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In this paper, our aim is to obtain a new generalization of the well-known
Rhoades’ contractive condition.
S-normed space. We extend the Rhoades’ contractive condition to S-normed
spaces and define a new type of contractive conditions. We support our theo-
retical results with necessary illustrative examples.

To do this, we introduce the notion of an

() er |

1. Introduction

Metric fixed point theory is important to find
some applications in many areas such as topol-
ogy, analysis, differential equations etc. So differ-
ent generalizations of metric spaces were studied
(see 1], [2], [3], [4], [5], |6] and [7]). For exam-
ple, Mustafa and Sims introduced a new notion
of “G-metric space” [6]. Mohanta proved some
fixed point theorems for self-mappings satisfying
some kind of contractive type conditions on com-
plete G-metric spaces [5].

Recently Sedghi, Shobe and Aliouche have defined
the concept of an S-metric space in [7] as follows:

Definition 1. [7/ Let X be a nonempty set and
S: X x X xX —[0,00) be a function satisfying
the following conditions for oll x,y,z,a € X :
(S1) S(x,y,2) =0 if and only if x =y = z,

(S2) S(z,y,2) < S(w,2,a)+5(y,y,a)+5(z, 2, a).

Then § is called an S-metric on X and the pair
(X,S) is called an S-metric space.

Let (X, d) be a complete metric space and T be a
self-mapping of X. In [8], T is called a Rhoades’
mapping if the following condition is satisfied:
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(R25) d(Tz,Ty) < max{d(z,y),d(z,Tz),

d(y,Ty),d(x, Ty),d(y, Tx)},

for each z,y € X, x # y. Any fixed point result
was not given for a Rhoades’ mapping in [§]. Since
then, many fixed point theorems were obtained by
several authors for a Rhoades’ mapping (see [9],
[10] and [11]). Furthermore, the Rhoades’ con-
dition was extended on S-metric spaces and new
fixed point results were presented (see [12], [13]
and [14]). Now we recall the Rhoades’ condition
on an S-metric space.

Let (X,S) be an S-metric space and T be a self-
mapping of X. In [12] and [14], the present au-
thors defined Rhoades’ condition (S25) on (X,S)
as follows:

(S25) S(Tx,Tx,Ty) < maz{S(z,x,y),
STz, Tz, x),S(Ty, Ty, y),
S(Ty? Ty7 x)? S(T:E’ T:E’ y)}’

for each =,y € X, = # v.
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In this paper, to obtain a new generalization of
the Rhoades’ condition, we introduce the notion
of an S-normed space. We give some basic con-
cepts and topological definitions related to an S-
norm. Then, we study a new form of Rhoades’
condition (R25) on S-normed spaces and obtain
a fixed point theorem. In Section [2, we introduce
the definition of an S-norm on X and investigate
some basic properties which are needed in the se-
quel. We investigate the relationships among an
S-norm and other known concepts by counter ex-
amples. In Section [3| we define Rhoades’ condi-
tion (NS25) on an S-normed space. We study a
fixed point theorem using the condition (NS25)
and the notions of reflexive S-Banach space, S-
normality, closure property and convexity. In Sec-
tion [4] we investigate some comparisons on S-
normed spaces such as the relationships between
the conditions (NR25) and (NS25).

2. S-normed spaces

In this section, we introduce the notion of an S-
normed space and investigate some basic concepts
related to an S-norm. We study the relationships
between an S-metric and an S-norm (resp. an
S-norm and a norm).

Definition 2. Let X be a real vector space. A
real valued function ||.,., .|| : X x X x X — R is

called an S-norm on X if the following conditions
hold:

(NS1) [lz,y, 2 = 0 and ||z,y,z[| = 0 if and only
ife=y=2=0,
(NS2) [Aa, Ay, Azl = [N 2,9, 2] for all A € R
and x,y,z € X,
(NS3) [lz + 2",y + ¢,z + || < [0,2,2]| +
||07y7$/’| + ||07 Z7y/H nf(){r1 all :l:7y7 Z7m/?y,7 Z, E X'

The pair (X, ||.,.,.||) is called an S-normed space.

Example 1. Let X =R and ||.,.,.|| : X x X X
X — R be the function defined by

2,9, 21| = |2 + [y] + |2,

for all z,y,z € X. Then (X,|.,.,.]|) is an S-
normed space. Indeed, we show that the function
II., -, .|| satisfies the conditions (NS1), (NS2) and
(NS3).

(NS1) By the definition, clearly we have
lz,y,z|| > 0 for all x,y,z € X. If ||x,y,z| =
lz| + |y| + |2| = 0, we obtain x =y =2z =0.

(NS2) Let z,y,z € X and A € R. Then we have
1Az, Ay, Az|| = [Ax| + |Ay| + [Az]
= Az + ATyl + Al ]=]
= Al (|z] + [yl + [2])
= A=, y, 2.

(NS3) Let x,y,2,2',y,2" € X. Then we obtain

|z +2 y+y,z+7 | =|z+2|+ |y + ]
+ |z + 7|
< x|+ ‘x” + |yl + ‘y/’
+ |z + ||
< 0] + || + |2
+10] + |y| + ||

+101+ |2+ [y/]

= HO,JJ,Z’H + ||0,y,z'|]

+10, 2,4/l
Consequently, the function ||.,.,.| satisfies the
conditions (NS1), (NS2), (NS3) and so
(X, s+ -]l) is an S-normed space.

Now, we show that every S-norm generates an
S-metric.

Proposition 1. Let (X, ||.,.,.||) be an S-normed
space. Then the function S : X x X x X — [0, 00)
defined by

S(m,y,z):Hx—y,y—z,z—xH (1)

is an S-metric on X.

Proof. Using the condition (NS1), it can be eas-
ily seen that the condition (S1) is satisfied. We
show that the condition (S2) is satisfied. By
(NS3), we have

S(xayaz) = Hx—%y—%Z—xH

<0,z —a,a—x||+ 0,y —a,a -y
+ 0,2 —a,a — z||
= S(x7 x? a) + S(y7 y7 a) + S(Z’ Z’ a)’

r—a+a—y,y—a+a—=z
,z2—ata—x

for all x,y,z,a € X.

Then, the function § is an S-metric and the pair
(X, S) is an S-metric space. O
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We call the S-metric defined in as the S-metric
generated by the S-norm ||.,.,.|| and denoted by
SiL)-

Corollary 1. FEvery S-normed space is an S-

meltric space.

Example 2. Let X be a nonempty set, (X, d) be
a metric space and S : X x X x X — [0,00) be
the function defined by

S(z,y,2) = d(z,y) + d(x, z) + d(y, 2),

for all x,y,z € X. Then the function S is an
S-metric on X [7].

Let X = R. If we consider the usual metric d on
X, we obtain the S-metric S defined as

S(x,y,z):|m—y|—|—|x—z[—|—|y—z|,

for all xz,y,z € R. Using Proposition |1, we see
that S is generated by the S-norm defined in Fz-
ample[]. Indeed, we have

S(z,y,2) =
= |z —y|l+|y—z[+|z— 2

Hx—y,y—z,z—xH

= lz—yl+lz—z[+ly—2|
= d(z,y) +d(z,z) +d(y, 2).
forall xz,y,z € X.

Lemma 1. An S-metric S generated by an S-
norm on an S-normed space X satisfies the fol-
lowing conditions

(1) S(z+a,y+a,z+a) =8(z,y,2),
(2) S(Az, Ay, \z) = [N S(,y,2),

for each x,y,z,a € X and every scalar .

Proof. The proof follows easily from the Propo-
sition [l O

We note that every S-metric can not be generated
by an S-norm as we have seen in the following ex-
ample:

Example 3. Let X be a nonempty set and the
function S : X x X x X — [0,00) be defined by

0 ;
sto )= { |

ifr=y=z

;. otherwise ’

for all x,y,z € X. Then the function S is an
S-metric on X. We call this S-metric is the dis-
crete S-metric on X. The pair (X,S) is called
discrete S-metric space. Now, we prove that this
S-metric can not be generated by an S-norm. On
the contrary, we assume that this S-metric is gen-
erated by an S-norm. Then the following equation

should be satisfied :

S(I7y7z) = ||33—?/,y—2a2—55||7

forallz,y,z € X.

If we consider the case © =y # z and |\ # 0,1
then we obtain

S(Azx, Ay, \z)
=0,Ay — 2),A(z — )| =1
# A S(z,y,2)
= A0,y — 2,2 —z[| = |A],

which is a contradiction with (NS2). Conse-
quently, this S-metric can not be generated by an
S-norm.

We use the following result in the next section.

Lemma 2. Let (X, |.,.,.]|) be an S-normed space.
We have

10,2 —y,y — 2] =110,y — =,z -y,

for each x,y € X.

Proof. By the condition (NS3), we get
10,0, 0[ + /0,0, 0]
10,y —z, -yl (2)

0,y —z 2 —yl| =
and
10,0, 0[[ + {0, 0, 0]

Using and we obtain |0,z —y,y — x| =
10,y =z, @ —yl|. O

”Ovyil‘axiyu <

‘We recall the definition of a norm on X as follows.

Let X be a real vector space. A real valued func-
tion ||.|| : X — R is called a norm on X if the
following conditions hold:

(N1) [jz|| > 0 for all z € X.

(N2) [|z|| = 0 if and only if x = 0 for all x € X.
(N3) [[Az|| = |A|||z]| for all A € R and z € X.
(N4) [l +yll < [[=]] + [ly[| for all z,y € X.

The pair (X, ||.||) is called a normed space.

We show that every norm generates an S-norm.
We give the following proposition.

Proposition 2. Let (X, ||.||) be a normed space
and the function |.,.,.]] : X x X x X — R be
defined by

2z, y, 2l = llzll + [yl + 1[=1], (4)



172 N. Tas, N. Ozgiir / IJOCTA, Vol.12, No.1, pp.169-183 (2022)

for all z,y,z € X. Then (X,|.,.,.]|) is an S-
normed space.

Proof. We show that the function ||., ., .|| defined
in satisfies the conditions (NS1), (NS2) and
(NS3).

(NS1) It is clear that ||z, y, z|| > 0 and ||z, y, z|| =
Oifand only if x =y =2 =0.

(NS2) Let A € Rand z,y,z € X. Then we obtain

1Az, Ay, Az|| = [[Az]] + |Ay]| + [[Az]]
= (ALl ATy [ AT 1=l
= (ALl + Nyl + 1=1)
= [Alllz,y, 2.

(NS3) Let x,y,2,2",y, 2" € X. Then we obtain

lz+2",y+v, 2+ 72

=z +2" +ly+ 9l + |z + 2|

< lll -+ 2"+ Nyl + [yl + 21+ 112
= (100 + (]| + [Izll + O[] + [ly]|

+ [l + 1ol + llz[l + 1/l

= 10,2, 2’| + [0, y, 2| + [0, 2, ¢/]|.

Consequently, the function |.,.,.|| satisfies the
conditions (NS1), (NS2), (NS3) and so
(X, |l-,-,-l) is an S-normed space. O

We have proved that every norm on X defines an
S-norm on X. We call the S-norm defined in ({4))
as the S-norm generated by the norm ||.|. For
example, the S-norm defined in Example [T]is the
S-norm generated by the usual norm on R.

There exists an S-norm which is not generated by
a norm as we have seen in the following example.

Example 4. Let X be a nonempty set and the
function ||.,.,.|| : X x X x X — R be defined by

lz,y, 2| =[x — 2y — 22| + |y — 22 — 22|
+ |z — 2y — 2z,

for all x,y,z € X. Then, the function |.,.,.|| is
an S-norm on X, but it is not generated by a
norm.

Now, we show that the conditions (NS1), (NS2)
and (NS3) are satisfied.

(NS1) By the definition, clearly we obtain
lz,y, 2| > 0 and ||z,y,z|| = 0 if and only if
r=y=z=0 foralzxyzeX.

(NS2) We have
Az, Ay, Az|| = [Ax — 2Dy — 2)z|
+ [A\y — 2z — 2)z|
+ [Az — 2y — 2)\z|

|z — 2y — 22|
=[N\ +]y— 22— 22|
+ |z — 2y — 2z|

= [Alllz,y, 2],

forall N e R and x,y,z € X.

(NS3) Let x,y,z,2',y, 2 € X. Then we obtain
e+ y+y', 2+ 7|
= ’x+x'—2y—2y/—2z—22/’
+ly+y — 2z — 22" — 22— 27|
+’z+z’—2y—2y’—2x—2x'|
< ‘23:4—22" + |a: — 2z"
+ |2 — 22| + |2y + 27/
+ |y — 22! | + |2 — 2y
+ 22+ 2¢/| + |z — 2¢/|
+ ‘y'—Qz‘
= 10,2, 2'[| + (|0, y, 2[| + 1|0, 2, 3]

Consequently, the function |.,.,.|| is an S-norm
on X.

On the contrary, we assume that this S-norm is
generated by a norm. Then the following equation
should be satisfied

[z, y, 2l = llzll + [lyll + (=1,

forall x,y,z € X.

If we consider ||z,0,0| and ||x,z,0| then we ob-
tain

[, 0,0[] = [l]| = || + [22] + [22] = 5 |2|,
2, 2,0} = 2[z] = [z[ + 2] + |42| = 6 ||

and so ||z|| = 5lz| and ||z|| = 3|z|, which is a
contradiction. Hence this S-norm is not gener-
ated by a norm.

Now we prove that every S-norm generate a norm.

Proposition 3. Let X be a nonempty set,
(X, .- -]l) be an S-normed space and the func-
tion ||.|| : X — R be defined as follows:

HxH = HvaaOH + H0,0,.T”,
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for all x € X. Then the function ||.|| is a norm
on X and (X, ||.||) is a normed space.

Proof. Using the conditions (NS1) and (NS2),
it is clear that we obtain the conditions (N1),
(N2) and (N3) are satisfied.

Now, we show that the condition (IN4) is satisfied.

(N4) Let x,y € X. By the condition (NS3), we
have

|z +yll = 110,z 4+ y,0[ +[[0,0,z + y]|
= 10,z +y,0[| + /0,0,y + z||
< /0,0,0[ + [0, 2, 0] + (0,0, y||
+ 10,0, 2| + ([0, 0,0[ + [0, 3,0

= [lzll + llyll
Consequently, the function ||.|| is a norm on X
and (X, ||.]]) is a normed space. O

We call this norm as the norm generated by the
S-norm ||., ., .||

Let X be a real vector space. New generaliza-
tions of normed spaces have been studied in re-
cent years. For example, Khan defined the notion
of a G-norm and studied some topological con-
cepts in G-normed spaces [15]. Now we recall the
definition of a G-norm and give the relationship
between a G-norm and an S-norm.

Definition 3. [15] Let X be a real vector space.
A real valued function ||.,., .|| : X x X x X — R is
called a G-norm on X if the following conditions
hold:

(NG1) ||z,y, 2| >0 and ||z, y, z|| = 0 if and only
ife=y=2z=0.

(NG2) ||z, y, z|| is invariant under permutations
of r,y, z.

(NG3) || Az, Ay, Az|| = || ||z, y, 2| for all X € R
and x,y,z € X.

(NG4) |z + 25y + ¢,z + 2| < o,y 2] +
|z’ ', 2| for all z,y,z,2",y, 2 € X.

(NGS5) ||z,y, z|| > [+, 0, 2| forall x,y,z € X.
The pair (X, ||.,.,.||) is called a G-normed space.

Proposition 4. Fvery G-normed space is an S-
normed space.

Proof. Using the conditions (NG1) and (NG3),
we see that the conditions (NS1) and (NS2) are
satisfied. We only show that the condition (NS3)
is satisfied.
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(NS3) Let z,y,2,2',y', 2 € X. Using the condi-
tions (NG2) and (NG4), we obtain

lz+ 2" y+y, 2+ 7|

=(z4+0)+2",0+ (y+y),2 + |

<|lz+0,0,04 2 + ||2",y + ', 2|

=110,0+ 2,0+ 2| + [,y + ¢/, 2]

< [10,0,00 + [0, 2, 2"l + [l2", y, Ol + 1|0, %/, =]

= 10,2, 2'|| + [0, y, 2[| + 1|0, 2, y/||.

Consequently, the condition (NS3) is satis-
fied. [l

The converse of Proposition [4] can not be always
true as we have seen in the following example.

Example 5. Let X = R and the S-norm be de-
fined as in Example [f} If we put x =1, y =5
and z = 0, the condition (NGS5) is not satisfied.
Indeed, we have

Hxay)zH = \$—2y—22]+|y—2x—2z|
+ |z — 2y — 2x|
=23

and

2+ 9,0, 2[| = |z +y — 22| + |22 + 2y + 22|
+ |z — 2y — 2z
= 30.

Hence this S-norm is not a G-norm on R.

Now we give the definitions of an open ball and a
closed ball on an S-normed space.

Definition 4. Let (X,|.,.,.||) be an S-normed
space. For given xq, a1, as € X and r > 0, the
open ball By?(xo,r) and the closed ball Bg? [, 7]
are defined as follows:

lez(l‘o,r) = {y € X Hy*any*alay*QQH < T}
and

Bgf['xﬂvr] = {y €X: Hy_x07y_a17y_a2” < T}'

Example 6. Let us consider the S-normed space
(X, .- -]l) generated by the usual norm on X,
where X = R? and

]l = ll(z1, z2) | = \/2] + 3,
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for all x € R?. Then the open ball B32(zq,r) in

R? is a 3-ellipse given by
B2 (wo,m) = {y € R?: [ly — ol + [ly — a1 + |ly — az] <7}

If we choose y = (y1,v2), vo = (1,1), a1 = (0,0),
az = (—1,—1) in R? and r = 5, then we obtain

yeR?: \/(y1 — 1)2 + (yo — 1)2
VY +ys ;

VW +1)2+ (2 +1)2 <5
(5)

Bgf (CL‘O, ’I") =

as shown in Figure[Id

Now we give the following example using an S-
norm which is not generated by a norm.

Example 7. Let X = R? and the function
I, -] + X x X x X — R be defined as in Ez-
ample[) Then we have

Iz, y, 2|

=l —2y—2z|+ |y — 22 — 22| + |z — 2y — 2z
= /(1 — 2y1 — 221)? + (w2 — 2y — 222)?

+ /(1 — 221 — 221)% + (y2 — 229 — 229)2

+ /(21 — 201 — 221)% + (22 — 292 — 212)2,

for all v = (z1,22), y = (y1,42), 2 = (21,22) €
R2. Then (R?,]|.,.,.||) is an S-normed space. The
open ball B3 (z,7) in R? is

B2 (z0,7) = {y € R* : |ly—z0,y—a1,y—as| <7}

If we choose y = (y1,), 0 = (1,1), ax = (0,0),
as = (—1,—1) in R? and r = 20, then we obtain

B3 (xo,7) = {

as shown in Figure [1Y

+V/9y7 + 9y
+/(3 = 3y1)% + (3 — 3y2)? < 20

y €R?: \/(3y1 +3)2 + (3y2 + 3)? }

(6)

Definition 5. Let (X,|.,.,.||) be an S-normed
space.

(1) A sequence {x,} in X converges to x if

and only if
lim ||0, z, — x,2 — z,| = 0.
n—oQ
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That is, for each € > 0 there exists ng € N
such that

10,2, — z, 2 — x| < e,

for alln > ng.
(2) A sequence {xy} in X is called a Cauchy
sequence if
lm ||z — Tm, Tm — 21, 1 — x| = 0.
n,m,l—oo

That is, for each € > 0 there exists ng € N
such that

”.’Bn — Ty Tm — L, L] — ':UTLH < g,
for all n,m,l > ny.

(3) An S-normed space is called complete if

each Cauchy sequence in X converges in
X.

(4) A complete S-normed space is called an
S-Banach space.

Proposition 5. Fvery convergent sequence in an
S-normed space is a Cauchy sequence.

Proof. Let a sequence {x,} in X be convergent
to z. For each € > 0, there exists ng € N such
that

£
99

10,z — 2,2 — || < 3

for all n > ng. We now show that for each ¢ > 0
there exists ng € N such that

Hxn — Ty Tm — T, L] — xn” <g,

for all n,m,l > ng. Using the condition (NS3),
we obtain

|Zn — Ty T — @, 1 — 24|

T —LT+L =Ty, Tm —
+r -z, —r+ T — TN

< |0, 2, — x,x — zp|| + |0, 2 — x, T — Ty |

+ 1|0, 2 — z, 2 — ]|
<stoti=c
3 3 3 7

Consequently, the sequence {x,,} in X is a Cauchy
sequence. O

The converse of Proposition [5| can not be always
true as we have seen in the following example.

Example 8. Let X = (0,1) C R and the function
|, ] : X x X x X — R be an S-norm gener-
ated by the usual norm on X. If we consider the

1
sequence {x,} = {} on X, then this sequence
n
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(a) The open ball which is corresponding
to the S-norm defined in .

175

(b) The open ball which is corresponding
to the S-norm defined in @

Figure 1. Some open balls in (R?, ||.,.,.|)

is a Cauchy sequence, but it is not a convergent
sequence on X.

Now we show that the sequence is a Cauchy se-
quence. For x,, Tm, x; € X, we obtain

m  ||lzn — Tp, T — 21, 2 — T |
n,m,l—o00
_ 1 11 11 1
= lim —_———— = =, = — —
nm,l—oo || T m m 171 n
1 1 1 1 1 1
= lim - — — — == -———1)=0
n,m,l—o00 n m m l l n

The sequence is convergent to 0 as follows:
lim [|0, 2, — z,x — z,|| = lim HO,% —-0,0— %H =0,
n—oo n—oo

for all x, € X. But 0 ¢ X. Consequently, the
sequence is not convergent on X.

3. A fixed point theorem on S-normed
spaces

In this section, we introduce the Rhoades’ con-
dition on an S-normed space and denote it by
(NS25). We prove a fixed point theorem using
this contractive condition.

At first, we give some definitions and a proposi-
tion which are needed in the sequel.

Definition 6. Let (X,|.,.,.||) be an S-normed
space and E C X. The closure of E, denoted
by E, is the set of all x € X such that there exists
a sequence {x,} in E converging to . If E = E,
then E s called a closed set.

Definition 7. Let (X,|.,.,.||) be an S-normed
space and A C X. The subset A is called bounded
if there exists r > 0 such that

Hoax_yvy_xn <,

for all x,y € A.

Definition 8. Let (X,|.,.,.||) be an S-normed
space and A C X. The S-diameter of A is de-
fined by

6°(A) =sup{[|0,z —y,y — x| : x,y € A}.

If A is bounded then we will write 6°(A) < oo.
Definition 9. Let X be an S-Banach space, A C
X andu e X.

(1) The S-radius of A relative to a given u €
X is defined by

ro(A) = sup{]|0,u — z,z —u|| : x € A}.
(2) The S-Chebyshev radius of A is defined by
r*(A) = inf{r](A) : u € A}.
(3) The S-Chebyshev centre of A is defined by
C(A)={ue A:r (A) =r*(A)}.

By Definition [§] and Definition [J] it can be easily
seen the following inequality:

r*(A) <r;(A) <6°(A).

Definition 10. A point v € A is called S-
diametral if r$(A) = 6°(A). If ri(A) < 6%(A),

then u is called non-S-diametral.

Definition 11. A convex subset of an S-Banach
space X has S-normal structure if every S-
bounded and convex subset of A having §°(A) > 0
has at least one non-S-diametral point.

Proposition 6. If X is a reflexive S-Banach
space, A is a nonempty, closed and convex subset
of X, then C*(A) is nonempty, closed and convex.

Proof. It can be easily seen by definition of
C*(A). O
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Now we introduce the Rhoades’ condition (NS25)
on an S-Banach space.

Definition 12. Let (X,|.,.,.||) be an S-Banach
space and T be a self-mapping of X. We define

(NS25) ||0,Tz — Ty, Ty — Tx||
10,2 —y,y — x|,
10, Tx — x,x — Tz||,
< maxq [0,Ty —y,y—Tyll, ¢,

for each x,y € X, x #y.

Lemma 3. [16] Let X be a Banach space. Then
X is reflexive if and only if for any decreasing
sequence {K,} of nonempty, bounded, closed and
convex subsets of X,

(]Kﬁ#ﬂ
n=1

Lemma 4. Let X be an S-Banach space. Then
X is reflexive if and only if for any decreasing
sequence {K,} of nonempty, bounded, closed and
convex subsets of X,

() Kn #0.
n=1

Proof. By the definition of reflexivity the proof
follows easily. O

Recall that the convex hull of a set A is denoted
by conv(A) and any member of this set conv(A)

has the form .
Zaixi7
i=1

where x; € A;,a; > 0 for all i =
n

ZO[Z' =1.

i=1

Now, we give the following fixed point theorem.

1,...,n and

Theorem 1. Let X be a reflexive S-Banach space
and A be a nonempty, closed, bounded and con-
vex subset of X, having S-normal structure. If
T : A — Ais a continuous self-mapping satis-
fying the condition (NS25) then T has a unique
fixed point in A.

Proof. At first, we show that the existence of
the fixed point. Let A be the family of every
nonempty, closed and convex subsets of A. Also
we assume that if F' € A then TF C F. The fam-
ily A is nonempty since A € A. We can partially
order A by set inclusion, that is, if F} C F5 then
) < Fs.

In A, if we define a decreasing net of subsets

S={F,:F, e Ajiel},

then by reflexivity, this net S has nonempty in-
tersection. Because it is a decreasing net of
nonempty, closed, bounded and convex subsets of
X. If we put Fy = () F; we have that Fj is in A
i€l

and is a lower bound of S.

Using Zorn’s Lemma, there is a minimal element,
denoted by F', in A as S is any arbitrary decreas-
ing net in A. We see that this F' is a singleton.

Assume that 6°(F) # (). Since F is nonempty,
closed and convex, C*(F') is a nonempty, closed
and convex subset of F'. We have that

and so C*(F) is a proper subset of F.

Let (F),)men be an increasing sequence of subsets
of I, defined by

Fy = C%(F) and Fy,+1 = conv(F, UTF,,),

for all m € N. If we denote the S-diameters of
these sets F}, by 67 = 6°(F}), we show that

o < 7°(F),
for all £ € N.
Using the (PM1I), we obtain
(1) For k =1,

01 = 0°(F1) = 0°5(C*(F)) < ri(F).
(2) If 67 < r*(F) for every k = 1,...,m then
Oy < ré(F).

m

We note that

Oppy1 = 0°(Fng1) = 6°(conv(Fy, UTF,,))
=0 (F, UTF,,).

By the definition of S-diameter, for any given
e > 0 there are 2’ and ¢/ in F,, U T(F),,) satis-

fying

5;;,14_1 —e< ||0,l’l - ylvy, - lj” é 5;971—1—1‘

We obtain the following three cases for 2/, y':

(1) 2/, y' € F,, or
(2) 2/ € F, and v € TF,, or
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(3) «', y € TF,.

Redefining 2’ and ¢’ as follows:
(1) 2’ =z and ¢ =y with z,y € F,,,
(2) ¢/ =x and ¢y =Ty with z,y € F,,
(3) 2/ =Tx and y = Ty with z,y € F,,.

We show that in any case
01 — € <1T3(F).

Case 1. By the definition of 4;, and the induction
hypothesis, we obtain

mr1— & <0,z =y, y—xl| <65 <r*(F) (7)

and so 4, | —e < r*(F).
Case 2. We obtain

mi1 — € <0,z =Ty, Ty — x|

with z, y € F,. Then by the definition of F},, we
have z,y € conv(F,,—1 UTF,,—1) and so there is
a finite index set I such that z = ) a;x;, with
i€l
Yai=1 o > 0and z; € Fp,_1 UTF,,_; for
el
any ¢ € I. We can separate the set I in two dis-
joint subsets, I = I} U I, such that if ¢ € I; then
x; € F,,—1 and if ¢ € Iy then x; € TF,,,_1.
Now redefining x; as x; = Tx; with z; € F,_1,
we obtain

i€l i€l
Substituting in ||0,z — Ty, Ty — ||, we get

10,2 = Ty, Ty — 2|l <> aill0,2; — Ty, Ty — a4
iely

+3 i, Tw; — Ty, Ty — Ty

i€ln

(8)

Applying the condition (NS25) to |0,Tz; —
Ty, Ty — Tz;||, we have

10, Ta; — Ty, Ty — Tz

10,2 —y,y — il 1|0, 2; — Ty, Ty — 4|,
< max

HQ"J*T%TZJ*Z/Hv HO,LEi 7Ty>Ty7Ii||7
Asx; € Fyq, Tx;,y € Fpyy, we have

(9)

”O)xl - Y,y — x’b” S TS(F)a
10, 25 — Ty, Ty — x4 < r¥(F),
|0, Tx; —y,y — Txi|]| < rs(F)

and replacing in @, we obtain

0, Tx; — Ty, Ty — T

<max{ TS(F)’ }
10,y =Ty, Ty — yl|, |0, zi — Ty, Ty — x|

Let us subdivide the index set I5 in three disjoint
subsets Iy = I21 U 122 U IS’ such that

121 ={iely:||0,Tx; — Ty, Ty — Tx;| <r(F)},
2 i€ly: ||0,Tx; — Ty, Ty — Tz
2 < HO,xi—Ty,Ty—xiH ’
3 i€ly: ||0,Tx; — Ty, Ty — Tz
2 <10,y = Ty, Ty — y||
Then using , we have

10,2 =Ty, Ty —z| < > «ll0,z; =Ty, Ty — zi|

ieluI2
+ > air®(F)+ > ail|0,y =Ty, Ty — y.
iel} iel3

(10)
Redefining Iy, I> and I3

L =NLUI} Ih=1)and I3 = I3. (11)
Then we have I = I; UL, U T3, with I; NIy = 0. If
j # kand > a; =1 then using , it becomes

el

10,2 =Ty, Ty — 2| < 3 al|0,2; = Ty, Ty — |

i€l
+ > air®(F) + Y o40,y — Ty, Ty — y||.
i€ly icl3

(12)

If Ap= ) a;and By = ) a; with > a;+Ao+
i€l i€ly i€l

By = 1. Using , we have

el
+Aor*(F) + Bo||0,y — Ty, Ty — y].
(13)

For each i € I, #; € Fp,_1 = conv(Fy,_2 U
TF,,—2), there is a finite set J;, such that

_E: J d
Tr; = ixi’

J€J;

(14)



178 N. Tas, N. Ozgiir / IJOCTA, Vol.12, No.1, pp.169-183 (2022)

with 27 € F,,_o UTF,, o, 8/ >0 and ZJ pl=1
JEJ;

for any j € J;. Let J; = Jl-l UJiQ, with JZ-1 ﬂJi2 =0

such that

= > plal+ Y plTal. (15)
jeJ} jeJ?
For each i € I; we have
10,2 — Ty, Ty — il
< X B0zl =Ty, Ty — ||
jegt ‘ ‘ (16)
+ > B0, Ta} — Ty, Ty — Taj]|.

jeJ?
Applying the condition (NS25) to HO,TQ:{ -
Ty, Ty — Tal||, we have

|0, Tz} — Ty, Ty — T | (17)

10, 2 “hy e
110, Tx —x a: —Tx]H
10,y — Ty,Ty yll,
10, Ta! —y,y — Tl
10, &) — Ty, Ty — 2|

Ak

< max

Since :L“f € F,,_9 and y € F},, we have

10,2] —y,y —ZCJH<7“(F)
10, e — o), 2 —Tx]H < r¥(F),
||O,T:L‘Z

v,y — Ta]| < r°(F).
By , we obtain

10, Tz} — Ty, Ty — T

< max{ TS(F)a Hoay - Tvay _ yHa }
Let J2 = J2 U J%2 U J% with J* 0. = () such
that

gn _J i€ J? 0, Tx] — Ty, Ty — Ta||
<r 5(F)
g2 — { jeJ? |0, Ta! — Ty, Ty — Txf” }
' <0,y =Ty, Ty —y| ’
g% _ { jeJ?: HO T:L’ — Ty, Ty — Tl }
' < 0,a] — Ty, Ty — ||

Using , we obtain

10,2 — Ty, Ty — | A
< X B0z —TyTy—ai|
jeJiug '
+ 2 BlIr(F)+ X B0,y =Ty, Ty —y.
e ieJ’?

(18)

Let us denote by
Ji=Jlu g, Ji=J% and Ji = J2.

Then using , we have

10,2; — Ty, Ty — x| < X2 B1)0,2] — Ty, Ty — 2|
. I
+ X Al () + 2 B0,y = Ty, Ty - y|.
ieJi ieJi

(19)
If A; = Zﬁf and B; = ZBZJ with Zﬁf +

i€y i€Jg jeJi

A; + B; = 1. Using , we obtain

10,2 = Ty, Ty — x| < 3 B0, 2] — Ty, Ty — 2|

jeJ]
+A;r*(F) + Bi||0,y — Ty, Ty — y||.
(20)

Using and ||0,x; — Ty, Ty — x;|| by , we

obtain
10,2 = Ty, Ty — 2| < 3 a; 32 B0, 2] — Ty, Ty — o]
i€eh  jeJ;
+ Z OéiAi+A0 T‘S(F)
iely

iely

Let A1 = ) a;A; and By = > o;B;. Then we
i€l i€ly

have

10,2 — Ty, Ty —z| < 3 a; 3 B)0,2] — Ty, Ty — 2]
el ]GJZ
+(A1 + Ag)r*(F) + (B1 + Bo)||0,y — Ty, Ty — ||
(21)

We note that

Zai Z 5{+ZaiAi+Ao+Za¢Bi+Bo = 1.

i€l jeJi iely i€l

Let us take K = (J ( U j> and denote the
iel; \JeJi

scalars by &. To each k relative to the pair (i, 5),

z] will be denoted by zy.

Using , we obtain

10,2 =Ty, Ty — || < > &0, zx

kek
+(A1 + Ao)r*(F) + (B1 + Bo)||0,y — Ty, Ty — y||,

— Ty, Ty — x|
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where > & + A1 + Ag + B1 + By = 1 and

keK
T € Fiy_o.

Repeating this process which is done for zj, we
get,

10,2 = Ty, Ty — z|| < Z;ﬂpIIO,%’p — Ty, Ty — x|
pe

m—1 m—1
+ Z AkrS(F)+ Z BkHO’y_Ty)Ty_y”)
k=0 k=0
(22)

where Y v, + Z(A +Bj)=1and z, € F} =
peP 1=

C*(F).

Hence ||0,z, —

, we obtain

Ty, Ty — zp|| < r*(F) and using

m—1
10,2 =Ty, Ty —z|| < > B0,y — Ty, Ty —y|
k=0

peP

(Z Tt Z Akz) *(F).
(23)

Let us turn to |0,y — Ty, Ty — y||. Since y €
conv(Fy—1 UTF,,—1), we have y = Y ayy; with

el
Ya;,=1,y, € Fp_1 UTF,,_1 and «; > 0 for all
i€l
1€ 1. Let I = [L1UIysuch that 1Nl = 0. Ifi € I

then y; € F,,—1 and if ¢ € I then y; € TF,,_1.
Let y; = T'y;. Then we can write

y=> aii+y aTy,
i€l i€ls

with y; € F,_1.
Substituting in ||0,y — Ty, Ty — y|| we get

10,y — Ty, Ty —y|| < ZI |0,y — Ty, Ty — yi|
iely
+ > |0, Ty; — Ty, Ty — Ty
i€la
(24)

Using the condition (NS25), we obtain

[0, Ty; — Ty, Ty — Tyi| (25)
10,y — v,y — will,
10, vi — Tyi, Tyi — yill,
< max<¢ [0,y =Ty, Ty —yl,
||07yl_Ty7Ty_yZH7
10, Ty — v,y — Tyl

Since y; € Fn—1, y € Fy,, we have
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10,y — v,y — yil| < r¥(F),
10,yi — Tyi, Ty — yil| < r5(F),
10, Ty; — v,y — Tyi|| < r¥(F).

Using , we obtain

0, Ty; — Ty, Ty — Ty
r*(F), 10,y — Ty, Ty —yl, }
< max
{ 10,95 — Ty, Ty — il

Redefining the index set Iy = I3 U 12 U I3 with

i €1y:|0,Ty; — Ty, Ty — Ty
< r5(F) ’
i €1s:1|0,Ty; — Ty, Ty — Ty
<0,y =Ty, Ty -y ’
i€y ||0,Ty; — Ty, Ty — Tyil|
< 0,ys = Ty, Ty — il

I3 =
I3 =

I3 =

Now using , we get

10,y =Ty, Ty—yl| < > — Ty, Ty — il
iehu@
+ > ar

(F)+ Y aill0,y — Ty, Ty —yl|.
iel} i€l?

OéiHani

(26)

We note that if > «; =1 then
iel?
10,y =Ty, Ty — yl <10, Ty; = Ty, Ty — Tyi

which is a contradiction.

Then > «; < 1 and using , we obtain

i€l?
10,y = Ty, Ty — y|
< L |0,4i — Ty, Ty — yi
S 2 7T s g 10v Ty Ty —uil

z€I1U13
1612

+20 7

ze[l

(27)

Ty

1612

with >
iehurd 1 - Z Q;
1612

+ =1.
zgl 1- Z Q
2612

&7

1-— ZOQ“

i€l

Let 1 = LUI, I = I3 and 3; =

Using , we obtain
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10,y — Ty, Ty — yll <> Bill0,y; — Ty, Ty — v

i€ly
+ > Bir? (28)
i€l
If Ag = > B, then using l) we have
i€l
10,y = Ty, Ty — yl|l <> Bill0,y; — Ty, Ty — v
i€ly
+ Aor®(F), (29)
with > 8 + A = 1 and y; € Fpo1 =

€l
conv(Fp,—oa UTF,,_2).

For each ¢ € I,
= > Ayl + ) ATy,
jEle jEJf

with yf € F9and ’yz-j = 1. So we obtain

JeJIUJ?
10,yi = Ty, Ty — il < > A0,y — Ty, Ty — ]|
]EJ
+ 3 A0, Ty] — Ty, Ty — Tyl |.
jeJ?
(30)

Using the condition (NS25), we have

10, Ty — Ty, Ty — Ty ||
10, Ty —yl,y! — Tyl ||,
< max 10,y — Ty, Ty — yl|,

10, Ty] —y,y — Ty]||,

Since yf € F,_o, Tyg € Fp—1 and y € F,, we
can write

10, ) — v,y — i || < rs(F),
0, Tyz,—y“yz Tny<7°(F)

and

10, Ty} — Ty, Ty — Ty] |
TS(F)aH()vy—T?%T?J—Z/H’ }
< max ; ; .
{ 10,y = Ty, Ty — o |

Let J? be the union of the disjoint sets J? =
JH U J2 U J? such that

g2 {J€J2 HOTyl Ty, Ty — Tyfll}
(2 bl

< 0,y] — Ty, Ty — ]|
J2e_ J G € TR0, Tyl — Ty, Ty - Ty]|
! <7r*(F)

J23:{J€J2 10, Ty} — Ty, Ty - Tyz\l}
' <10,y =Ty, Ty -yl

Using , we obtain

”any
< X Aoyl -
jestuI

+ X Ar(F)+ X A0y Ty, Ty —yl.
jeg? jeJs

Ty,Ty vill
Ty, Ty —y! ||

(31)

Now redefine the index sets J1 JHu J21 J? =
JQ2 JP = J23 and using we can write

10,y; =Ty, Ty —wil|
< > A0y =Ty, Ty —y|
jeJ}

+ X AR+ X A0,y — Ty, Ty —yll,
J€I? jeJs?

with 3 7/ + S 2/ + X 7/ =1
jed} jeJ? jeJ3?

Using the , we obtain

10,y — Ty,Ty yll
<S8 Y A0y - Ty, Ty — ||
i€l jeJil

+ 3 B8 Y A0,y —Ty, Ty —y
i€l jeJ3

B Y v+ A

i€l jeJ%.2

(32)

ré(F).

If > 6 > fygzlwehave
el jeJ?

10,y — Ty, Ty —yl| < |0,y — Ty, Ty -yl

which is a contradiction.

Hence > 3 > ’yij < 1 and using , we obtain

el jeJg?



A new generalization of Rhoades’ condition 181

10,y — Ty, Ty — y|
> B> v

i€l jeJil

< 0,y! — Ty, Ty — /||
1= > 6 > ' '

ich  jeJss
> B > v+ Ao

i€l jeJ?

ST

el jeJj?

*(F),
(33)

B > B8 X v+ Ao
. 1€lh jeJil iely jejl?
with + =1

1-S YA 1-S8 XA

i€ly jejg i€l jejg

> B X vl + Ao

el jeJ?

1- 36 3+

i€l jeJ?

dexset by K= |J | U j|, write {; for k € K
i€l jGJil

relative to (7, ), that is
> B >
ieh  jeJ?

:1—251275'

ich  jeJ?

Let A; = and denote the in-

Ck

Also we write y, for yf . Then using , we ob-
tain

10,y = Ty, Ty =yl < > Gll0,ye — Ty, Ty — yi
keK

+ (A1 + Ao)r*(F),

with > (x+ A1+ Ap =1 and yx € F—o.
keK
Repeating this process we get

10,y = Ty, Ty = yll <> Mll0, 5, — Ty, Ty — vyl
peP

m—1
+ ) Aprt(F),
k=0

m—1

where y, € F1 and > A\, + > Ap=1.
pEP k=0

Then [0,y — Ty, Ty — ypl < r*(F) and

m—1
10,y =Ty, Ty —yl < [ D X+ D> A | r°(F)
peP k=0

=r°(F).

Using , we get

m—1 m—1

< {2 Bet 2wt D A | r(F),
k=0 peEP k=0

m—1 m—1

k=0 peEP k=0

Consequently, we obtain ||0,z — Ty, Ty — z|| <
r*(F) and so

i1 — € < |0, =Ty, Ty — x| < ri(F).

Case 3. For z,y € F,,, we have

Opi1 —e <0, Tx =Ty, Ty — Tx|
10,2 —y,y — |,

10, T — x,x — Tx||,

10,y =Ty, Ty —y,

10,z =Ty, Ty — =],

10, Tz — y,y — Tz

< max

and repeating what has been done in Case 2, we
get

m1 — € <0, Te =Ty, Ty — Tx|| < r’(F).

In all three cases we have 6, | —e <7r°(F). If ¢
tends to 0 we get 0, | < 7°(F).

Let F*° = |J F,. Then F* is nonempty because
neN
C*(F) # (. Since F), C Fj11, we obtain

0%(F°) = lim 6°(Fy) < r°(F).
k—o0
As F, C F, F* C F and so §°(F*>°) < r*(F).
Using the S-normal structure of F we have
r*(F) < 0°(F) and 0°(F*°) < §°(F). So F*° must
be a proper subset of F. We obtain that F*° is
convex and TF>® C F*°,

Let M = convF> = F°, its diameter is the same
as F'*°. So we have

(M) <r’(F) < d(F)
and M is closed, nonempty and convex proper
subset of F'. Since T is continuous then M is T-

invariant and

TM =TF>® CTF>* C F>* = M.
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So M € Aand M G F contradicting the min-
imality of F'. Hence, it should be §*(F) = 0.
Consequently, F' has a unique fixed point under
T. O

4. Some comparisons on S-normed
spaces

In [12], the present authors defined Rhoades’ con-
dition (S25) using the notion of an S-metric.
Also, they investigated relationships between the
conditions (S25) and (R25) in [13].

In this section, we determine the relationships be-
tween the conditions (S25) (resp. (NR25)) and
(NS25).

At first, we recall the Rhoades’ condition on
normed spaces as follows [17]:

Let (X, |.]]) be a Banach space and T be a self-
mapping of X.

ly — Tyll, |lx — Tyl

(NR25) ||Tz —Ty| < max {
ly = T|

||‘T - yH7 H‘Qj - T.Z'H’ }

for each z,y € X, x # y.

Now we give the relationship between (S25) and
(NS25) in the following proposition.

Proposition 7. Let (X, |.,.,.|]|) be an S-Banach
space, (X, S|.|) be the S-metric space obtained
by the S-metric generated by |.,.,.| and T be a

self-mapping of X. If T satisfies the condition
(NS25) then T satisfies the condition (S25).

Proof. Assume that T satisfies the condition
(NS25). Using the condition (NS25), we have

STz, Tx, Ty) = |Tx — Te, Tz — Ty, Ty — Tx||
=0Tz — Ty, Ty — Tz|
10,2 —y,y — 2], |0, T — 2,z — Tz,
10, T2 — y,y — T
Sz, z,y), ) (Tx, Tz, x), }

< max

:max{

and so the condition (S25) is satisfied by T on

STy, Ty,y), Sy (Ty, Ty, ),
Sy (Tx, T, y)

Now, we give the relationship between the condi-
tions (NR25) and (NS25) in the following propo-
sition.

Proposition 8. Let (X,|.||) be a Banach space,
(X, |-, -]l) be an S-normed space obtained by the
S-norm generated by ||.| and T be a self-mapping
of X. If T satisfies the condition (NR25) then T
satisfies the condition (NS25).

Proof. Let T satisfies the condition (NR25).
Using the conditions (NR25) and (N3), we have

= [0l + [T — Ty[| + | Ty — Tx|
= 2||Tz = Ty|

<2max{ |z = yl|, [l — Tz, }

ly = Tyll, [|lx — Tyll, ||y — Tz||
2|z —yll,2)|lz — T,

2|y = Tyll, 2||z — Ty, 2|y — Tz||
|z =yl + [ly — =z,

|z = Tx| + [Tz — x|,

ly =Tyl + [Ty — yl|,

|z =Tyl + Ty — ||,

|y — Tz + [Tz — y||

0,2 —y,y — x|,

10, T2 — x,x — Tx||,

0, Ty — x, 2 — Tyl

10, Tz —y,y — Tz|

— Inax

= max

= Imax

and so the condition (NS25) is satisfied. O

Finally, we give the relationship between Theorem
and the following theorem.

Theorem 2. [17] Let X be a reflexive Banach
space and A be a nonempty, closed, bounded and
convex subset of X, having normal structure. If
T: A — A is a continuous self-mapping satisfy-
ing the condition (NR25) then T has a unique
fizxed point in A.

Theorem [1l and Theorem [2] coincide when X is an
S-Banach space obtained by the S-norm gener-
ated by |.||. Clearly, Theorem (1| is a generaliza-
tion of Theorem [2 as we have seen in Section [2I
that there are S-norms which are not generated
by any norm.
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