.5, 122.5] 0.640 1.042 [122.408, 127.616] [47.156, 49.162] [307.271, 426.097]
+25 D=[97.5, 102.5] 0.833 1.188 [115.789, 121.726] [34.529, 36.299] [281.674, 388.452]
-25 D=[57.5, 62.5] 1.217 1.458 [83.860, 91.152] [13.862, 15.067] [219.472, 297.930]
-50 D=[37.5, 42.5] 1.761 1.875 [70.316, 79.692] [4.297, 4.870] [178.735, 244.647]

+50 l=[1.15, 1.25] 0.535 1.250 [96.883, 103.133] [55.410, 58.985] [252.866, 344.775]

+25 l=[0.95, 1.05] 0.735 1.250 [96.883, 103.133] [39.916, 42.491] [252.866, 344.775]

-25 l=[0.55, 0.65] 1.135 1.250 [96.883, 103.133] [8.91, 9.485] [252.866, 344.775]

-50 l=[0.35, 0.45] 1.335 1.250 [96.883, 103.133] [-7.015, -6.59] [252.866, 344.775]

Table 2. Effect of changes in the input parameters.

Mid value of % change t∗1 t∗2 m(Q
∗
) m(Q1

∗
) m(C

∗
)

the parameter
+50 -24.15 -23.89 -23.89 -23.11 +14.89

m(C1) +25 -17.92 -16.66 -16.66 -12.91 +8.20
-25 +35.05 +30.55 +30.55 +17.19 -9.90
-50 +95.48 +81.94 +81.95 +41.80 -22.54
+50 +3.98 +13.17 +13.17 +40.47 +5.34

m(C2) +25 -8.80 0.00 0.00 +26.14 +2.89
-25 +14.32 0.00 0.00 -42.52 -4.18
-50 +33.69 -6.67 -6.67 -126.47 -11.16
+50 +50.56 +29.45 +29.44 -33.24 +22.40

m(C3) +25 +28.16 +16.67 +16.67 -17.43 +11.77
-25 -28.95 -16.66 -16.66 +19.82 -13.19
-50 -59.23 -33.33 -33.33 +43.50 -28.78
+50 -31.52 -16.66 +25.00 +91.13 +22.71

m(D) +25 -10.875 -5.00 +18.75 +40.55 +12.13
-25 +30.19 +16.66 -12.50 -42.59 -13.43
-50 +88.27 +50.00 -25.00 -81.810 -29.157
+50 -42.78 0.00 0.00 +127.00 0.00

m(l) +25 -21.39 0.00 0.00 +63.52 0.00
-25 +21.39 0.00 0.00 -63.50 0.00
-50 +42.78 0.00 0.00 -127.00 0.00
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Appendix

From Fig. 1) we see that

l = (t3 − t1), Q = Dt2

Q1 = D(t2 − t1), Q2 = D(t3 − t2).

Therefore the holding cost (Cholding) over the
time period 0 to t2 is

Cholding = C1 ×△FOB = C1 ×
1

2
× t2 ×Q

=
1

2
C1Dt22

and the set-up cost (Cset−up) for the entire cycle
is

Cset−up = C3.

Again the shortage cost (Cshortage) during the
interval (t2, t3) is

Cshortage = C2 ×△BCE

= C2 ×
1

2
× (t3 − t2)×Q2

=
1

2
C2D(t3 − t2)

2.

Therefore the total cost(X)(say) in the plan
period [0, t3] is given by

X = Cholding + Cset−up + Cshortage.

Therefore total average cost C(t1, t2) is given
by

C(t1, t2) =
C3 +

1
2C1Dt22 +

1
2C2D(t1 + l − t2)

2

t1 + l

(11)

Differentiating partially w.r.to t1 and t2 we
have

∂C

∂t1
= −

C3 +
1
2C1Dt22 +

1
2C2D(t1 + l − t2)

2

(t1 + l)2

+
C2D(t1 + l − t2)

t1 + l

(12)
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and

∂C

∂t2
=

1

t1 + l
[C1Dt2 − C2D(t1 + l − t2.)] .

From

∂C

∂t2
= 0

we have

C1Dt2 = C2D(t1 + l − t2)

⇒ t2 =
C2(t1 + l)

C1 + C2
. (13)

Again from

∂C

∂t1
= 0

we have

C3 +
1

2
C1Dt22 +

1

2
C2D(t1 + l − t2)

2

− C2D(t1 + l − t2)(t1 + l) = 0. (14)

Using (13) and then after simplifying we have

t∗2 =

√
2C2C3

C1(C1 + C2)D
. (15)

From (13) we have

t1 + l = t3 =
C1 + C2

C2
t2. (16)

Substituting the value of t∗2 in (16) we have

t∗3 =

√
2C3(C1 + C2)

C1C2D

and t∗1 =

√
2C3(C1 + C2)

C1C2D
− l.

Substituting the optimal values of t1 and t2 in
(12), the optimal value of C i.e C∗ is given by

C∗ =

√
2C1C2C3D

C1 + C2
.
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