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In this paper, three different uniqueness data are investigated to reconstruct
the potential function in the Sturm-Liouville boundary value problem in the
normal form. Taking account of Röhrl’s objective function, the steepest de-
scent method is used in the computation of potential functions. To decrease
the volume of computation, we propose a theorem to precalculate the mini-
mization parameter that is required in the optimization. Further, we propose
a novel time-saving algorithm in which the obligation of using the asymptotics
of eigenvalues and eigenfunctions and the appropriateness of selected bound-
ary conditions are also eliminated. As partial data, we take two spectra, the
set of the jth elements of the infinite numbers of spectra obtained by changing
boundary conditions in the problem, and one spectrum with the set of terminal
velocities. In order to show the efficiency of the proposed method, numerical
results are given for three test potentials which are smooth, nonsmooth con-
tinuous, and noncontinuous, respectively.
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1. Introduction

The inverse Sturm-Liouville (S-L) reconstruction
problems consist of the calculation of the po-
tential function from known data. These data
which can be referred as spectrum, normalized
constants, spectral functions, etc. are based on
uniqueness. Although there are many studies on
the uniqueness of the inverse S-L problem, it is
observed from the literature that only a few stud-
ies have been conducted on the reconstruction of
the potential function from data that can be ob-
tained experimentally. In this study, we aim to
contribute to the literature in this direction.

Let’s consider the Sturm-Liouville problem

−y′′(x) + (λ+ q(x))y(x) = 0, x ∈ [0, 1],

y′(0) sinα+ y(0) cosα = 0, (1)

y′(1) sinβ + y(1) cosβ = 0,

where q ∈ L2[0, 1] is potential function, λ is the
eigenvalue parameter, and α, β are real constants.

In 1978, Hald [1] considered the inverse problem of
(1) for symmetric potential q with Dirichlet con-
ditions, and by using Rayleigh-Ritz method he
reduced the problem consist of Fourier expansion
with finite terms to an eigenvalue problem for a
matrix. Thus, he showed that the solution for
matrix problem converged to the solution for the
inverse problem as the dimension of the matrix in-
creased. In 1984, Paine [2] used an algorithm to
deal with a similar problem assuming q ∈ C2[0, π]
in which a perisymmetric tridiagonal matrix ob-
tained from first N eigenvalues. The errors aris-
ing from results obtained by using a correction
term were analyzed according to the increasing
the number N . In 1988, by the use of charac-
teristic values {λn, ρn}, Sacks [3] generated the
iteration algorithm
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qn+1(x) = qn(x) + 2g(2x)− 2F (qn)(2x),

for inverse S-L problem subject to Dirichlet
boundary condition where

g(t) =
∞
∑

k=1

(

2kπ sin(kπt)−
1

λ
1/2
k ρk

sin(λ
1/2
k t)

)

,

F (q)(t) = wx,t(0, t),

and w(x, t) was considered to be the solution to
related Goursat problem. Then some numerical
examples were considered by noticing the conver-
gence of qn to the potential q. In 1992, Lowe et
al. [4] investigated the vector ~q = (q1, q2, ...) by
proposing the potential in the form of

qN = qN +
N−1
∑

k=1

qkφk(x). (2)

for the S-L problem with Dirichlet boundary con-
dition and with also general separable boundary
conditions where

{φk(x)}
k=2N
k=1 = {sin 2πx, cos 2πx, ...

, sin 2Nπx, cos 2Nπx}.

To determine the Fourier coefficients, they took
the advantage of Newton’s method, proved a con-
vergence theorem of the method, and gave some
examples. In the same year, Rundell and Sacks [5]
handled two spectra to determine Cauchy data for
a transformed hyperbolic partial differential prob-
lem, and then they used successive approximation
method and Quasi-Newton method respectively.
Finally, they considered the same reconstruction
problem for different data and controlled effec-
tiveness of their approach on smooth, non-smooth
continuous, and noncontinuous test potentials. In
1994, Neher [6] studied the investigation of po-
tential function q when the eigenvalues and sym-
metric base functions were given for the problem
having symmetric potential with Dirichlet condi-
tion. His study was based on the determination of
aj constants in which the potential function was
written in the form of

q(x) = q(x; a) := q̂(x) +
n
∑

j=1

ajqj(x), (3)

where a = (aj) ∈ R
n. He used Newton’s

method to find zeros of the function f(a) =
(fi(a)) = (λi(q(x; a)) − vi) where the eigenval-
ues were vi; i = 1, 2, ..., n. In fact, the formu-
lae (2) and (3) used in [4] and [6], respectively,
was considered in several earlier papers, notably
the paper of O.H. Hald [1]. However, [4] deals
with the difficulties arising from the limitation of
data available in real applications, while [6] ad-
dresses the problem of attempting to enclose q
within an interval-valued function. In 1995, Fabi-
ano et al. [7] considered Dirichlet problem with
symmetric and general potential, then converted
the problem to a matrix equation through a par-
tition of the interval. In this equation, the fi-
nite set of eigenvalues and terminal velocities were
used to determine the matrix of coefficients. In
2004, Andrew [8] used the same method, which
is Modified Newton’s method, with Fabiano et
al. [7]. The difference between the approaches
used in [7] and [8] is that [7] uses a second or-
der finite difference approximation of the differ-
ential equation, whereas [8] uses the more accu-
rate Numerov method. The advantages of the
latter approach are discussed in [9]. The author
generalized the case in 2005 [9], and in 2011 he
used a similar method to solve the problem corre-
sponding to a different set of data [10]. In 2003,
Brown et al [11] considered a finite number of lin-
ear dependence coefficients between some appro-
priate solutions to the Sturm-Liouville problem
and eigenvalues. They used the steepest descent
method for the objective functional

G(q) =
N
∑

n=0

{ωn

∫ 1

0
[(u′q − Cnv

′
q)

2

+ (uq − Cnvq))
2]}},

where {λn, Cn} was the given set of finite data,
and the functions uq, vq were the solutions cor-
responding to λn for the Sturm-Liouville equa-
tion with some special initial conditions. In 2005,
Röhrl [12] handled two spectra and used Polak-
Ribiere conjugate gradient method to minimize
his objective functional given with (4). In his on-
going study [13], he also generalized his work to
boundary conditions. In 2007, Rafler and Böck-
mann [14] modified the Rundell-Sacks method to
deal more effectively with potentials having jump
discontinuities and gave some numerical examples
in L2 and L∞. Additionally, some other meth-
ods such as the boundary value method and the
finite difference method to find the solutions of
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the inverse Sturm-Liouville problems can be seen
in [15–18].

This paper is summarized as follows. Section
2.1 discusses the improvement of efficiency of the
study given in [12]. In the method described in
Sections 2 and 3 of [12], asymptotic formulas were
used for the minimization of the objective func-
tional in each iteration so that the original po-
tential was approached as a Fourier series. Here,
however, by using an estimate of minimization pa-
rameter which is calculated approximately for a
random potential, the necessity of using asymp-
totics is eliminated. So, the original potential is
approached as a linear combination of the eigen-
functions which is calculated with the help of an
initial value problem. Two important advantages
of this statement are expressed below:

i) In the reconstruction problems, the errors in
calculating the potential increase as the data at
hand decreases. Besides, there are two factors
that cause errors. The first of these is the er-
ror resulting from not being able to solve the di-
rect problem analytically. It is not included in
this study. The second is, however, the error that
arises from the use of asymptotics in each itera-
tion. As it can be observed from the asymptotics,
though this error is small in the calculation of
large eigenvalues, one cannot say the same for
small eigenvalues. Thus, in the case where the
number of experimentally obtained data is lim-
ited, one would like to minimize the error which
occurs in small eigenvalues. As a result, the
elimination of the necessity of the use of asymp-
totics minimizes the above-mentioned error. In
this respect, better results are achieved by tak-
ing a small number of data pairs in our study.
Moreover, even though increments on the itera-
tion numbers is comprehended as a disadvantage
for the case of two spectra, an important gain in
terms of time is achieved because the calculation
volume is decreased.

ii) The asymptotics of eigenfunctions correspond-
ing to each element of different spectra can be
the same (See [12]). Thus, in the calculation, a
challenge occurs between the terms included in
the gradient. This leads to significant increases
in the number of iterations (Please see Figure 1-
3 and the first paragraph of page 2013 in [12]).
However, the elimination of asymptotics prevents
such a challenge. Therefore, a gain in both the
number of iterations and the time of calculation
is achieved in our paper.

In Section 2.2 and Section 2.3, the process for the
two spectra case in the previous section is also ap-
plied to the case of two different data sets. The
first of these data is McLaughlin-Rundell data
which was considered in [19]. When the studies
about this problem is surveyed, while almost all of
them are about generalizations of the uniqueness
problem of [19], this study discusses the numeri-
cal solution of the problem. The second one is a
spectrum and a set of terminal velocities. Finally,
Section 3 is devoted to demonstrating the numer-
ical results obtained for each uniqueness data in
Section 2.

2. Reconstruction of the potential

2.1. Two spectra

We propose to remove the use of asymptotic for-
mulae of eigenvalues and corresponding eigen-
functions while reconstructing the potential. As
a result of this suggestion, small eigenvalues and
their corresponding eigenfunctions can be used
more effectively. Moreover, different eigenvalues
do not have to fight against each other when the
corresponding asymptotic formulas for eigenfunc-
tions are the same. Indeed, we especially handle
the steepest descent method for Röhrl’s objective
functional.

It is well known that two spectra obtained by
changing boundary condition determine the po-
tential uniquely for (1) [20].

Let I = M × {1, 2}, M ⊂ N and {λi,j,Q} =
{λi(α, βj , Q)} be two spectra of the inverse S-L
problem subject to different two boundary condi-
tions for test potential Q. The Röhrl’s objective
functional is

G(q) =
∑

(i,j)∈I

ωi,j(λi,j,q − λi,j,Q)
2, (4)

where ωi,j is positive weight constant. Since
∂λi,j,q

∂q(x) = λ̇i,j,q = g2i,j(x, q) [12, 21],

∇G(q) = 2
∑

(i,j)∈I

ωi,j(λi,j,q − λi,j,Q)g
2
i,j

is in H1([0, 1])- Sobolev space where gi,j(x, q) are
normalized eigenfunctions which correspond to
the eigenvalues λi,j,q [12].

It is seen from the literature that this type of ob-
jective function was firstly considered by Brown
et al. [11]. Röhrl handled two spectra instead
of Brown’s data {λn, Cn} and generalized the
problem to determine both the boundary condi-
tions and the potential function [13]. Although it
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seems that Röhrl’s functional is much simple than
Brown’s, it contains more computation than those
in [11] because Röhrl needs to solve the boundary
value problem instead of the initial value problem.

Here, it is aimed to minimize functional G(q) step
by step so that one can approach potential Q by
using iteration functions qn. If I is infinite and
the positive weights (iωi,j) are summable, then
the series given by G(q) is convergent (see [12]).
Furthermore G(q) = 0 if and only if q = Q from
uniqueness [20]. The convergence is obvious if I
is finite.

Theorem 1. If I is finite or (iωi,j) is summable,
the functional G(q) has no local minima at q with
G(q), i.e.∇G(q) = 0 ⇔ G(q) = 0. Thus a con-
jugate gradient algorithm will not get trapped in
local minima [12].

By Theorem 1, the minimization process leads to
G(qn) → 0 so that qn → Q. The algorithm to
be used is the steepest descent algorithm which is
described as follows [22]:

Step 0: Choose an initial potential as q0 and set
n = 0,

Step 1: If G(qn) is small enough, stop; otherwise
go to step 2,

Step 2: Compute gradient ∇G(qn),
Step 3: Minimize G(qn − hn∇G(qn)) with re-

spect to hn,
Step 4: Set qn+1 := qn − hn∇G(qn) and replace

n by n+ 1, go to step 1.

There are three cases for the asymptotics of eigen-
values according to {α, β} in the eqn. (1) (See
[12]). To compute asymptotics of squared normal-
ized eigenfunctions corresponding to eigenvalues
with respect to {α, β}, one can consider the study
done by Hochstadt [23] which contains asymptotic
solution to the normal form Sturm-Liouville dif-
ferential equation with initial values y(0) = sinα,
y′(0) = − cosα. For example, if α = β = π

4
and α = π

4 , β = −π
4 , then the squared normal-

ized eigenfunctions have the same asymptotics
g2i,j = 1 + cos 2iπx + O

(

1
i

)

for all i ∈ M and

j = 1, 2. These values of {α, β} were considered
in [13]. When one chooses the values of {α, β}
which have the same asymptotic form for corre-
sponding the squared normalized eigenfunctions,
the number of g2i,j in the gradient drops to half,

and so the coefficients of the same asymptotics g2i,j
fight each other for each index j. Thus, eliminat-
ing the necessity of the use of asymptotics is pro-
posed to overcome such a conflict. Actually, be-
cause the asymptotics are not required until Step
3, any solver for eigenvalues and eigenfunctions
can be used. Since the eqn. (1) cannot be solved

in hn for Step 3, as long as a command that com-
putes the parameter hn, is used, the asymptotics
needs to be considered. Therefore, we obtain an
estimate for hn by making some omissions:

Let us consider λi,q(α, β) = Fi,α,β +
1
∫

0

qds + ai

where (ai) ∈ ℓ2 and Fi,α,β can be seen from
asymptotics for eigenvalues (See [12]). Then, for
the test potential Q and the iterative potential qn,
it can be written as

λi,qn+1
(α, βj)− λi,Q(α, βj) = λi,qn−hn∇G(qn)(α, βj)

−λi,Q(α, βj) = Fi,α,βj
+

1
∫

0

qnds− hn

1
∫

0

∇G(qn(s))ds

+aqn+1,j,i − λi,Q(α, βj) = [λi,qn(α, βj)− λi,Q(α, βj)]

−hn

1
∫

0

∇G(qn(s))ds+ (aqn+1,j,i − aqn,j,i),

and so we have

G(qn − hn∇G(qn)) =
∑

(i,j)∈I

{

ωi,j

([

λi,qn(α, βj)

− λi,Q(α, βj)
]

− hn

1
∫

0

∇G(qn(s))ds
)2}

,

by neglecting the term Ai,j,n = aqn+1,j,i − aqn,j,i.
Thus by differentiating G(qn+1) with respect to
the parameter hn and then equating it zero, we
obtain

d

dhn
G(qn+1) = −2

1
∫

0

∇G(qn)ds

[

∑

(i,j)∈I

{

ωi,j ×

(

[λi,qn(α, βj)− λi,Q(α, βj)]− hn

1
∫

0

∇G(qn)ds
)}

]

,

and

hn =

∑

(i,j)∈I

{

ωi,j [λi,qn(α, βj)− λi,Q(α, βj)]
}

∑

(i,j)∈I

{

ωi,j

1
∫

0

∇G(qn)ds

}
.

Assume ωi,j = 1. Since
1
∫

0

g2i,qn(α, βj) = 1,
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hn =

∑

(i,j)∈I

(λi,qn(α, βj)− λi,Q(α, βj))

2k
1
∫

0

∇G(qn)ds

=

∑

(i,j)∈I

{

(λi,qn(α, βj)− λi,Q(α, βj))
1
∫

0

g2i,qn(α, βj)
}

2k
1
∫

0

∇G(qn)ds

=

1
∫

0

[
∑

(i,j)∈I

{

(λi,qn(α, βj)− λi,Q(α, βj))g
2
i,qn

(α, βj)
}]

ds

2k
1
∫

0

∇G(qn)ds

=

(1/2)
1
∫

0

∇G(qn)ds

2k
1
∫

0

∇G(qn)ds

=
1

4k
.

It could be wondered that how would the calcu-
lation be if Ai,j,n had not been neglected. For

Ai,j,n = aqn+1,j,i − aqn,j,i

=(λi,qn+1
(α, βj)− λi,qn(α, βj)) + hn

1
∫

0

∇G(qn)ds

by taking its derivative with respect to the pa-
rameter hn, we obtain

dAi,j,n

dhn
=

d(λi,j,qn+1
− λi,j,qn)

dhn
+

1
∫

0

∇G(qn)ds

=
dλi,j,qn+1

dqn+1

dqn+1

dhn
−

dλi,j,qn

dqn

dqn
dhn

+

1
∫

0

∇G(qn)ds

= g2i,j,qn∇G(qn−1)− g2i,j,qn+1
∇G(qn) +

1
∫

0

∇G(qn)ds.

Since different expressions of g2i,j,qn∇G(qn−1) −

g2i,j,qn+1
∇G(qn) for all {i, n} cannot be equal to

the same constant −
1
∫

0

∇G(qn)ds when j = 1

and j = 2,
dAi,j,n

dhn
as a multiplier does not affect

our computation. The value of the nth iterative
potential which makes this multiplier zero shows
that we have already reached the global minimum
at (n− 1)th iteration. So there is no need to cal-
culate an extra iteration. Besides, Ai,j,n remains

in the other factor in the equality of d
dhn

G(qn+1).

This means that (
∑

(i,j)∈I

Ai,j,n)/(2k
1
∫

0

∇G(qn)ds) is

added to the value of the parameter hn which is
determined for each n when ωi,j = 1. Once Ai,j,n

and the gradient ∇G(qn) are considered, it is easy

to see that it does not make a difference except

very small values of integral
1
∫

0

∇G(qn)ds. We ob-

serve from our experiments in calculations of nu-
merical examples that this value does not have
an inhibiting effect on the downsizing of G(qn) to
about 10−18. Because we approach the original
potential Q by using smooth iterative potentials
qn, the small effect of this ratio does not change
even if the original potential is not smooth. It
should be noted that this neglect has no effect
on the eigenvalues or the eigenfunctions. It just
affects the number of iteration in the calculation.

2.2. McLaughlin-Rundell’s data

In this part, we use the data handled by
McLaughlin and Rundell in their article [19].
We consider the reconstruction of the potential
q when we have a first few eigenvalues for a
spectrum by making some modification in their
uniqueness theorem. Firstly, we assume that the
boundary conditions can be changed sufficiently,
i.e., let us consider the problem

−y′′(x) + (λ+ q(x))y(x) = 0, 0 < x < 1,

y(0) = 0, y′(1) + βky(1) = 0,
(5)

where q ∈ L2(0, 1) and βk for k = 1, 2, ... are dis-
tinct real numbers. Let λj(q, β) be the jth eigen-
value of (5) for β instead of βk.

Theorem 2. Consider the problem (5). Let
q1, q2 ∈ L2(0, 1) and j is a fixed positive in-
teger. Suppose that λj(q1, βk) = λj(q2, βk) for
k = 1, 2, ..., then q1 = q2 almost everywhere [19].

Theorem 3. Suppose that {βkn} are disjoint sets
such that {βk}

∞
k=1 =

⋃

n
{βkn}. Let jn be a fixed

positive integer, q1, q2 ∈ L2(0, 1) and λjn,kn(q) =
λjn(q, βkn) for each n. If λjn,kn(q1) = λjn,kn(q2)
for each kn, n = 1, 2, ..., n0, then q1 = q2 almost
everywhere.

Proof. Since {βk}
∞
k=1 =

⋃

n
{βkn}, the set {λkn,jn}

is an infinite bounded set of real numbers. There-
fore it has at least one finite accumulation point.
The rest of this proof is similar as in the proof of
Theorem 2. �

Taking k = kn for each n allows us an extension
for Theorem 3. So the eigenvalues can be used
more than one for each spectrum. Because the
theory is similar to those in the two spectra case
(see [12]), we do not give it again here.
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2.3. One spectrum and set of the terminal

velocities

In this part, we use finite subsets of one spectrum
{λn}n≥1 and the set of the terminal velocities

κn = log
∣

∣

g′n(1,q)
g′n(0,q)

∣

∣ as uniqueness data for Dirich-

let problem. It is easy to see that the key is to
have derivative of λn and κn with respect to po-
tential qn in the steepest descent method. To see
the details and to generalize the problem to all
separable conditions, one can read the nice book
written by Pöschel and Trubowitz [21].

Let us consider the Sturm-Liouville problem with
Dirichlet conditions

−y′′(x) + (λ+ q(x))y(x) = 0, 0 ≤ x ≤ 1, (6)

y(0) = 0 , y(1) = 0, (7)

where q ∈ L2[0, 1]. Let y1(x, λ, q) and y2(x, λ, q)
be the solutions of (6) satisfying the initial con-
ditions

y1(0, λ, q) = y′2(0, λ, q) = 1,

y2(0, λ, q) = y′1(0, λ, q) = 0.

They are the fundamental solutions. It means
that any solutions of (6) satisfying the initial con-
ditions y(0) = a, y′(0) = b can be written by using
these solutions as follows [21]:

y(x) = ay1(x) + by2(x).

So from condition y(0) = 0 in (7), the normalized
eigenfunctions and the terminal velocities can be
obtain as follows [21]:

gn = g(λn, x) =
y2(x, λn)

‖y2(x, λn)‖L2

,

κn = log |y′2(1, λn)| = log[(−1)ny′2(1, λn)].

Theorem 4. Each κn, n ≥ 1, is a compact, real
analytic function on L2 with asymptotic behaviour

κn(q) =
1

2nπ

1
∫

0

sin(2nπx)q(x)dx+O
( 1

n2

)

.

Its gradient is

∂κn
∂q

(x) = y1(x, λn)y2(x, λn)− [an]g
2
n(x)

=
sin(2nπx)

2nπ
+O

( 1

n2

)

,

where [an] =
1
∫

0

y1(t, λn)y2(t, λn)dt [21].

Theorem 5. κ × λ is one-to-one on L2

where κ(q) = (κ1(q), κ2(q), ...) and λ(q) =
(λ1(q), λ2(q), ...) [21].

For these data, the new objective functional and
its gradient become

G(q) =
∑

i∈I

ωi

(

(λi,q − λi,Q)
2 + (κi,q − κi,Q)

2
)

,

and

∇G(q) = 2
∑

i∈I

ωi
{

(λi,q − λi,Q)g
2
i (x)

+(κi,q − κi,Q)
∂κi
∂q

(x)
}

,

where I ⊂ N, respectively. Since y1,n = y1(x, λn)
and y2,n = y2(x, λn) are the solutions to eqn. (6),
∇G(q) is in H1. It is obvious that 0 = G(Q) <
G(q) for q 6= Q ∈ L2[0, 1]. In other words,
Q(x) ∈ L2[0, 1] is the global minimum for G(q).

Now, let us consider the bilinear form Γ : H1 ×

H1 → R with Γ(f, g) =
1
∫

0

[f, g]dx where [·, ·] is the

Wronskian operator such that [f, g] = f(x)g′(x)−
f ′(x)g(x) for the differentiable functions f, g :
[0, 1] → R. This transformation is bounded by
‖f‖H1‖g‖H1 , that is, |Γ(f, g)| ≤ ‖f‖H1‖g‖H1 . In
particular Γ is continuous on H1 [12]. Also, it is
easy to see that Γ is antisymmetric because of the
Wronskian. Some properties for the Wronskian
are given as follows [12]:

i : [fg, FG] = fF [g,G] + gG[f, F ] for
differentiable functions f, g, F,G.

ii : For two arbitrary solutions f1 and f2 of the
eqn. (6) with eigenvalue parameters λ1

and λ2 we have f1f2 =
1

λ1−λ2
[f1, f2]

′ .

Since y1(x, λ) and y2(x, λ) satisfy the eqn. (6), we
obtain

d

dx
[y1, y2] =

d

dx
(y1y

′
2 − y′1y2)

=y1y2(q − λ)− y1y2(q − λ) = 0,

and so we have

[y1, y2] = y1(0)y
′
2(0)− y′1(0)y2(0) = 1. (8)
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Lemma 1. Let {λn}n≥1 be spectrum of the
Sturm-Liouville problem (6)-(7). Then the fol-
lowing properties are satisfied:

i: Γ(g2n, g
2
m) = 0.

ii: Γ(y1ny2n, y1my2m) = 0.

iii: Γ(y1ny2n, g
2
m) =

{

1 , m = n
0 , m 6= n

.

Proof. i) A more general proof was given by
Röhrl [12].
ii) It is obvious that Γ(y1ny2n, y1my2m) = 0 for
m = n. For m 6= n, we obtain

Γ(y1ny2n, y1my2m) =

1
∫

0

(y1ny1m[y2n, y2m]

+ y2ny2m[y1n, y1m])dx

=
1

λn − λm

1
∫

0

([y1n, y1m]′[y2n, y2m]

+ [y2n, y2m]′[y1n, y1m])dx

=
1

λn
− λm

1
∫

0

d

dx
([y1n, y1m][y2n, y2m])dx

=
1

λn − λm
[y1n, y1m][y2n, y2m]

∣

∣

x=1

x=0
= 0,

by using Dirichlet conditions. iii) For m 6= n,

Γ(y1ny2n, g
2
m) =

1

‖y2m‖2L2

1
∫

0

[y1ny2n, y2my2m]dx

=
1

‖y2m‖2L2

1
∫

0

(y1ny2m[y2n, y2m] + y2ny2m[y1n, y2m])dx

=
1

‖y2m‖2L2
(λn − λm)

1
∫

0

d

dx
([y1n, y2m][y2n, y2m])dx

=
([y1n, y2m][y2n, y2m])

∣

∣

1

0

‖y2m‖2L2
(λn − λm)

= 0.

For m = n, because of [y2n, y2m] = 0 and in the
view of (8), we have

Γ(y1ny2n, g
2
n) =

1

‖y2n‖2L2

1
∫

0

(y2ny2n[y1n, y2n])dx

=

1
∫

0

g2n[y1n, y2n]dx =

1
∫

0

g2ndx = 1.

�

Corollary 1. For all m,n ∈ N,

i: Γ
(

∂κn

∂q , ∂κm

∂q

)

= 0.

ii: Γ(∂κn

∂q , g2m) =

{

1 , m = n
0 , m 6= n

.

Proof. Let m,n ∈ N.

i)

Γ
(∂κn
∂q

,
∂κm
∂q

)

= Γ(y1ny2n + [an]g
2
n, y1my2m + [am]g2m)

= Γ(y1ny2n, y1my2m) + [am]Γ(y1ny2n, g
2
m)

+[an]Γ(g
2
n, y1my2m) + [an][am]Γ(g2n, g

2
m).

So we see that

Γ
(∂κn
∂q

,
∂κn
∂q

)

= [an]− [an] = 0,

and

Γ
(∂κn
∂q

,
∂κm
∂q

)

= 0,

by considering Lemma 1 for m = n and m 6= n,
respectively.

ii) From Lemma 1, it can be concluded that

Γ
(∂κn
∂q

, g2m
)

= Γ(y1ny2n, g
2
m)− [an][g

2
n, g

2
m]

=

{

1 , m = n
0 , m 6= n

.

�

Theorem 6. The set {g2n}n≥1 ∪ {∂κn

∂q }n≥1 is lin-

early independent in H1.

Proof. Assume, to the contrary, that it is not
true; that is,

g2n =
∑

k∈M

bkg
2
k +

∑

m∈M∪{n}

cm
∂κm

∂q

and

∂κn

∂q =
∑

k∈M

bk
∂κk

∂q +
∑

m∈M∪{n}

cmg2k,

for some fixed n (n 6= k), where bk, cm are real
numbers and M ⊂ N. Then by Corollary 1 and
Lemma 1, we have the contradictions

1 = Γ
(∂κn
∂q

, g2n
)

=Γ
(∂κn
∂q

,
∑

k∈M

bkg
2
k

)

+ Γ
(∂κn
∂q

,
∑

m∈M∪{n}

cm
∂κm
∂q

)

=
∑

k∈M

bkΓ
(∂κn
∂q

, g2k
)

+
∑

m∈M∪{n}

cmΓ
(∂κn
∂q

,
∂κm
∂q

)

= 0,

and
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−1 = Γ
(

g2n,
∂κn
∂q

)

= Γ
(

g2n,
∑

k∈M

bk
∂κk
∂q

)

+ Γ
(

g2n,
∑

m∈M∪{n}

cmg2m
)

=
∑

k∈M

bkΓ
(

g2n,
∂κk
∂q

,
)

+
∑

m∈M∪{n}

cmΓ
(

g2n, g
2
m

)

= 0.

These complete the proof. �

Theorem 7. If I is finite or iωi is summable,
the functional G(q) has no local minima at q with
G(q) > 0. In other words, G(q) = 0 ⇔ ∇G(q) =
0.

Proof. (⇐:) If G(q) = 0, then it is obvious that
∇G(q) = 0. (⇒:) If ∇G(q) = 0, then it is con-
cluded that λi,q − λi,Q = 0 and κi,q − κi,Q = 0
from Theorem 6. Therefore, G(q) = 0. �

The computation to find the parameter hn is sim-
ilar to that in Section 2.1. Since

G(qn+1) ∼=

k
∑

i=1

{

(

λi,qn − λi,Q − hn

1
∫

0

∇G(qn)dx
)2

(

κi,qn − κi,Q − hn

1
∫

0

sin(2iπx)∇G(qn)

2iπ
dx
)2
}

,

we obtain

k
∑

i=1

{

(λi,qn − λi,Q)

1
∫

0

∇G(qn)dx

+ (κi,qn − κi,Q)

1
∫

0

∇G(qn) sin(2iπx)

2iπ
dx

− hn
[

(

1
∫

0

∇G(qn)dx)
2 + (

1
∫

0

∇G(qn) sin(2iπx)

2iπ
dx)2

]

}

= 0,

and consequently

hn ∼=
I1n
I2n

(9)

where

I1n =
k
∑

i=1

{

(λi,qn − λi,Q)
1
∫

0

∇G(qn)dx + (κi,qn −

κi,Q)
1
∫

0

∇G(qn) sin(2iπx)
2iπ dx

}

and

I2n =
k
∑

i=1

{

(
1
∫

0

∇G(qn)dx)
2+(

1
∫

0

∇G(qn) sin(2iπx)
2iπ dx)2

}

Because of ‖gi,qn‖
2
L2

= 1,

1
∫

0

∂κi,qn
∂qn

dx =

1
∫

0

y1i(x, qn)y2i(x, qn)

− [ai]

1
∫

0

g2i,qndx = 0,

and therefore

1
∫

0

∇G(qn)dx = 2
k
∑

i=1

(λi,qn − λi,Q). (10)

On the other hand, for all m,n ∈ N since

1
∫

0

sin(2mπx)(1− cos(2nπx))dx = 0,

and

1
∫

0

sin(2mπx) sin(2nπx)dx =

{

1/2 , m = n
0 , m 6= n

,

we find

1
∫

0

(

∇G(qn) sin(2iπx)

2iπ

)

dx ∼=
κi,qn − κi,Q

4i2π2
, (11)

for 1 ≤ i ≤ k by using asymptotic formulas.
Finally, by substituting (10) and (11) in (9), we
obtain

hn ∼=

2

(

k
∑

i=1
(λi,qn − λi,Q)

)2

+
k
∑

i=1

(κi,qn−κi,Q)2

4i2π2

4

(

k
∑

i=1
(λi,qn − λi,Q)

)2

+
k
∑

i=1

(κi,qn−κi,Q)4

(2iπ)4

.

By the theory set out in this section, numerical
calculations can be performed for three different
data sets.

3. Numerical experiments

In this study numerical computations are ob-
tained using Mathematics 11 with Eigen pack-
age [24]. The calculations are conducted on a
desktop PC with a processor of Intel(R) Core i5-
3470 CPU @3.2 GHz for Windows 7. We consider
the initial potential q0(x) = 0 and the test poten-
tials Q1(x), Q2(x), Q3(x) as follows:
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Q1(x) =75.16x6 − 176.44x5 + 129.35x4 − 30.67x3

+ 2.6x2 + 0.001x,

Q2(x) =







−35.2x2 + 17.6x , 0 ≤ x < 0.25
35.2x2 − 35.2x+ 8.8 , 0.25 ≤ x < 0.75 ,
32.5x2 + 52.8x− 17.6 , 0.75 ≤ x ≤ 1

Q3(x) =































0 , 0 ≤ x < 0.1
7x− 0.7 , 0.1 ≤ x < 0.3
3.5− 7x , 0.3 ≤ x < 0.5
0 , 0.5 ≤ x < 0.7
4 , 0.7 ≤ x < 0.9
2 , 0.9 ≤ x ≤ 1

,

which were used in [11–13].

3.1. Numerical results for two spectra

To obtain two spectra data we choose α = 0,
β1 = 0 and β2 = π

2 in the S-L problem (1). The
steepest descent method is used to find the poten-
tial function for two spectra numerically via the
methodology exhibited in Section 2.1. The nu-
merical results that are calculated by our effective
algorithm written in Mathematica are demon-
strated in figures in which dashed curves show
the numerical results while the solid lines show
the exact values of potential function. We obtain
these results in 381.59 and 3669.09 seconds with
41 and 110 iterations for the first two graphics
in Fig. 1, respectively. We have also handled a
few different test potential and different bound-
ary conditions. We observed that although the
number of iteration or the cost of computation
of CPU may increase, there isn’t any remarkable
difference. However, a very small difference is oc-
curred when we just consider two pairs data. In
the numerical calculations of the potentials, the
accuracy of G(qn) ≈ 10−6 is taken, and Fig. 1 and
Fig. 2 are drawn according to this. We also take
into account noise for five pairs data by adding
random numbers in the interval (−0.01, 0.01) to
each eigenvalue, it is demonstrated in Fig. 1c. For
uniform noise, we have not seen a remarkable dif-
ference. The distribution of G(qn) as n increases
is shown by Fig. 1d.

3.2. Numerical results for

McLaughlin-Rundell’s data

To obtain data, we choose βk = tan
(

π
k2

)

in the S-
L problem (5). Similar to the way that is followed
in Section 3.1, to approximate test potential func-
tions with McLaughlin-Rundell’s data, we use the
methodology given in Section 2.2 with the same
algorithm in Section 2.1. The upper bound of the
value of G(qn) is approximately 5 × 10−5. The

numerical values of q for Q1(x) and Q2(x) are
demonstrated in (a), (b), (c) and (d) of Fig. 3 with
the dashed curves while the solid lines show the
exact values of test potentials Q1 and Q2. Fig. 3c
is plotted to show the effectiveness of our exten-
sion on McLaughlin-Rundell’s data which is plot-
ted in Fig. 3b. It can be seen also that numerical
results in Fig. 3c are very close to test potential
and are better than of those in Fig. 3b. It is con-
cluded that the numerical result we obtained is
more accurate for smooth test potential Q1(x).
However, it can be observed from Fig. 3d that
for other test potentials we need more than two
eigenvalues in calculations to have better approx-
imation. Because we have a few first eigenvalues
in real life problems, we can say that it will be
more appropriate to prefer extra eigenvalues as
auxiliary data with original data.

3.3. Numerical results for one spectrum

and set of the terminal velocities

In this section, we consider a finite set consisted
of the elements from one spectrum and terminal
velocities of the S-L problem (6)- (7) to approxi-
mate the test potentials Q1(x) and Q2(x). The
upper bound of the value of G(qn) is approxi-
mately 10−6 in calculations. By using the ana-
logue Mathematica program performed in Section
3.1, we obtain the numerical results which are dis-
played in Fig. 4. When this data is compared
with the first data considered in Section 3.1, it
is seen from Fig. 4 that there is no remarkable
difference for test potentials Q1 and Q2. How-
ever when our computer program runs to obtain
required numerical results for Q3, the calculation
needs some time to get the same results in Section
3.1.

4. Conclusion

The inverse Sturm-Liouville reconstruction prob-
lem is an interesting subject that arises in many
physical phenomena and it involves the recon-
struction of coefficient functions and boundary
conditions by aid of some data which determine
these functions uniquely. In this study, we con-
sider inverse S-L problem in the normal form
and reconstruct the potential function. Actually,
one of the main goal of our study is to elimi-
nate the obligation of using the asymptotics for
λi,qn(α, β), g

2
i,j,qn

, κn(qn), and
∂κn

∂qn
in the steepest

descent algorithm by estimating the parameter hn
which appears in each iteration when the program
runs. The other is to apply our approach to three
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Figure 1. The graphics (a), (b), and (c) show the numerical results for Q1(x). The graphic
(d) shows the distribution of G(q) for Q1(x).
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Figure 2. The graphics obtained for Q2(x) in (a), (b) and Q3(x) in (c), (d).

different types of data which are described in Sec-
tion 2.1, 2.2 and 2.3. It is seen in the literature
that nearly all studies on McLaughlin-Rundell
data which is described in Section 2.2 deal with

minor generalizations of the uniqueness result and
say nothing about the numerical solution of this
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Figure 3. The graphics obtained for Q1(x) in (a), (b), (c) and Q2(x) in (d).
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Figure 4. The graphics obtained for Q1(x) in (a), (b) and Q2(x) in (c), (d).

problem. Therefore, we think especially this part
is worth considering.

Although the reconstruction of the potential by
using alternative methods for the data in Section
2.3 appears in the literature, proposed approach

in Section 2.1 is firstly considered here. The ob-
tained numerical results are given in Section 3. It
can be concluded that the approach for two spec-
tra in Section 3.1 is more effective than other ap-
proaches for other data in Section 3.2 and Section
3.3.
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The theory in this study can be generalized to
other forms of the S-L problems, and it can be
used not only for the reconstruction of potential
function but also for the recovery of boundary
conditions. Recently, there have been studies on
fractional Sturm-Liouville problems [25, 26]. We
think that our approaches will also be useful for
fractional Sturm-Liouville problems.
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Mehmet Açil is currently an Assistant Professor of
Applied Mathematics at Van Yüzüncü Yıl University
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