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The fear response is an important anti-predator adaptation that can signifi-
cantly reduce prey’s reproduction by inducing many physiological and psycho-
logical changes in the prey. Recent studies in behavioral sciences reveal this
fact. Other than terrestrial vertebrates, aquatic vertebrates also exhibit fear
responses. Many mathematical studies have been done on the mass mortality
of pelican birds in the Salton Sea in Southern California and New Mexico in
recent years. Still, no one has investigated the scenario incorporating the fear
effect. This work investigates how the mass mortality of pelican birds (preda-
tor) gets influenced by the fear response in tilapia fish (prey). For novelty, we
investigate a modified fractional-order eco-epidemiological model by incorpo-
rating fear response in the prey population in the Caputo-fractional derivative
sense. The fundamental mathematical requisites like existence, uniqueness,
non-negativity and boundedness of the system’s solutions are analyzed. Local
and global asymptotic stability of the system at all the possible steady states
are investigated. Routh-Hurwitz criterion is used to analyze the local stability
of the endemic equilibrium. Fractional Lyapunov functions are constructed
to determine the global asymptotic stability of the disease-free and endemic
equilibrium. Finally, numerical simulations are conducted with the help of
some biologically plausible parameter values to compare the theoretical find-
ings. The order α of the fractional derivative is determined using Matignon’s
theorem, above which the system loses its stability via a Hopf bifurcation. It is
observed that an increase in the fear coefficient above a threshold value desta-
bilizes the system. The mortality rate of the infected prey population has a
stabilization effect on the system dynamics that helps in the coexistence of all
the populations. Moreover, it can be concluded that the fractional-order may
help to control the coexistence of all the populations.
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1. Introduction

The conventional notion that predator affects the
prey population only through direct killing has
been changed to a great extent in recent past [1].
The population dynamics of the prey is more af-
fected by indirect interaction with a predator as
compared to direct killing [2]. In addition to
killing, predators often elicit a fear response in the
prey population which brings about many psycho-
logical and physiological changes in the prey [3].

The primary line of anti-predator behaviour is to
avoid detection. Due to predation risk, prey may
compromise with the source and choice of for-
aging, which ultimately affect personal or com-
munity growth and thereby affecting reproduc-
tion [2, 4]. Fear may affect the physiological con-
dition of the juvenile prey, and this could leave
a negative effect on their survival as adults [4, 5].
In the experiment conducted by Zanette et al. [6],
it is observed that song sparrows had a reduced
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growth rate due to the perceived predation risk
even after the absence of direct killing. So, preda-
tors frequently affect the prey, indirectly, enforc-
ing a stressful life.

Similarly, fear-induced phenomena can also be
found in different fishes in marine ecology. In
rainbow trout species (Oncorhynchus mykiss), for
example, reproduction timing may vary due to
stress like disturbance or handling. However,
Tilapia (Oreochromis niloticus), when subjected
to a stressed environment, show different types of
the psychology of reproduction depending on its
maturity [7]. It is observed that the minimum
threshold of stimulus that is required to elicit
a behavioral response in prey is lower for fishes
(prey individuals) who are previously exposed to
higher levels of predation risk. Fish actually op-
timizes their feeding rate under the constraints of
predation severity leading to mortality [8].

Physiological changes are observed in the body of
the prey as a response to the actual presence or
background knowledge of predators. These phys-
iological changes are brought about by hormonal
or neuronal changes that bring about different
responses in organ systems and ultimately lead
to altered reproductive capacity. Showing anti-
predator behaviour costs a rebalance in energy
allocation and subsequently could affect the re-
production process [9].

Salton sea is a very stressed environment for fish.
From 1970 onwards, the total fish biomass of
Salton sea has been crashed many times due to
three physiological stressors viz. extreme tem-
perature fluctuation, increasing salinity, and high
sulphide levels and anoxia associated with mix-
ing events [10]. This stress environment affects
the vital life functions of fish, mainly population
growth via reproduction [9]. Although the role
of stressors directly from the environment has an
active role in the life cycle of fish species at Salton
sea, another stress, that is, fear of predation, can
not be ruled out considering recent discussions in
literature [2].

Avian botulism(Clostridium botulinum type C)
is a regular outbreak causing sizeable mortality
among the piscivorous birds of the Salton sea
since the twentieth century [11]. In 1996, around
9000 white Pelicans and around 1200 brown Peli-
cans were killed due to this dreaded disease. How-
ever, the mortality number has dropped signifi-
cantly, and white pelicans were affected less in
mortality than brown pelicans [12]. Type C bo-
tulinum toxin formed inside the gastrointestinal
tracts of Tilapia, infected by a variety of bacteria
like vibrato, is considered to be the main cause of
death among pelicans.

Mathematical modeling has a very important role
in studying the interaction among the predator
and prey species. After the pioneering work of
Kermack and Mc Kendrick on SIRS type, epi-
demiological modeling has been studied widely in
recent years by various researchers [13–17]. Math-
ematical modeling of the fear effect in prey species
was first proposed by Wang et al. [18] in the year
2016. Subsequently, some fear-induced mathe-
matical studies of predator-prey interaction have
been carried out [19–21]. In their study, Hossain
et al. investigated the effect of fear in a three-
species intraguild predation model. Their analy-
sis revealed that fear could stabilize the chaos pro-
duced due to omnivory predators [19]. Predators
that follow cooperation strategies while hunting
also creates fear upon the prey. Combining hunt-
ing cooperation (by predators) and fear effect (in
prey), Pal et al. investigated a Lotka–Volterra
type predator-prey model. Their study shows
that an increase in the hunting cooperation in-
duced fear may destabilize the system and pro-
duce periodic solutions via a Hopf-bifurcation
[20]. Panday et al. in [21] studied the impact
of fear in a tri-trophic food chain model. They
observe that fear can stabilize the system from
chaos to stable focus through the period halving
phenomenon. Till now, we have not come across
any literature where the role of fear has been an-
alyzed in the case of the marine ecosystem. This
has motivated us for the present investigation.

In recent years, researchers have shown more in-
terest in using fractional-order differential equa-
tions (FDE) in mathematical modeling rather
than integro-differential equations (IDE). FDEs
can be used to model universal phenomena with
greater precision [23, 24]. In [23], Heymans et
al., through a series of examples, have demon-
strated that it is possible to attribute physical
meaning to initial conditions expressed in terms
of Riemann–Liouville fractional derivatives. Un-
like IDEs, FDEs are non-local operators where the
succeeding state of any function depends not only
on their existing state but also on all preceding
states [25,26]. In addition, classical IDEs are inca-
pable of providing data between two distinct inte-
ger values. To overcome such restrictions, various
types of fractional-order operators were adopted
in the available literature [27,28]. Moustafa et al.
in [29] investigated an eco-epidemiological model
with disease in the prey species in terms of Caputo
fractional derivative. Khan et al. in [26] investi-
gated a fractional SIR model with a generalized
incidence rate using both Caputo and the recently
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developed Atangana-Baleanu-Caputo (ABC) de-
rivative [28]. The ABC derivative having non-
singular and non-local kernel contains a strong
memory effect of the system. Recently, Singh et
al. investigated a fractional guava fruit model in-
volving ABC derivative for investigating the in-
teraction between guava pests and natural ene-
mies [30]. Tuan et al. studied the existence and
uniqueness of a mild solution to an initial value
problem for a fractional Rayleigh–Stokes equation
driven by fractional Brownian motion [31]. Fuzzy
ABC fractional derivative, fuzzy ABC fractional
initial value problems, and fuzzy ABC solutions
are discussed and utilized for the first time in [32].
Bonyah et al. studied a fractional optimal control
model of coronavirus in ABC derivative sense [33].

Mathematical research work on large-scale mor-
tality of pelicans in the Salton Sea was first car-
ried out by Bairagi et al. [34] in 2001. Through-
out their article, the authors presumed that peli-
cans only come into contact with infected tilapia.
Using the same perspective, Greenhalgh et al.
[36] in 2007 proposed a ratio-dependent predator-
prey interaction model ignoring the predation of
susceptible prey. In their research work, they
adopted a purely logistic growth function of the
susceptible prey. The predators do not have any
alternative food resources, and they prey only on
infected prey. So, their carrying capacity depends
only on infected prey. In their research, Chat-
topadhyay et al. [35] modified the previous study
by introducing an interaction between pelicans
and susceptible fish. The authors presumed that
the death rate of the pelicans is increased due to
feeding on infected fish. Later in 2017, Green-
halgh et al. [37] modified their earlier studies in
[36] by taking into account that predators feed on
both the susceptible and infected preys(tilapia).
Furthermore, they presumed that the diseased
prey significantly influences the growth rate of
susceptible prey and the carrying capacity of the
predator is dependent on the total number of prey
(tilapia). To make the discussions more realis-
tic and novel, we have considered the fear effect
in the prey (tilapia) due to predation (by peli-
cans), since Tilapia (Oreochromis niloticus) un-
der stressful circumstances (like predation risk)
react by boosting or completely hindering repro-
duction [7].

In this paper, we extend the mathematical model
proposed by Greenhalgh in [37] by incorporating
the fear effect in the susceptible prey (tilapia)
in terms of Caputo fractional derivative. The
integer-order derivative does not contain the com-
plete memory, and it does not describe the phys-
ical behavior of the model. The memory effect

in FDEs that provides data between two dis-
tinct integer values motivates us to study the
model using a fractional derivative. Besides ter-
restrial ecosystems, the fear effect also influences
marine ecosystems. Therefore we are interested
in exploring the complex dynamics of the critical
ecosystem of the Salton Sea (which became a dan-
gerous habitat for birds during the 1990s) with
fear effect. Additionally, the fear effect induced in
the prey population due to predation risk makes
the scenario a novel one and biologically more
realistic and meaningful. The paper is organized
as follows:

In section 2, we describe a modified predator-prey
interaction model with fear effect involving Ca-
puto fraction derivatives. In section 3, we provide
some mathematical preliminaries used for analyt-
ical discussions of our model. Fundamental math-
ematical results like the existence, uniqueness,
non-negativity and boundedness solutions of the
modified model are carried out throughout sec-
tion 4. In sections 5 and 6, the modified model’s
equilibrium points and their local stability are an-
alyzed. In sections 7 and 8, the global stability of
the disease-free equilibrium, positive equilibrium,
and condition for Hopf bifurcation at the disease-
free equilibrium is discussed. In section 9, nu-
merical simulations are carried out using biologi-
cally feasible parameters. Finally, in section 10, a
summary of the outcomes obtained from the cur-
rent study is provided. The conclusions derived
are purely on the basis of theoretical results. Ex-
perimental verification will suggest modification
required in fundamental assumptions.

2. Model formulation

In this section, we discuss a modified form of
a predator-prey interaction model initially for-
warded by Greenhalgh et al. [37]. The model
in [37] is based on the critical ecosystem of the
Salton Sea located in Southern California, New
Mexico, where pelicans and tilapia are the preda-
tor and prey, respectively. The disease is assumed
to spread among the prey through close contact.
The vibrio-infected prey is classified into suscep-
tible and infected prey and are represented by
S(T ) and I(T ) respectively. So, at any instant
T , the total number of prey (tilapia) population
is N(T ) = S(T ) + I(T ). Only susceptible prey
(tilapia) take part in reproducing offsprings, and
population growth is in logistic fashion with a car-
rying capacity of k > 0. The predators (peli-
cans) feed on both susceptible and infected prey,
preferably the infected ones, since they are easily
catchable. They assumed that the predators feed
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on the prey with a ratio-dependent functional re-
sponse. With these basic assumptions, the model
is,

dS

dT
= rS

(
1− S + I

k

)
− λSI − pY S

mY + S

dI

dT
= λSI − cY I

mY + I
− γI

dY

dT
= δY

(
1− hY

S + I

) (1)

with the initial condition S(0) ≥ 0, I(0) ≥
0, Y (0) ≥ 0 where,

r: rate of growth of the prey species in the re-
producing population group,
k: total capacity of the system,
λ: the disease transmission coefficient,
p, c: catching rate of predators (pelicans) to-
wards susceptible and infected prey (tilapia),
respectively,
m: a strictly positive constant,
γ: the mortality rate of infected prey per capita,
δ: rate of growth of the predator (pelican)
species per capita,
h: a constant which is related to the density-
dependent death rate of the predator(pelican)
population.

The modified fractional-order model of the system
(1) is presented as follows

cDα
t S(T ) = rS

(
1− S + I

k

)
− λSI − pY S

mY + S

cDα
t I(T ) = λSI − cY I

mY + I
− γI

cDα
t Y (T ) = δY

(
1− hY

S + I

)
(2)

Since the induced fear in the prey (tilapia) due
to predation risk reduces their reproduction rate,
therefore we modify the first equation of system
(2) by multiplying the breeding rate r with a fac-
tor g(f, Y ) as below,

cDα
t S(T ) = rS

(
1− S + I

k

)
g(f, Y )− λSI

− pY S

mY + S

(3)

where Y describes the biomass of the predator
(pelican) and f describes the strength of fear due
to predation risk in the prey (tilapia). To make

f, Y and g(f, Y ) biologically feasible it is appro-
priate to assume that [18]

g(0, Y ) = 1, g(f, 0) = 1, lim
f→∞

g(f, Y ) = 0,

lim
Y→∞

g(f, Y ) = 0,
∂g(f, Y )

∂f
< 0,

∂g(f, Y )

∂Y
< 0.

(4)

Here we consider g(f, Y ) = 1
1+fY which satisfies

condition (4). Then the system (2) becomes:

cDα
t S(T ) = rS

(
1− S + I

k

)(
1

1 + fY

)
− λSI

− pY S

mY + S

cDα
t I(T ) = λSI − cY I

mY + I
− γI

cDα
t Y (T ) = δY

(
1− hY

S + I

)
(5)

with the initial condition S(0) ≥ 0, I(0) ≥
0, Y (0) ≥ 0.
Now define T = λt, r1 = r

λ , p1 = p
λ , γ1 = γ

λ , δ1 =
δ
λ , c1 = c

λ . Then the system (5) reduces to

cDα
t S(t) = r1S

(
1− S + I

k

)(
1

1 + fY

)
− SI

− p1Y S

mY + S

cDα
t I(t) = SI − c1Y I

mY + I
− γ1I

cDα
t Y (t) = δ1Y

(
1− hY

S + I

)
(6)

with the initial condition S(0) ≥ 0, I(0) ≥
0, Y (0) ≥ 0.

3. Mathematical preliminaries

Throughout this section, we present a few prelimi-
nary definitions as well as some important lemmas
for Caputo fractional derivative [22,24,38,39].

Definition 1. [24] Let g be any function such
that g ∈ Cn([t0,+∞),R) then the Caputo frac-
tional derivative of g having order α is defined
by

c
t0D

α
t g(t) =

1

Γ(n− α)

∫ t

t0

g(n)(s)

(t− s)α−n+1
ds

where Γ(.) is the Gamma function, n is a non-
negative integer such that n − 1 < α < n and
t ≥ t0. In particular, when 0 < α < 1

c
t0D

α
t g(t) =

1

Γ(1− α)

∫ t

t0

g′(s)

(t− s)α
ds
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Lemma 1. [38] Let g(t) ∈ C[a, b] and c
t0D

α
t g(t) ∈

C[a, b], 0 < α ≤ 1, then

(i) for each t ∈ [a, b], g(t) is non-decreasing
provided c

t0D
α
t g(t) ≥ 0, a < t < b.

(ii) for each t ∈ [a, b], g(t) is non-increasing
provided c

t0D
α
t g(t) ≤ 0, a < t < b.

Lemma 2. [24] Consider the Cauchy problem

c
aD

α
t x̂(t) = λx̂(t) + g(t)

x̂(a) = b (b ∈ R)

with 0 < α < 1 and λ̄ ∈ R. Then the solution is
of the form

x̂(t) = bEα[λ̄(t− a)α]

+

∫ t

a
(t− s)(α−1)Eα,α

[
λ̄(t− s)α

]
g(s)ds

(7)

while the solution to the problem
c
aD

α
t x̂(t) = λ̄x̂(t)

x̂(a) = b (b ∈ R)

is given by

x̂(t) = bEα

[
λ̄(t− a)α

]
The preceding lemma is quite important to ver-
ify that the system (6) is uniformly bound which
is the generalization of the Lemma 2 provided
in [40].

Lemma 3. [22] Consider a function ū(t) con-
tinuous on [t0,+∞) satisfying

c
t0D

αū(t) ≤− λ̄ū(t) + µ

ū(t0) = ūt0
(8)

where 0 < α < 1, (λ̄, µ) ∈ R2, and λ̄ 6= 0 and
t0 ≥ 0 is the initial time. Then

ū(t) ≤
(
ūt0 −

µ

λ̄

)
Eα
[
−λ̄(t− t0)α

]
+
µ

λ̄
(9)

Lemma 4. Consider a function ū(t) continuous
on [t0,+∞) satisfying

c
t0D

α
t ū(t) ≥λ̄ū(t)− µ
ū(t0) = ūt0

(10)

where 0 < α < 1, (λ̄, µ) ∈ R2, and λ̄ 6= 0 and
t0 ≥ 0 is the initial time. Then

ū(t) ≥
(
ūt0 −

µ

λ̄

)
Eα
[
λ̄(t− t0)α

]
+
µ

λ̄
(11)

Proof. This lemma can be proved using the sim-
ilar approach used in the proof of the lemma
(3). �

Lemma 5. [39] Consider x̂(t) ∈ R+ be a contin-
uous and derivable function. Then for any t ≥ t0

c
t0D

α
t

[
x̂(t)− x̂∗ − x̂∗ ln

x̂(t)

x̂∗

]
≤
(

1− x̂∗

x̂(t)

)
c
t0D

α
t x̂(t),

x̂∗ ∈ R+, ∀ α ∈ (0, 1)

(12)

4. Mathematical analysis

In this section, we present the fundamental math-
ematical requisites like the existence, uniqueness,
non-negativity, and boundedness of the solutions,
as desired in any population dynamics.

4.1. Existence and Uniqueness of the
system

We investigate the existence and uniqueness of the
solutions of the fractional-order system (6) in the
region B × [t0, T ] where

B =
{

(S, I, Y ) ∈ R3 : max {|S|, |I|, |Y |} ≤ Ψ,
min {|S|, |I|, |Y |} ≥ Ψ0} and T < +∞.

(13)

Theorem 1. For each X0 = (S0, I0, Y0) ∈ B,
there exists a unique solution X(t) ∈ B of the
fractional-order system (6) with initial condition
X0, which is defined for all t ≥ 0

Proof. We denote X = (S, I, Y ) and X̄ =
(S̄, Ī, Ȳ ).
Consider a mapping
M(X) = (M1(X),M2(X),M3(X)) and

M1(X) = r1S

(
1− S + I

k

)(
1

1 + fY

)
− SI

− p1Y S

mY + S

M2(X) = SI − c1Y I

mY + I
− γ1I

M3(X) = δ1Y

(
1− hY

S + I

)
(14)

For any X, X̄ ∈ B it follows from equation (14)
that

‖M(X)−M(X̄)‖
= |M1(X)−M1(X̄)|
+ |M2(X)−M2(X̄)|+ |M3(X)−M3(X̄)|

(15)
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|M1(X)−M1(X̄)|

=

∣∣∣∣r1S

(
1− S + I

k

)
− SI − p1Y S

mY + S
− r1S̄

(
1− S̄ + Ī

k

)
+ S̄Ī +

p1Ȳ S̄

mȲ + S̄

∣∣∣∣
=

∣∣∣∣r1(S − S̄)− r1

k
S (S + I)− SI − p1Y S

mY + S
− r1

k
S̄
(
S̄ + Ī

)
+ S̄Ī +

p1Ȳ S̄

mȲ + S̄

∣∣∣∣
≤
∣∣∣∣r1(S − S̄)

∣∣∣∣+
r1

k

∣∣∣∣(S2 − S̄2)

∣∣∣∣+
(r1

k
+ 1
) ∣∣∣∣(SI − S̄Ī)

∣∣∣∣+
p1

m

∣∣∣∣(S − S̄)

∣∣∣∣
+ p1

∣∣∣∣(Y − Ȳ )

∣∣∣∣
≤ r1|S − S̄|+

2r1

k
Ψ|S − S̄|+

(r1

k
+ 1
)

Ψ|S − S̄|+
(r1

k
+ 1
)

Ψ|I − Ī|

+
p1

m
|S − S̄|+ p1|Y − Ȳ |

|M2(X)−M2(X̄)|

=

∣∣∣∣(SI − S̄Ī)− γ1(I − Ī)−
(

c1Y I

mY + I

)
+

(
c1Ȳ Ī

mȲ + Ī

)∣∣∣∣
≤ Ψ|S − S̄|+ Ψ|I − Ī|+ γ1|I − Ī|+

c1

m
|I − Ī|+ c1|Y − Ȳ |

|M3(X)−M3(X̄)| =
∣∣∣∣δ1Y

(
1− hY

S + I

)
− δ1Ȳ

(
1− hȲ

S̄ + Ī

)∣∣∣∣
≤ δ1|Y − Ȳ |+ δ1h

∣∣∣∣ Y 2

S + I
− Ȳ 2

S̄ + Ī

∣∣∣∣
≤ δ1|Y − Ȳ |+ δ1h

∣∣∣∣(Y 2 − Ȳ 2)(S + I)− Y 2(S − S̄)− Y 2(I − Ī)

(S + I)(S̄ + Ī)

∣∣∣∣
≤ δ1|Y − Ȳ |+ δ1h

∣∣∣∣(Y 2 − Ȳ 2)

(S̄ + Ī)

∣∣∣∣+ δ1h

∣∣∣∣ Y 2(S − S̄)

(S + I)(S̄ + Ī)

∣∣∣∣+ δ1h

∣∣∣∣ Y 2(I − Ī)

(S + I)(S̄ + Ī)

∣∣∣∣
≤ δ1|Y − Ȳ |+

δ1hΨ

Ψ0
|Y − Ȳ |+ δ1h

4Ψ2
0

|Y 2(S − S̄)|+ δ1h

4Ψ2
0

|Y 2(I − Ī)|

≤ δ1|Y − Ȳ |+
δ1hΨ

Ψ0
|Y − Ȳ |+ δ1hΨ2

4Ψ2
0

|(S − S̄)|+ δ1hΨ2

4Ψ2
0

|Y 2(I − Ī)|

Then equation (15) becomes,

‖M(X)−M(X̄)‖ ≤ r1|S − S̄|+
2r1

k
Ψ|S − S̄|+

(r1

k
+ 1
)

Ψ|S − S̄|+
(r1

k
+ 1
)

Ψ|I − Ī|

+
p1

m
|S − S̄|+ p1|Y − Ȳ |+ Ψ|S − S̄|+ Ψ|I − Ī|+ γ1|I − Ī|

+
c1

m
|I − Ī|+ c1|Y − Ȳ |+ δ1|Y − Ȳ |+ 2δ1hΨ|Y − Ȳ |+ δ1|Y − Ȳ |

+
δ1hΨ

Ψ0
|Y − Ȳ |+ δ1hΨ2

4Ψ2
0

|(S − S̄)|+ δ1hΨ2

4Ψ2
0

|Y 2(I − Ī)|

≤
{
r1 +

(
3r1

k
+ 2

)
Ψ +

p1

m
+
δ1hΨ2

4Ψ2
0

}
|S − S̄|+

{(r1

k
+ 2
)

Ψ + γ1 +
c1

m

+
δ1hΨ2

Ψ2
0

}
|I − Ī|+

{
p1 + c1 + δ1 +

δ1hΨ

Ψ0

}
|Y − Ȳ |

‖M(X)−M(X̄)‖ ≤ L‖X − X̄‖
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where

L = max

{(
r1 +

(
3r1

k
+ 2

)
Ψ +

p1

m
+
δ1hΨ2

4Ψ2
0

)
,(r1

k
+ 2
)

Ψ + γ1 +
c1

m
+
δ1hΨ2

Ψ2
0

,

p1 + c1 + δ1 +
δ1hΨ

Ψ0

}
Therefore M(X) obeys Lipschitz condition which
implies the existence and uniqueness of solution
of the fractional-order system (6). �

4.2. Non-negativity and boundedness

Consider the set

B+ =

{
(S, I, Y ) ∈ B : S ∈ R+, I ∈ R+

and Y ∈ R+

}
where R+ is the set of all non-negative real num-
bers.

Theorem 2. All the solutions of the fractional-
order system (6) initiating in the region B+ are
non-negative and bounded uniformly.

Proof. For the proof we follow the approach used
in [22].
First, we prove that the solutions S(t) that initi-
ate in B+ are non-negative i.e., S(t) ≥ 0 for all
t ≥ t0. Let us assume that is not true, then there
exists t > t0 such that

S(t) > 0, t0 ≤ t < t1

S(t1) = 0,

S(t+1 ) < 0, t+ = {t : t ≥ t1}
(16)

Based on (16) and the first equation of system (6)
we have

c
t0D

α
t1S(t1)|S(t1)=0 = 0 where 0 < α < 1

(17)
Using Lemma (1), we get S(t+1 ) = 0, which is
a contradiction as S(t+1 ) < 0. Hence S(t) ≥ 0
for all t ≥ t0. In similar way we can get
I(t) ≥ 0, Y (t) ≥ 0 for all t ≥ t0.
Now to prove the boundedness of all the solution
of system initiated in the region B+, we define
the function V (t) = S(t) + I(t) + Y (t), then we
have,

c
t0D

α
t V (t) + ηV (t)

= r1S

(
1− S + I

k

)(
1

1 + fY

)
− SI − p1Y S

mY + S

+ SI − c1Y I

mY + I
− γ1I + δ1Y

(
1− hY

S + I

)
+ ηS

+ ηI + ηY

≤ r1S −
r1

k
S(S + I)− p1Y S

mY + S
− c1Y I

mY + I
− γ1I

+ δ1Y −
δ1hY

2

I + S
+ ηS + ηI + ηY

≤ (r1 + η)S − r1

k
S2 + Y (δ1 + η)− δ1h

2Ψ
Y 2 + (η − γ1)I

≤ (r1 + η)S − r1

k
S2 + Y (δ1 + η)− δ1h

2Ψ
Y 2

≤ −r1

(
S − k(r1 + η)

2r1

)2

+
k(r1 + η)2

4r1
− δ1h

2Ψ(
Y − Ψ(δ1 + η)

δ1h

)2

+
Ψ(δ1 + η)2

2δ1h

≤ k(r1 + η)2

4r1
+

Ψ(δ1 + η)2

2δ1h
where η = γ1. By Lemma 3 we have,

V (t) ≤
(
V (t0)− k(r1 + η)2

4r1
− Ψ(δ1 + η)2

2δ1h

)
Eα

[
− η(t− t0)α

]
+
k(r1 + η)2

4r1
+

Ψ(δ1 + η)2

2δ1h

→ k(r1 + η)2

4r1
+

Ψ(δ1 + η)2

2δ1h
, t→∞

(18)

Hence, all the solution of the fractional-order sys-
tem (6) which initiate in B+ are restricted to the
region Γ, where

Γ =

{
(S, I, Y ) ∈ Ω̄+|S + I + Y ≤ k(r1+η)2

4r1

+Ψ(δ1+η)2

2δ1h
+ ε, ε > 0

}
(19)

this completes the proof of theorem. �

5. Equilibrium points

The fractional-order system (6) has the following
biologically feasible equilibrium points.

(1) The trivial or vanishing equilibrium
E1(0, 0, 0) which always exists. In an eco-
logical sense, trivial equilibrium is impor-
tant since all populations will never be-
come extinct simultaneously.

(2) The axial equilibrium E2(k, 0, 0) where
there is only susceptible prey, which al-
ways exists.
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(3) The disease-free equilibrium

E3(S3, 0, Y3) where S3 = hk(r1(h+m)−p1)
fkp1+hr1(h+m) ,Y3 =

k(r1(h+m)−p1)
fkp1+hr1(h+m) .

The disease-free equilibrium E3 exists if
and only if r1(h+m) > p1.

(4) The predator-free equilibrium

E4(S4, I4, 0) where S4 = γ1, I4 = r1(k−γ1)
k+r1

which exists if and only if <0 > 1 where
<0 = k

γ1
. <0 is the basic reproduction

number of the epidemic theory deter-
mined with help of next generation matrix
method [41].

(5) The positive or endemic equilib-
rium E∗(S∗, I∗, Y ∗): From the equation
of predator nullcline we obtain Y = S+I

h .
Solving susceptible prey and infected prey
nullcline equations and substituting Y ∗

gives,

I∗ =
c1S
∗ −m(S∗)2 + γ1mS

∗

−c1 − γ1h+ hS∗ − γ1m+mS∗
,

Y ∗ =
S∗ (S∗ − γ1)

(h+m) (S∗ − γ1)− c1
.

Substituting I∗ and Y ∗ in susceptible prey
nullcline equation gives the following fifth
degree polynomial equation,

ρ0S
∗5 + ρ1S

∗4 + ρ2S
∗3

+ρ3S
∗2 + ρ4S

∗ + ρ5 = 0
(20)

where ρ0,ρ1,ρ2,ρ3,ρ4 and ρ5 are given in
the appendix.
I∗ and Y ∗ are uniquely defined if S∗ is

a solution of the above equation (20). If
S∗ 6= 0 is a real positive solution of the
polynomial equation (20), then I∗ and Y ∗

are real and positive if,

c1 + γ1h+ γ1m

h+m
< S∗ <

c1 + γ1m

m
.

For the parameters provided in section 9
with f = 0.05,m = 5, h = 0.5, k = 350
equation (20) has a unique non-zero posi-
tive real root S∗ = 41.59 for which the cor-
responding I∗ = 50.57 and Y ∗ = 164.31.

6. Local stability analysis

Throughout this section, we investigate the lo-
cal stability of the equilibrium points of the
fractional-order system (6). For local stability
analysis of the positive equilibrium, we use the
Routh-Hurwitz criterion.

6.1. Local stability of E1(0, 0, 0)

The Jacobian matrix of the fractional-order sys-
tem (6) is not well-defined at the equilibrium
point E1(0, 0, 0). In order to show that E1 is un-
stable, it is sufficient to prove that not all the
trajectories initiated in the neighborhood of E1

approach E1. Suppose a trajectory which initi-
ated with Y (0) = 0 and S(t) > 0 , then we have
Y (t) = 0 but S(t) > 0 ∀ t. Hence

1

S
.ctD

α
t S(t) = r1

(
1− S + I

k

)
− I > r1

2

=⇒ c
tD

α
t S(t) > S

(r1

2

)
Now, if S and I are small enough then by using
Lemma 4,

S(t) > S0Eα

[r1

2
(t− t0)

]
for t ≥ t0. Therefore the trajectory cannot ap-
proaches to E1. Hence E1 is locally asymptoti-
cally unstable.

6.2. Local stability of E2(k, 0, 0)

The Jacobian matrix of the fractional-order sys-
tem (6) is not well defined at the axial equilib-
rium E2(k, 0, 0). To prove that E2 is unstable we
presume that E2 is locally asymptotically stable
(LAS). Now suppose a trajectory which is initi-
ated with Y0 > 0 and either I0 > 0 or S0 > 0.
Hence either It > 0 or St > 0 ∀ t. Therefore

c
tD

α
t Y (t) ≥ δ1Y

2
Then by using Lemma 4

Y (t) ≥ Y0Eα

[
δ1

2
(t− t0)

]
for t ≥ t0. Therefore the trajectory never ap-
proaches to E2. Hence E2 is locally asymptoti-
cally unstable.

6.3. Local stability of E3(S3, 0, Y3)

Theorem 3. If <0 < 1 + c1+χ
γ1m

then the disease-

free equilibrium E3 of the fractional-order system
(6) is locally asymptotically stable under the con-
dition 2δ1 >

p1
m and r1 >

p1
m .

Proof. The Jacobian matrix of system (6) at E3

is given by

JE3 =

 J11 J12 J13

0 J22 0
J31 J32 J33


where J11 =

h((2h+fk+m)p1−(h+m)2r1)
(h+fk)(h+m)2

,

J12 = −h((h+m)r1−p1)(fkp1+(h+m)(k(h+fk)+hr1))
(h+fk)(h+m)(fkp1+h(h+m)r1) ,
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J13 = −hp1((h2+2fkh+fkm)r1−fkp1)
(h+fk)(h+m)2r1

,

J22 = h(h+m)r1(m(k−γ1)−c1)−kp1(fc1+m(h+fγ1))
m(fkp1+h(h+m)r1) ,

J31 = δ1
h ,J32 = δ1

h ,J33 = −δ1.
The eigenvalues of the Jacobian matrix of the
system at the equilibrium point E3 are the roots
of the following equation

(J22 − σI)
(
σ2 −Aσ +B

)
= 0 (21)

where

A =
hp1(fk + 2h+m)− (h+m)2 (δ1(fk + h) + hr1)

(h+m)2(fk + h)
,

B =
δ1 (r1(h+m)− p1) (fkp1 + hr1(h+m))

r1(h+m)2(fk + h)
.

The characteristic equation have the following
roots,

σI =
hr1(h+m) (m (k − γ1)− c1)− kp1 (c1f +m (γ1f + h))

m (fkp1 + hr1(h+m))

σ2 =
hp1(fk + 2h+m)− (h+m)2 (δ1(fk + h) + hr1)

2(h+m)2(fk + h)

− Λ̂

2
√
r1(h+m)2(fk + h)

σ3 =
hp1(fk + 2h+m)− (h+m)2 (δ1(fk + h) + hr1)

2(h+m)2(fk + h)

+
Λ̂

2
√
r1(h+m)2(fk + h)

Λ̂ =

√
−2p1r1(h+m)2

(
h2r1(fk + 2h+m)

+δ1(fk + h)(fk(3h+ 2m)− hm)

)
× p2

1

(
h2r1(fk + 2h+m)2 + 4δ1fk(h+m)2(fk + h)

)
+ r1(h+m)4 (hr1 − δ1(fk + h)) 2

If <0 < 1 + c1+χ
γ1m

then |arg(σI)| = π > απ
2 where

χ = kp1(c1f+m(γ1f+h))
hr1(h+m) .

The eigenvalues σ2,3 have negative real parts if
2δ1 >

p1
m and |arg(σ2,3)| = π > απ

2 , ∀ 0 < α < 1.
Therefore according to Matignon’s condition [42],
the disease-free equilibrium E3 is locally asymp-
totically stable if <0 < 1+ c1+χ

γ1m
with the condition

that 2δ1 >
p1
m and r1 >

p1
m . �

6.4. Local stability of E4(S4, I4, 0)

Theorem 4. The predator-extinction equilib-
rium point E4 of the system (6) is locally asymp-
totically unstable if <0 > 1.

Proof. The predator-free equilibrium E4 exists
for <0 > 1. The Jacobian matrix of system (6) at
E4 is given by

JE4 =

 − r1γ1
k − (k+r1)γ1

k
fr1γ1(γ1−k)−p1(k+r1)

k+r1
r1(k−γ1)
k+r1

0 −c1

0 0 δ1


The eigenvalues of the Jacobian matrix of the sys-
tem at E4 are the roots of the following equation

(δ1 − ΛY )

(
Λ2 +

r1γ1

k
+
γ1r1 (k − γ1)

k

)
= 0

Clearly one eigenvalue of the characteristic poly-
nomial is ΛY = δ1. Therefore the system (6) is
locally asymptotically unstable at E4. �

6.5. Local stability of E∗

The Jacobian matrix of system (6) at E∗ is given
by

JE∗ =

 V1 V2 V3

V4 V5 V6

V7 V8 V9


where

V1 =
r1 (k − I∗ − 2S∗)

fkY ∗ + k

− mp1 (Y ∗)2 + I∗ (mY ∗ + S∗)2

(mY ∗ + S∗)2

V2 = −S
∗ (fkY ∗ + k + r1)

fkY ∗ + k

V3 = S∗
(
fr1 (−k + I∗ + S∗)

k (fY ∗ + 1)2 − p1S
∗

(mY ∗ + S∗)2

)
V4 = I∗

V5 =
(S∗ − γ1) (mY ∗ + I∗)2 − c1m (Y ∗)2

(mY ∗ + I∗)2

V6 = − c1 (I∗)2

(mY ∗ + I∗)2

V7 =
δ1h

(
Ŷ ∗
)2

(I∗ + S∗)2

V8 =
δ1h (Y ∗)2

(I∗ + S∗)2

V9 =
δ1 (−2hY ∗ + I∗ + S∗)

I∗ + S∗

and the corresponding characteristic equation is
of the form

σ3 + ω1σ
2 + ω2σ + ω3 = 0 (22)

where ωi,(i = 1, 2, 3) are given in the Appendix.
By Routh-Hurwitz stability criterion the positive
equilibrium E∗ will be locally asymptotically sta-
ble if ω1 > 0, ω3 > 0 and ω1ω2 > ω3.

7. Global stability analysis

In this section, we study the global asymptotic
stability of the disease-free equilibrium point and
the positive equilibrium point by constructing
suitable Lyapunov functions.
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Theorem 5. If <0 < k
(
S3 − c1

m

)−1
then the

disease-free equilibrium E3 is globally asymptoti-
cally stable.

Proof. Proof of the theorem is given in the Ap-
pendix. �

Theorem 6. The positive equilibrium E∗ is glob-
ally asymptotically stable with respect to solu-
tions initiating in the interior of the region Γ if

L2 = L1

(
1 + r1

k(1+fY ∗)

)
and r1

k(1+fY ∗) >
p1

m2Y ∗ .

Proof. Proof of the theorem is given in the Ap-
pendix. �

8. Bifurcation analysis

Throughout this section, we analyze the possi-
bility of occurrence of Hopf-bifurcation at the
disease-free equilibrium point E3 and positive
equilibrium E∗. Oscillating behavior is one of
the most frequent dynamical behavior appears in
the nonlinear mathematical study of population
dynamics, which lead to the Hopf-bifurcation of
the system.

From the equation (21), the characteristic equa-
tion of the Jacobian matrix of the system at E3

has a pair of purely imaginary eigenvalues for
A = 0 and B > 0 which implies,

r1 >
2hp1 +mp1

h2 + 2hm+m2

f >
h2r1 + 2hmr1 − 2hp1 +m2r1 −mp1

kp1

c1 >
m (hr1(h+m) (k − γ1)− kp1 (γ1f + h))

fkp1 + hr1(h+m)

δ1 =
h
(
p1(fk + 2h+m)− r1(h+m)2

)
(h+m)2(fk + h)

(23)

Since we are discussing the effect of fear for the
model, so we use rate of fear f as the bifurcation
parameter. Again the characteristic equation of
JE∗ is of the form,

σ3 + ω1σ
2 + ω2σ + ω3 = 0 (24)

The positive equilibrium E∗ experiences a Hopf
bifurcation for some free parameter say f at a
threshold value f = f∗ if ω1(f∗), ω2(f∗), ω3(f∗) >
0, ∆ = ω1(f∗)ω2(f∗)− ω3(f∗) = 0 and ∂∆

∂f (f∗) 6=
0. Next, we mention Matignon’s criterion for the
existence of a Hopf bifurcation when the order
α of the fractional derivative passes through the
threshold value α = α∗.

Theorem 7. [44] (Existence of Hopf bifurca-
tion) When the bifurcation parameter α passes

through the critical value α = α∗ ∈ (0, 1), the
fractional-order system (6) undergoes a Hopf bi-
furcation at any equilibrium point E if the follow-
ing conditions hold

(a) the Jacobian matrix of the system at the
equilibrium point E has a pair of complex
conjugate eigenvalues λ̂2,3 = u± iv where

u > 0 and one negative real root λ̂1.
(b) m̂(α∗) = α∗ π2 −min1≤i≤3 | arg(λ̂i)| = 0.

(c) dm̂(α)
dα |α=α∗ 6= 0 (transversality condition)

9. Numerical simulation

Throughout this section, we compare the analyti-
cal findings using a biologically plausible parame-
ter set. Approximate solutions for our fractional-
order system are determined using the general-
ized Adams–Bashforth–Moulton type predictor-
corrector scheme [43]. We took the major-
ity of our base parameter values from the eco-
epidemiological study of pelicans in the Salton sea
by Chattopadhyay et al. [35].

r = 3/day, c = 0.05/day, γ = 0.24/day,

δ = 0.09/day, λ = 0.006/day, m = 1

Additionally, we take f = 0.2, p = 0.03/day,
h = 0.2.
With these parameter values,

r1 =
3

0.006
, f = 0.5, p1 =

0.03

0.006
, m = 1,

c1 =
0.05

0.006
, γ1 =

0.24

0.006
, δ1 =

0.09

0.006
, h = 0.2.

Now, we fix total capacity of the prey to be
k = 75. For the choice of parameter values men-
tioned above, S3 = 45.76 and

(
c1
m + γ1

)
= 48.33

satisfying S3 − c1
m − γ1 < 0. Equivalently, <0 <

k
(
S3 − c1

m

)−1
, which is the condition for global

stability of E3 obtained analytically in Theorem
5. With these set of parameter values the equi-
librium points of the fractional-order system (6)
are

E3 = (45.7692, 0, 228.846), E4 = (40., 30.4348, 0)

Under the above parameters no positive equilib-
rium appears. Between the two equilibria, E4

is unstable (Theorem 4) and Theorem 5 is sat-
isfied for global asymptotic stability of E3. It is
observed that all the trajectories of the system
(6) initialed at different values approach to the
disease-free equilibrium E3, see Figure 1. Next,
we consider f = 0.05,m = 5, h = 0.5 and
k = 350 along with the other parameters men-
tioned above. For these parameters S3 = 328.46,(
c1
m + γ1

)
= 41.66 and S3 − c1

m − γ1 > 0 which is

equivalently <0 > k
(
S3 − c1

m

)−1
. The equilibrium
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points of the fractional-order system (6) which ex-
ist under these parameters are
E2 = (350, 0, 0), E3 = (328.462, 0, 656.923),
E4 = (40, 182.353, 0),
E∗ = (41.5882, 40.5682, 164.313). Among these
equilibria, E3 is unstable since the Theorem 5 is
not satisfied for the parameter set. From numer-
ical simulations, it is found that trajectories of
the system tend to the positive equilibrium E∗

with the increase in time irrespective of the ini-
tial value (Figure 5). This suggests that the posi-
tive equilibrium E∗ has a large domain of attrac-
tion. Again we set the parameter values h = 0.04,
k = 75 together with p1,m, γ1, δ1 as mentioned in
the beginning of section 9. From the first condi-
tion in equation (23),

r1 > 4.9926

So we fix r1 = 1
0.006 , then from the second con-

dition f > 0.466311. Again we fix f = 0.5,
then from third condition c1 > 1.59729, so we
fix c1 = 0.05

0.006 . Finally for the fourth condition
δ1 = 0.0124456 which implies δ → 0, i.e., the re-
production rate of predator population becomes
very very small. For r1, c1, δ1 as above, keep-
ing other parameter values fixed with f = 0.6
and initial population (55, 75, 190), the eigenval-
ues of the Jacobian matrix of the system at the
disease-free equilibrium E3 are λ̂1 = −46.156,
λ̂2,3 = 0.0143594 ± 0.244213i. From the second
condition of Theorem 7,

α∗ =
2

π
arctan

∣∣∣∣ 0.244213

0.0143594

∣∣∣∣ = 0.962611 ≈ 0.962

and from the last condition,

dm̂

dα

∣∣∣∣
α=α∗

=
π

2
6= 0

which implies that the transversality condition
holds. Hence the fractional-order system (6)
at the disease-free equilibrium E3 experiences a
Hopf bifurcation when the bifurcation parame-
ter α passes through a critical value α∗ ≈ 0.962,
see Figure 2. Our main interest is to discuss the
fear induced in the prey as an anti-predator reac-
tion. We fix the rate of fear f as a free parame-
ter. The system (6) exhibits oscillatory behaviour
at the disease-free equilibrium E3 for f = 0.7,
r1 = 1/0.006, c1 = 0.05/0.006, δ1 = 0.0124456
and α = 0.98, see Figure 3. We take the initial
population (55, 75, 190) and α = 0.98 with the
fear coefficient f as a free parameter. It is ob-
served that increasing the fear effect f from f =
0.466311 the disease-free equilibrium E3 becomes
unstable due to a Hopf bifurcation when the bifur-
cation parameter f passes through a critical value

f∗ = 0.48, see Figure 4. Again we set the parame-
ter set f = 0.05,m = 5, h = 0.5, k = 350 together
with other parameter values as mentioned in the
beginning of section 9. In Figure 5, we plot the
trajectories of the system (6) for α = 0.99 with
initial population (55, 170, 450) which approach to
E∗(41.59, 40.57, 164.31). Moreover, for these pa-
rameter values ω1 > 0, ω3 > 0 and ω1ω2−ω3 > 0,
which confirms that the Routh-Hurwitz stability
criterion satisfies.
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(a) (b)

(c) (d)

Figure 1. Phase diagram of the sys-
tem (6) at the disease-free equilibrium
E3 with different initial values with
α = 0.9.

(a)

(b)

Figure 2. Bifurcation diagram of
the system at E3 with respect to the
bifurcation parameter α.

Figure 3. Time series of the
fractional-order system (6) at E3 for
f = 0.7 and α = 0.98

(a)

(b)

Figure 4. Bifurcation diagram of
the system at E3 with respect to the
fear effect f for α = 0.98

In Figure 6, we compute orbits with above param-
eters and α = 0.99 from several starting points
and observe that all trajectories of the system
(6) approach to the same positive equilibrium
E∗(41.59, 40.57, 164.31). This suggests that E∗

has a large domain of attraction. We fix the pa-
rameter values f = 0.05,m = 5, h = 0.5, k = 350
together with the parameter values mentioned in
the beginning of section 9 and keep γ1 as free
parameter. For γ1 = 0.12

0.006 and α = 1 it is ob-
served that for all the trajectories of the system
(6) undergoes a Hopf bifurcation, see Figure 7
and Figure 8. Increasing γ1 from γ1 = 0.12

0.006

to γ1 = 0.135
0.006 , it is observed that the positive

equilibrium E∗ undergoes a backward Hopf bi-
furcation at γ1 = 0.1284/0.006, see Figure 9.
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(a)

(b)

Figure 5. (a) Time series of positive
equilibrium point E∗ for α = 0.99, (b)
Phase diagram of positive equilibrium
point E∗ for α = 0.99.

Figure 6. Phase portrait of the pos-
itive equilibrium E∗ of the system (6)
for α = 0.99.

For γ1 = 0.07
0.006 the eigenvalues of the Jacobian

matrix of the system at the positive equilibrium
E∗ are λ̂1 = −19.0552, λ̂2,3 = 0.849491±32.1521i.
From Theorem 7,

α∗ =
2

π
arctan

∣∣∣∣ 32.1521

0.849491

∣∣∣∣ = 0.983184 ≈ 0.983

and
dm̂

dα

∣∣∣∣
α=α∗

=
π

2
6= 0,

Figure 7. Time series of the
fractional-order system (6) for
γ1 = 0.12

0.006 and α = 1

Figure 8. Phase diagram of the
fractional-order system (6) for γ1 =
0.12
0.006 and α = 1

(a) (b)

(c)

Figure 9. Bifurcation diagram of
the system at E∗ with respect to mor-
tality rate of infected prey γ1 for α =
1.
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(a) (b)

(c)

Figure 10. Bifurcation diagram of
the system at E∗ with respect to the
bifurcation parameter α.

Figure 11. Time series of the system
(6) for γ1 = 0.07

0.006 α = 0.99.

Figure 12. Phase diagram of the
system for γ1 = 0.07

0.006 and α = 0.99.

Hence Hopf bifurcation occurs in the system (6)
at the positive equilibrium E∗ when the bifurca-
tion parameter α passes through a critical value
α∗ = 0.983, see Figure 10. For γ1 = 0.07

0.006 and
α = 0.99 all the trajectories of the system (6)
shows oscillatory behaviour via a Hopf bifurca-
tion, see Figure 11 and Figure (12). Increasing
γ1 from γ1 = 0.087

0.006 to γ1 = 0.099
0.006 , it is observed

that at the positive equilibrium E∗ the system (6)
undergoes a backward Hopf bifurcation when the
bifurcation parameter γ1 passes through a critical
value γ∗1 = 0.093

0.006 , see Figure 13.

(a) (b)

(c)

Figure 13. Bifurcation diagram of
the system at E∗ with respect to mor-
tality rate of infected prey γ1 for α =
0.99.

For h = 05, k = 2500, f = 0.05 along with other
parameters as mentioned in section 9 and ini-
tial population (55, 170, 450) all the population
coexists with population E∗(40.93, 154.9, 39.18)
(Figure 14). For f = 0.12 the eigenvalues
of the Jacobian matrix of the system at the
positive equilibrium E∗ are λ̂1 = −20.8432,
λ̂2,3 = 2.29661± 70.1413i. From Theorem 7,

α∗ =
2

π
arctan

∣∣∣∣70.1413

2.29661

∣∣∣∣ = 0.979163 ≈ 0.979

and
dm̂

dα

∣∣∣∣
α=α∗

=
π

2
6= 0.

Hence a Hopf bifurcation occurs in the fractional-
order system (6) at the positive equilibrium E∗

when the bifurcation parameter α passes through
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a critical value α∗ = 0.979, see Figure 15. With a
increase in the fear coefficient all the trajectories
of the system (6) at the positive equilibrium E∗

undergoes a Hopf bifurcation. In Figure 16, the
oscillatory behaviour of all the population is pre-
sented for f = 0.12 and α = 0.98. Increasing f
from f = 0.05 to f = 0.18, it is observed that the
positive equilibrium undergoes a forward Hopf bi-
furcation when the bifurcation parameter f passes
through a critical value f∗ = 0.1, see Figure 17.

(a) (b)

(c) (d)

Figure 14. Time series and phase
diagram of the system for
f = 0.05, α = 0.98.

(a) (b)

(c)

Figure 15. Bifurcation diagram of
the system at E∗ with respect to the
bifurcation parameter α.

(a) (b)

(c) (d)

Figure 16. Time series and phase
diagram of the system for f = 0.12
α = 0.98.
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(a) (b)

(c)

Figure 17. Bifurcation diagram of
the system at E∗ with respect to to
fear coefficient f for α = 0.98.

9.1. Impact of the disease on predators in
the absence of susceptible prey

In the absence of susceptible prey both the in-
fected prey and predator populations become ex-
tinct, and the system approaches the trivial equi-
librium E1. Analytical discussion of the situa-
tion can be found in literature [37]. Here we
are exploring this scenario numerically for dif-
ferent values α. We fix the parameter values
m = 1, c1 = 0.03

0.006 , γ1 = 0.01
0.006 , δ1 = 0.05

0.006 , h = 0.2
and consider other parameters to be 0. From Fig-
ure 18, it is observed both the infected prey and
predator populations approach towards extinc-
tion for the initial population (I = 75, Y = 120).
The behaviour of the infected prey and predator
towards extinction under different values α is pre-
sented in Figure 19. Increasing the order α, the
time duration of extinction for both the species
become reduced.

10. Conclusion and discussion

In this paper, we investigate a modified eco-
epidemiological model incorporating the fear ef-
fect. The model equations are constructed with
the help of Caputo fractional-order differential
equations. Fundamental requisites such as exis-
tence, uniqueness, non-negativity, and bounded-
ness of the solutions of the system are discussed.

(c)

Figure 18. Time series of the sys-
tem in absence of susceptible prey for
α = 0.9.

(a) (b)

Figure 19. (a),(b) Time series of the
system when S = 0. Infected prey
and predator approach towards ex-
tinction for different values of α.

Biologically possible equilibrium states of the
model are determined. The basic reproduction
number <0 of the epidemiology theory is deter-
mined. Local and global asymptotic stabilities of
the equilibrium states are presented. The disease-
free equilibrium E3 is globally asymptotically sta-

ble if <0 < k
(
S3 − c1

m

)−1
, where <0 is the basic

reproduction number of the epidemic. The global
stability condition of the endemic case, i.e., the
positive equilibrium, is also discussed. We deter-
mine the threshold parameter values for which
the disease-free case and the endemic case be-
come unstable. In equation (23) we present a
parametric condition for which the disease-free
equilibrium loses its stability due to a Hopf bifur-
cation. With biologically plausible parameters,
we conduct numerical simulations to visualize the
system’s behaviour near the equilibrium points.
To explore the role of the order (α) of the dif-
ferential equations towards the stability of the
equilibrium states, we use Matignon’s theorem.
Global stability of the system at the disease-free
equilibrium E3 is presented in Figure 1. The tra-
jectories of the system at the equilibrium E3 with
α as a free parameter are presented in Figure
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2. Applying Matignon’s theorem, we determine
the threshold value of α as α∗ ≈ 0.962. When
α passes through the critical value α = α∗, the
endemic equilibrium E∗ of the system becomes
unstable via a Hopf bifurcation. An increase
in the fear coefficient f through a critical value
f∗ = 0.48 (with α = 0.98), the system shows oscil-
latory behaviour at the equilibrium E3 via a Hopf
bifurcation (Figure 4). From an ecological point
of view, an increase in fear due to predation risk
above a threshold value decreases the prey pop-
ulation’s reproduction rate, forcing the system
towards extinction. Global asymptotic stability
of the positive equilibrium can be observed in Fig-
ure 6. Behaviour of the system at E∗ with respect
to α can be seen in Figure 10. Mass mortality
of the pelicans was taking place mainly because
of consuming infected tilapias in the Salton Sea.
Numerically, it is observed that the parameter γ1

could stabilize the system dynamics at the posi-
tive equilibrium when it passes through a critical
value γ1 = γ∗1 = 0.093/0.006 (Figure 13). For
a different set of parameters, the system shows
oscillatory behaviour through a Hopf bifurcation
when α passes through α = α∗ ≈ 0.979 (Figure
15). It is also observed that the rate of fear in
prey due to predation risk is responsible for the
stability of the endemic equilibrium. An increase
in the rate of fear due to predation risk enforces
the endemic equilibrium to lose its stability via a
Hopf bifurcation (Figure 17). In ecological terms,
all the populations exhibit oscillatory behaviour
with a certain increase in the rate of fear due to
predation risk. From the numerical simulations,
it is observed that below some threshold value
0 < α < α∗ all the population coexists. So, it
can be concluded that the system’s fraction-order
(α) can help to control the coexistence of all the
species populations. In the absence of suscepti-
ble prey, both infected prey and predator extinct
after a specific time. The effect of infected prey
on the existence of the predator population is
discussed numerically in subsection 9.1. It is ob-
served that with an increase in the order α, the
time of extinction for both the species get reduced
(Figure 18).

We have already given brief summary of the
models in [34–37] at the introduction part. As
per the authors’ information, fewer studies have
been done in epidemic models with the fear ef-
fect. In [46], Wu et al. studied a delayed epi-
demic model incorporating fear effect in prey
and refuge. Pal investigated a modified Lesli-
Gower eco-epidemiological model with fear ef-
fect in prey [47] and observed that an increase

in the fear coefficient stabilizes the system dy-
namics. In [49], Sha et al. investigated an eco-
epidemiological model with disease in the prey.
They assumed that the induced fear also reduces
disease transmission along with reproduction and
obtained fear-induced backward bifurcation and
bi-stability. Our model differs from the model
proposed by Sha et al. [49] in functional response,
fear effect (no impact of fear effect in disease
transmission ), and type of the equations. In
a fractional-order sense, Mandal et al. [48] dis-
cussed an epidemic model with the fear effect of
an infectious disease. Our model is more realistic
than the models studied in [35,37] in the sense of
fear induced in prey and the type of the differen-
tial equations. The reproduction rate in the prey
population is affected because of the predation
risk that controls the system dynamics. Again,
the fractional-order of the equations may help to
control the stability of the coexistence equilib-
rium state. Interested readers can modify this
model by involving non-local, additionally, non-
singular fractional derivatives such as the ABC
derivative. Holling type IV functional response
can be assumed as most prey shows antipredator
defense mechanism. Group defense is a popular
anti-predator response where the prey defends
themselves by making groups; see [45]. More-
over, one can investigate the model, including the
impact of fear in the disease transmission by in-
volving fractional derivatives, see [49].
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Appendix A.

Coefficients of S∗ in (20)

ρ0 = fkm(h+ 2m),

ρ1 = −c1fk(h+ 3m)− fkp1(h+m)− (h+ 2m) (hr1(h+m)− km (−3γ1f + h+m)) ,

ρ2 = c1

(
−k
(
−2γ1f(h+ 3m) + h2 + 5hm+ 5m2

)
+ fkp1 + hr1(2h+ 3m)

)
+ c2

1fk

− kp1(h+m) (−3γ1f + h+m) + (h+ 2m) (r1(h+m) (3γ1h+ k(h+m))

− 3γ1km (−γ1f + h+m),

ρ3 = c1

(
−
(
γ1k

(
γ1f(h+ 3m)− 2

(
h2 + 5hm+ 5m2

))
− 2kp1 (−γ1f + h+m)

+ r1

(
k
(
3h2 + 8hm+ 5m2

)
+ 2γ1h(2h+ 3m)

)
− c2

1 (k (γ1f − 2(h+ 2m)) + hr1)

− γ1 ((h+ 2m) (γ1km (γ1f − 3(h+m)) + 3r1(h+m) (γ1h+ k(h+m)))

− 3kp1(h+m) (−γ1f + h+m),

ρ4 = − (c1 + γ1(h+m))
(
c1 (γ1k(h+ 3m)− r1 (γ1h+ 3hk + 4km) + kp1) + c2

1k

− γ1 (kp1 (γ1f − 3(h+m)) + (h+ 2m) (r1 (γ1h+ 3k(h+m))− γ1km)),

ρ5 = −k (c1 + γ1(h+m)) 2 (c1r1 + γ1 (r1(h+ 2m)− p1)) .

Proof of Theorem 5

Proof. At the equilibrium point E3 the system (6) reduces to,

r1S3

(
1− S3 + I3

k

)(
1

1 + fY3

)
− S3I3 −

p1Y3S3

mY3 + S3
= 0,

δ1Y3

(
1− hY3

S3 + I3

)
= 0.

Consider the Lyapunov function,

W(S, I, Y ) = N1

(
S − S3 − S3 ln

S

S3

)
+N2I +N3

(
Y − Y3 − Y3 ln

Y

Y3

)
.

We calculate the α-order derivative of W(S, I, Y ) along the solution of the system (6) and applying
Lemma 5 we get,

c
t0D

α
tW(S, I, Y )

= N1

(
S − S3

S

)
c
t0D

α
t S(t) +N2

c
t0D

α
t I(t) +N3

(
Y − Y3

Y

)
c
t0D

α
t Y (t)

= N1

(
S − S3

S

)[
r1S

(
1− S + I

k

)(
1

1 + fY

)
− SI − p1Y S

mY + S

]
+N2

(
SI − c1Y I

mY + I
− γ1I

)
+N3

(
Y − Y3

Y

)[
δ1Y

(
1− hY

S + I

)]
≤ N1(S − S3)

[
r1

(
1− S + I

k

)
− I − p1Y

mY + S
− r1

(
1− S3

k

)
1

1 + fY3

+
p1Y3

mY3 + S3

]
+N2

(
SI − c1Y I

mY + I
− γ1I

)
+N3 (Y − Y3)

[
δ1

(
1− hY

S + I

)
− δ1

(
1− hY3

S3

)
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≤ N1(S − S3)

[
r1fY3

k(1 + fY3)
− r1(S + I)

k
+

r1S3

k(1 + fY3)
− I − p1Y

mY + S

+
p1Y3

mY3 + S3

]
+N2

(
SI − c1Y I

mY + I
− γ1I

)
+N3δ1h(Y − Y3)

[
−δ1hY

S + I
+

δ1hY3

S3 + I3

]
≤ N1(S − S3)

[
r1fY3

k(1 + fY3)
−
(r1

k

) (S − S3) + I + fY3(S + I)

(1 + fY3)
− I +

p1(S − S3)

m2Y3

− p1S3(S − S3)(Y − Y3)

(mY + S)(mY3 + S3)

]
+N2

(
SI − c1Y I

mY + I
− γ1I

)
+N3δ1h(Y − Y3)[

Y (S − S3) + Y (I − I3)

(S + I)(S3 + I3)
− (Y − Y3)

S3 + I3

]
≤ fN1r1 (S − S3)Y3

k(fY3 + 1)
− r1

k
(S − S3)2 −N1(S − S3)

[
I +

I + fY3(S + I)

1 + fY3

]
+
N1p1

m2Y3
(S − S3)2 − (S − S3)(Y − Y3)

N1P1S3

(mY + S)(mY3 + S3)
− N3δ1hS(Y − Y3)2

(S + I)S3

+
(S − S3)(Y − Y3)N3δ1h

(S + I)S3
+
N3δ1hY3(Y − Y3)

S3
+N2

(
SI − c1Y I

mY + I
− γ1I

)
≤ N1r1f (S − S3)Y3

k(fY3 + 1)
+N1(S − S3)2

[
p1

m2Y3
− r1

k

]
− N3δ1hS

(S + I)S3
(Y − Y3)2

+

[
(S − S3)(Y − Y3)

{
N3δ1h

(S + I)S3
− N1p1S

(mY + S)(mY3 + S3)

}
+N1S3

{
I +

I + fY3(S + I)

1 + fY3

}
+
N3δ1hY3Y

S3
−N1S

{
I +

I + fY3(S + I)

1 + fY3

}]
+N2

(
SI − c1Y I

mY + I
− γ1I

)
.

Suppose p1
m2Y3

< r1
k and θ1 < S, I, Y < θ2. We choose N1 and N3 such that

N3

N1
> min

{
2θ2S3

(
θ2

2(m+ 1) (fY3 + 2) (mY3 + S3) + θ2p1Y3 (fY3 + 1)
)

δ1hθ2
1(m+ 1) (fY3 + 1) (mY3 + S3)

,
2θ3

2p1S
2
3

δ1hθ2
1(m+ 1)Y3

}
,

N3

N1
<

2θ3
2S3 (θ2 − fr1Y3)

δ1h (fY3 + 1)
(
Y3

(
θ2

1 + S3

)
+ 2θ2

1 (Y3 + 1)
) .

Then c
t0D

α
tW(S, I, Y ) < N2

(
SI − c1Y I

mY+I − γ1I
)

.

Clearly, Ct0D
α
tW(S, I, Y ) ≤ 0 when S3 − c1

m − γ1 < 0 which is equivalent to <0 < k
(
S3 − c1

m

)−1

Hence the proof. �

Proof of Theorem 6:

Proof. At the equilibrium point E∗ system (6) reduces to,

r1S
∗
(

1− S∗ + I∗

k

)(
1

1 + fY ∗

)
− S∗I∗ − p1Y

∗S∗

mY ∗ + S∗
= 0,

S∗I∗ − c1Y
∗I∗

mY ∗ + I∗
− γ1I

∗ = 0,

δ1Y
∗
(

1− hY ∗

S∗ + I∗

)
= 0.

(25)

To study the globally asymptotically stability of E∗ the following positive definite Lyapunov function
is considered:

W(S, I, Y ) = L1

(
S − S∗ − S∗ ln

S

S∗

)
+ L2

(
I − I∗ − I∗ ln

I

I∗

)
+ L3

(
Y − Y ∗ − Y ∗ ln

Y

Y ∗

)
.
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We calculate the α-order derivative of W(S, I, Y ) along the solution of the system (6) and applying
Lemma 5 we get,

c
t0D

α
tW(S, I, Y ) = L1

S − S∗

S
c
t0D

α
t S(t) + L2

I − I∗

I
c
t0D

α
t I(t) + L3

Y − Y ∗

Y
c
t0D

α
t Y (t)

= L1
S − S∗

S

[
r1S

(
1− S + I

k

)(
1

1 + fY

)
− SI − p1Y S

mY + S

]
+ L2

I − I∗

I

[
SI − c1Y I

mY + I
− γ1I

]
+ L3

Y − Y ∗

Y

[
δ1Y

(
1− hY

S + I

)]
≤ L1(S − S∗)

[
r1

(
1− S + I

k

)
− I − p1Y

mY + S

− r1

(
1− S∗ + I∗

k

)(
1

1 + fY ∗

)
+ I∗ +

p1Y
∗

mY ∗ + S∗

]

+ L2(I − I∗)
[
S − c1Y

mY + I
− γ1 − S∗ +

c1Y
∗

mY ∗ + I∗
+ γ1

]
+ L3(Y − Y ∗)

[
δ1

(
1− hY

S + I

)
− δ1

(
1− hY ∗

S∗ + I∗

)]
≤ L1r1fY

∗

k(1 + fY ∗)
(S − S∗)− L1r1

k(1 + fY ∗)
(S − S∗)2 − L1

(
1 +

r1

k(1 + fY ∗)

)
(S − S∗)(I − I∗) +

L1p1

m2Y ∗
(S − S∗)2 − L1p1S

(mY + S)(mY ∗ + S∗)
(Y − Y ∗)(S − S∗)

+ L2(I − I∗)(S − S∗) +
L2c1

m2Y ∗
(I − I∗)2 − L2c1I(Y − Y ∗)(I − I∗)

(mY + I)(mY ∗ + I∗)

+ δ1hL3

[
(S − S∗)(Y − Y ∗)
(S + I)(S∗ + I∗)

− (Y − Y ∗)2(S − I)

(S + I)(S∗ + I∗)
− Y (I − I∗)(Y − Y ∗)

(S + I)(S∗ + I∗)

]
≤ L1r1fY

∗

k(1 + fY ∗)
(S − S∗)− L1r1

k(1 + fY ∗)
(S − S∗)2 − (S − S∗)(I − I∗)[

L1

(
1 +

r1

k(1 + fY ∗)

)
− L2

]
+

L1p1

m2Y ∗
(S − S∗)2 +

L2c1

m2Y ∗
(I − I∗)2

− L1p1S

(mY + S)(mY ∗ + S∗)
(Y − Y ∗)(S − S∗)− L2c1I(Y − Y ∗)(I − I∗)

(mY + I)(mY ∗ + I∗)

+ δ1hL3

[
(S − S∗)(Y − Y ∗)
(S + I)(S∗ + I∗)

− (Y − Y ∗)2(S − I)

(S + I)(S∗ + I∗)
− Y (I − I∗)(Y − Y ∗)

(S + I)(S∗ + I∗)

]
≤ L1r1fY

∗

k(1 + fY ∗)
(S − S∗)−

[
L1r1

k(1 + fY ∗)
− L1p1

m2Y ∗

]
(S − S∗)2 − (S − S∗)(I − I∗)[

L1

(
1 +

r1

k(1 + fY ∗)

)
− L2

]
+

L2c1

m2Y ∗
(I − I∗)2

− L1p1S

(mY + S)(mY ∗ + S∗)
(Y − Y ∗)(S − S∗)− L2c1I(Y − Y ∗)(I − I∗)

(mY + I)(mY ∗ + I∗)

+ δ1hL3

[
(S − S∗)(Y − Y ∗)
(S + I)(S∗ + I∗)

− (Y − Y ∗)2(S − I)

(S + I)(S∗ + I∗)
− Y (I − I∗)(Y − Y ∗)

(S + I)(S∗ + I∗)

]
≤ −

[
L1r1

k(1 + fY ∗)
− L1p1

m2Y ∗

]
(S − S∗)2 − (S − S∗)(I − I∗)(

L1

(
1 +

r1

k(1 + fY ∗)

)
− L2

)
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+

[
L1r1fY

∗

k(1 + fY ∗)
(S − S∗) +

L2c1

m2Y ∗
(I − I∗)2

− L1p1S

(mY + S)(mY ∗ + S∗)
(Y − Y ∗)(S − S∗)− L2c1I(Y − Y ∗)(I − I∗)

(mY + I)(mY ∗ + I∗)

+ δ1hL3

{
(S − S∗)(Y − Y ∗)
(S + I)(S∗ + I∗)

− (Y − Y ∗)2(S − I)

(S + I)(S∗ + I∗)
− Y (I − I∗)(Y − Y ∗)

(S + I)(S∗ + I∗)

}]
.

Suppose

L2 = L1

(
1 +

r1

k(1 + fY ∗)

)
r1

k(1 + fY ∗)
>

p1

m2Y ∗
,

and θ1 < S, I, Y < θ2.
We choose L1 and L3 such that

2θ2
2θ2p1S

∗ (I∗ + S∗) (S∗ + Y ∗)

δ1θ4
1h(m+ 1) (mY ∗ + S∗)

<
L3

L1
<

2θ2p1S
∗2Y ∗ (I∗ + S∗)

δ1hθ1(m+ 1) (mY ∗ + S∗)
(
Y ∗ (IY ∗ + S∗) + θ2

1 (2Y ∗ + 1)
) .

Then c
t0D

α
tW(S, I, Y ) < 0.

�

Expressions of ωi,(i = 1, 2, 3) in equation (24),

ω1 =
c1mz

2

(mz + y)2
+ γ1 −

r1(k − 2x− y)

fkz + k
− δ1(−2hz + x+ y)

x+ y
+

mp1z
2

(mz + x)2
− x+ y,

ω2 = −c1mr1z
2(k − 2x− y)

(fkz + k)(mz + y)2
+

c1δ1hy
2z2

(x+ y)2(mz + y)2
− c1δ1mz

2(−2hz + x+ y)

(x+ y)(mz + y)2
+

c1m
2p1z

4

(mz + x)2(mz + y)2

+
c1myz

2

(mz + y)2
−
δ1hxz

2
(
fr1(−k+x+y)
k(fz+1)2

− p1x
(mz+x)2

)
(x+ y)2

− δ1r1(−k + 2x+ y)(−2hz + x+ y)

(x+ y)(fkz + k)

− γ1r1(k − 2x− y)

fkz + k
+
xy (fkz + k + r1)

fkz + k
− r1x(−k + 2x+ y)

fkz + k
− δ1mp1z

2(−2hz + x+ y)

(x+ y)(mz + x)2

− γ1δ1(−2hz + x+ y)

x+ y
+
δ1x(−2hz + x+ y)

x+ y
− δ1y(−2hz + x+ y)

x+ y
+

γ1mp1z
2

(mz + x)2
− mp1xz

2

(mz + x)2

− xy + γ1y,

ω3 =

(
− δ1

(x+ y)2

)[
c1myz

2(x+ y)(−2hz + x+ y)

(mz + y)2
− c1hy

3z2

(mz + y)2
− xy(x+ y)(−2hz + x+ y)

+
c1m

2p1z
4(x+ y)(−2hz + x+ y)

(mz + x)2(mz + y)2
− c1hmp1y

2z4

(mz + x)2(mz + y)2
− mp1xz

2(x+ y)(−2hz + x+ y)

(mz + x)2

+
c1hr1y

2z2(k − 2x− y)

(fkz + k)(mz + y)2
+
r1x(x+ y)(k − 2x− y)(−2hz + x+ y)

fkz + k

+
xy(x+ y) (fkz + k + r1) (−2hz + x+ y)

fkz + k
− c1mr1z

2(x+ y)(k − 2x− y)(−2hz + x+ y)

(fkz + k)(mz + y)2

+
c1hxy

2z2 (fkz + k + r1)

(fkz + k)(mz + y)2
− hxyz2

(
p1x

(mz + x)2
− fr1(−k + x+ y)

k(fz + 1)2

)

+
c1hmxz

4
(
fr1(−k+x+y)
k(fz+1)2

− p1x
(mz+x)2

)
(mz + y)2

− hx2z2

(
fr1(−k + x+ y)

k(fz + 1)2
− p1x

(mz + x)2

)
+
γ1mp1z

2(x+ y)(−2hz + x+ y)

(mz + x)2
+ γ1y(x+ y)(−2hz + x+ y)

+ γ1hxz
2

(
fr1(−k + x+ y)

k(fz + 1)2
− p1x

(mz + x)2

)
− γ1r1(x+ y)(k − 2x− y)(−2hz + x+ y)

fkz + k

]
.
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