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1. Introduction

Fractional calculus became one of the intensively
developing theories in modern mathematics due
to its wide range of applications in real life pro-
cesses and also its generalized nature [1]. In
particular, fractional derivative operators allow
the description of memory and hereditary prop-
erties and are useful for modeling dynamic. Re-
cently, several fractional operators have been de-
veloped to analyze the systems and models such
as Caputo-Fabrizio, Hilfer, hyper-Bessel, Erdélyi-
Kober fractional derivatives and many others. For
instant, in recent papers [2,3], fractional differen-
tial equations are used for modeling applications
in blood alcohol and fish farm models and in [4]
fractional partial differential equation is used for
Frankl-Type Problem.

Fractional order partial differential equations
(FPDE) is one of the key objects in mathemat-
ical modeling of many diffusion-wave processes

[5]. Different kind of direct and inverse prob-
lems for such equations were studied using dif-
ferent approaches, such as, integral transforma-
tions (Laplace, Fourier, Mellin), Green function
method, method of separation of variables and
etc. For PDEs, in general, one can determine spe-
cial type of solutions, which are invariant under
some subgroup of the full symmetry group of sys-
tem. These ”group-invariant” solutions are found
by solving a reduced system of equations having
fewer independent variables than the original sys-
tem [6]. Such solutions named as self-similar solu-
tions which play an important role in understand-
ing of fundamental processes in mathematics and
mechanics, we refer readers to [7] for application
in problems of imploding shock waves and to [8]
for filtration-slow groundwater motion in porous
media.

The self-similarity of the solutions of partial dif-
ferential equations has allowed their reduction to
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ordinary differential equations, which often sim-
plifies the investigation. They have also served as
standards in evaluating approximate methods for
solving more complicated problems [8]. Moreover,
they often describe the intermediate asymptotics
behavior of solutions of wider classes of problems,
for more details see [8].

The idea of self-similarity of solutions and Lie
group analysis have been extended to fractional
differential equations. For instant, in [6] and [9],
the Lie group analysis of the equation

∂αu

∂tα
= d

∂βu

∂xβ
, x > 0, t > 0, d > 0, α, β ≥ 0

has been discussed by Buckwar, Luchko and
Gorenflo. Namely, the scale-invariant solutions
were found by solving an ordinary differential
equation of fractional order with a new indepen-

dent variable η = xt−
α
β . The general solution for

this equation is obtained in terms of the general-
ized Wright function.

Furthermore, the existence and uniqueness of the
space-fractional PDE with Caputo fractional de-
rivative

∂u

∂t
=

∂αu

∂xα
, 1 < α ≤ 2

was discussed, under the self-similar form

u(x, t) = tβf
( x

t1/α

)

, (x, t) ∈ [0, X]× [t0,∞),

where X, t0 > 0, β ∈ R [10].

In [6], an admitted group dilations is found for the
linear wave-diffusion equation of fractional order
and these transformations are used for the con-
struction of self-similar solutions. In [11], the
methods of Lie continuous groups for symme-
try analysis of FDEs were adapted and prolon-
gation formula for fractional derivatives was pro-
posed. Then, in [12], this formula is used for find-
ing the exact solutions for nonlinear sub-diffusion
equations with the Riemann-Liouville and Caputo
fractional derivatives.

In [13], the similarity solution of the fractional
diffusion equation

∂γp(r, t)

∂tγ
=

1

rds−1

∂

∂r

(

rds−1 ∂p

∂2r

)

, r >, t > 0,

(γ = 2
dw

, ds =
2df
dw

is the spectral dimension of

the fractal) was considered and through the in-
variants of the group of scaling transformations,

authors derived the integro-ordinary differential
equation for the similarity variable.

In [14], fractional nonlinear space-time wave-
diffusion equation was considered and solved by
the similarity method using fractional derivatives
in the Caputo, Riesz-Feller, and Riesz senses.
Some particular cases are presented and the cor-
responding solutions are shown by means of 2-D
and 3-D plots.

The following time-fractional cylindrical KdV
equation with Riemann-Liouville fractional deriv-
ative

∂αu

∂tα
+

u

2tα
+ 6u

∂u

∂x
+

∂3u

∂x3
= 0, α ∈ (0, 1)

was reduced to the nonlinear fractional ordinary
differential equation with Erdélyi-Kober frac-
tional differential operator, using similarity trans-

formation u(x, t) = t−
2α
3 f(z) along with the sim-

ilarity variable z = xt−
α
3 [15].

There are other approaches, were authors have
found self-similar solution by reducing considered
PDEs to the hypergeometric equations. For ex-
ample, Hasanov and Ruzhansky have found self-
similar solutions for degenerate PDEs of the sec-
ond, third and fourth orders using special method
(see for details [16]). Precisely, they considered
the following fourth order degenerate PDE:

xnut − tkuxxxx = 0, n, k = const > 0.

They are looking for a solution of this equation as

u(x, t) = P (t)ω(σ),

where

P =

(

1

k + 1
tk+1

)

−1

, σ = −
k + 1

(n+ 4)4tk+1
xn+4.

Then they have got the equation with respect to
ω:

x3ωxxxx + (3 + c1 + c2 + c3)x
2ωxxx

+(1 + c1 + c2 + c3 + c1c2 + c1c3 + c2c3)xωxx+
(c1c2c3 − x)ωx − aω = 0,

which has special solutions represented with hy-
pergeometric functions pFq.

The main motivation of the present research is the
consideration of combinations of special fractional
derivatives such as hyper-Bessel, Erdélyi-Kober
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(due to singularity) and Hilfer (due to generalized
character). The obtained self-similar solutions
will allow specialists in applied mathematics, who
may deal with such FPDEs to study in details,
since an explicit form of solutions are available.
Moreover,the offered approach can be developed
to conduct further investigations for more general
FPDE with aforementioned fractional derivatives
and also will contribute in studying the symmetry
group analysis of FPDEs with these derivatives.
In the present paper, we consider two problems,
namely, fractional differential equation involving
time and space Hilfer derivatives

Dα,δ
0t u(t, x) = Dβ,δ

0x u(t, x), 0 < α ≤ 1, 1 < β ≤ 2,

and fractional differential equation involving
hyper-Bessel operator in time and Erdélyi-Kober
fractional derivative in space variable

(

tθ
∂

∂t

)α

u(t, x) = x−βρ ∂β

∂xβ
u(t, x),

where 1 < β ≤ 2, 0 < α ≤ 1.

The key result is the finding of self-similar solu-
tions of the above given equations with the spe-
cific conditions. The main tool is the reduction of
considered FPDEs to the integral equations using
specific transformation.

In literature, we refer some works devoted to
the considered fractional derivatives, for exam-
ple, hyper-Bessel operator was used to general-
ize the standard process of relaxation [17] and to
model fractional diffusion equations governing the
law of the fractional Brownian motion [18]. Also,
FPDEs with hyper-Bessel operator were consid-
ered in [19] for studying direct and inverse source
problems and in [20] for non-local problem of
mixed type equation. Furthermore, there are dif-
ferent works related to applications of Erdélyi-
Kober and Hilfer fractional derivatives such as
fractional diffusion with Erdélyi-Kober derivative
[21] and higher order partial differential equations
with Hilfer fractional derivatives [22], for more de-
tails see the reference therein.

The rest of the paper is organized as follows. In
the next section, we recall preliminaries related to
some fractional derivatives. The main results are
given in Section 3. The conclusion of the work is
given in the last section.

2. Preliminaries

In this section, we present some basic definitions
on fractional operators and their properties that
are used further in this article.

Definition 1 ( [1]). The Riemann-Liouville frac-
tional integral of order α > 0 is defined by

Iαatf(t) =
1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, α > 0.

Definition 2 ( [23]). The right-sided Hilfer frac-
tional derivative of order α and type δ is defined
as

Dα,δ
0t f(t) = I

δ(n−α)
0t

dn

dtn
I
(1−δ)(n−α)
0t f(t), (1)

where n− 1 < α ≤ n, 0 ≤ δ ≤ 1.

For δ = 0, Hilfer fractional derivative is reduced
to the Riemann-Liouville fractional derivative, i.e;

Dα,δ
0t f(t) = Dα

0tf(t).
Now, we recall the following property [24]

Iσa+D
σ
a+f(t) = Iαa+D

α,δ
a+

f(t)

= f(t)−

n−1
∑

k=0

(t− a)σ−k−1

Γ(σ − k)
Dn−k−1

a+
In−σ
a+

f(a),

(2)

where σ = α+ δ − αδ.

Definition 3. ( [25]) The left and right-sided
Erdélyi-Kober fractional integrals of order α, re-
spectively, are defined as follows:

Iγ,αβ f(t) =

β

Γ(α)
t−β(γ+α)

∫ t

0
(tβ − sβ)α−1sβ(γ+1)−1f(s) ds,

(3)

Jγ,α
β f(t) =
β

Γ(α)
tβγ
∫

∞

t
(sβ − tβ)α−1s−β(γ+α−1)−1f(s)ds,

(4)

where α, β > 0 and γ ∈ R.

Definition 4. ( [25]) The left and right-sided
Erdélyi-Kober fractional derivatives of order α,
respectively, are given by (n− 1 < α < n, n ∈ N)

Dγ,α
β f(t) =

n
∏

j=1

(

γ + j +
1

β
t
d

dt

)

Iγ+α,n−α
β f(t),

(5)

and

P γ,α
β f(t) =

n−1
∏

j=0

(γ + j −
1

β
t
d

dt
) Jγ+α,n−α

β f(t), (6)

where γ ∈ R, β > 0.
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The following property of Erdélyi-Kober frac-
tional operators [25]

Iγ,αβ xλβf(x) = xλβIγ+λ,α
β f(x), (7)

Iγ,αβ Dγ,α
β f(x) = f(x)−

n−1
∑

k=0

ckx
−β(1+γ+k), (8)

are true, where

ck =
Γ(n− k)

Γ(α− k)
lim
x→0

xβ(1+γ+k)×

n−1
∏

i=k+1

(1 + γ + i+
1

β
x
d

dx
)Iγ+α,n−α

β f(x).

Furthermore, the Erdélyi-Kober fractional opera-
tors of power function are needed in the compu-
tations [26]:

P τ,α
β tp =

Γ(α+ τ − p/β)

Γ(τ − p/β)
tp, τ − p/β (9)

Jτ,α
β tp =

Γ(τ − p/β)

Γ(α+ τ − p/β)
tp, τ − p/β > 0 (10)

Iγ,αβ tp =
Γ(γ + 1 + p/β)

Γ(α+ γ + 1 + p/β)
tp, γ+1+p/β > 0. (11)

Definition 5. ( [27]) The hyper-Bessel operator
of order order 0 < α < 1, is defined as

(

tθ
d

dt

)α

f(t) =
{

(1− θ)αt−(1−θ)αI0,−α
1−θ f(t), if θ < 1,

(θ − 1)αI−1,−α
1−θ t(1−θ)αf(t), if θ > 1.

(12)

Note that I0,−α
β := D−α,α

β and when θ = 0, this

operator coincides with the Riemann-Liouville
fractional derivative.
Also, we need to recall the generalized Wright
function:

Definition 6. ( [9, 28]) The generalized Wright
function is defined by the series expansion:

W(µ,a),(ν,b) :=
∞
∑

k=0

zk

Γ(a+ µk)Γ(b+ νk)
,

where

ν, µ ∈ R, a, b ∈ C.

3. Main Result

3.1. Fractional differential equation

involving Hilfer derivative

Consider a time and space-fractional PDE

Dα,δ
0t u(t, x) = Dβ,δ

0x u(t, x), 0 < α ≤ 1, 1 < β ≤ 2,
(13)

with the following conditions:

∂

∂x
I2−m
0x u(t, 0+) = a tγ+α(1−m)/β ,

I2−m
0x u(t, 0+) = b tγ+α(2−m)/β ,

(14)

where a, b are constants and m = β + δ − βδ.
We start by using similarity method to FPDE
(13) to determine a symmetry group of scaling
transformations. We introduce new independent
and dependent variables

t = λbt, x = λx, u = λcu.

The time fractional derivative becomes (σ1 =
α+ δ − αδ, δ1 = δ(1− α))

Dα,δ
t u(t, x) = Iδ1t Dσ1

t u(t, x)

= Iδ1t

(

1

Γ(1− σ1)

∂

∂t

∫ t

0
(t− s)−σ1

)

u(λbs, x)ds

= Iδ1t

(

λc+b

Γ(1− σ1)

∂

∂t

∫ t/λb

0
(λ−bt− s)−σ1

)

×u(λbs, x) ds

= Iδ1t

(

λc+bσ1

Γ(1− σ1)

∂

∂t

∫ t

0
(t− τ)−σ1

)

u(τ, x) dτ

=
λc+bσ1

Γ(δ1)

∫ t

0
(t− s)δ1−1Dσ1

t
u(λbs, x)ds

=
λc+bσ1

Γ(δ1)

∫ t/λb

0
(tλ−b

− s)δ1−1Dσ1

t
u(λbs, x)ds

=
λc+bσ1−b−b(δ1−1)

Γ(δ1)

∫ t

0
(t− τ)δ1−1Dσ1

t
u(τ, x)dτ

= λc+bαIδ1
t
Dσ1

t
u(t, x)

= λc+bαDα,δ

t
u(t, x).

One can do the same for the space-fractional de-
rivative, we have

Dβ,δ
x u(t, x) = λc+βDβ,δ

x u(t, x).

From the above we get

Dα,δ
t u(t, x)−Dβ,δ

x u(t, x)

= λc+bαDα,δ

t
u(t, x)− λc+βDβ,δ

x u(t, x) = 0,

if b =
β

α
. Thus, we choose the following invariant

of scaling transformation
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u(t, x) = tγU(η), η = xt−α/β , γ > 0.

Now, using the above transformation, we have the
following result:

Theorem 1. The transformation

u(t, x) = tγU(η), η = xt−α/β (15)

reduces FPDE (13) to the following ODE

Jγ+δ2,δ1
β/α P γ+δ2,σ1

β/α U(η) = Dβ,δ
0η U(η), (16)

with

DI2−m
0η U(0+) = a and I2−m

0η U(0+) = b, (17)

where σ1 = α + δ − αδ, δ2 = 1 − σ1 and δ1 =
δ(1− α).

Proof. We begin by calculating the time-
fractional derivative in terms of U(η) using trans-
formation (15). Using the definition of Hilfer frac-
tional derivative (1) for n = 1, we have

Dα,δ
0t u(t, x) = Iδ1

∂

∂t
Iδ2tγU(xt−α/β). (18)

Now, using the substitution τ = t
(η

s

)β/α
, the

second integral of (18) can be reduced as follows:

Iδ2tγU(xt−α/β)

=
1

Γ(δ2)

∫ t

0
(t− τ)δ2−1τγU(xτ−α/β)dτ

=
β tδ2+γηβ/α(γ+1)

αΓ(δ2)

∫

∞

η
(sβ/α − ηβ/α)δ2−1

×

s−β/α(γ+δ2)−1U(s)ds

= tδ2+γJγ+1,δ2
β/α U(η).

Then, taking the derivative of the above integral,
we arrive to the following

d

dt
Iδ2tγU(xt−α/β)

= tδ2+γ−1

(

γ + δ2 −
α

β
η
d

dη

)

Jγ+1,δ2
β/α U(η)

= tδ2+γ−1P γ+δ2,σ1

β/α U(η).

Using the above result and proceeding the same

as above using substitution τ = t
(η

s

)β/α
and re-

lation z = xτ−α/β , the expression in (18) becomes

Iδ1
d

dt
Iδ2tγU(xt−α/β)

=
1

Γ(δ1)

∫ t

0
(t− τ)δ1−1τ δ2+γ−1P γ+δ2,σ1

β/α U(z)dτ

=
β tγ+δ2+δ1−1 ηβ/α(γ+δ2)

αΓ(δ1)

∫

∞

η
(sβ/α − ηβ/α)δ1−1

×s−β/α(γ+δ2+δ1−1)−1P γ+δ2,σ1

β/α U(s)ds.

The power γ + δ2 + δ1 − 1 = γ − α and hence the
time fractional derivative can be written as

Dα,δ
0t u(t, x) = tγ−αJγ+δ2,δ1

β/α P γ+δ2,σ1

β/α U(η).

Next, we compute the space-fractional derivative
in terms of U(η)

Dβ,δ
0x u(t, x) = tγIδ4

∂2

∂x2
Iδ3U(xt−α/β), (19)

where δ3 = (2− β)(1− δ) and δ4 = δ(2− β). We

use the substitution ξ = st−α/β , then the inner
integral of (19) can be written as

Iδ3U(xt−α/β) =
1

Γ(δ3)

∫ x

0

(x− s)δ3−1U(st−α/β)ds

=
tαδ3/β

Γ(δ3)

∫ η

0

(η − ξ)δ3−1U(ξ)dξ = tαδ3/βIδ3U(η).

Computing second derivative of the above gives

∂2

∂x2
I(2−β)(1−δ)U(xt−α/β) = tα(δ3−2)/β d2

dη2
Iδ3U(η),

since
dU

dx
=

dU

dη

dη

dx
.

Now, we do the same for the first integral of (19)

with ξ = st−α/β and z = st−α/β , we obtain

Iδ4
∂2

∂x2
Iδ3U(xt−α/β)

=
tα(δ3−2)/β

Γ(δ4)

∫ x

0
(x− s)δ4−1 d2

dz2
Iδ3U(z)ds

=
tα(δ3+δ4−2)/β

Γ(δ4)

∫ η

0
(η − ξ)δ4−1 d2

dξ2
Iδ3U(ξ)dξ

= t−αIδ4
d2

dη2
Iδ3U(η).

Thus, space-fractional derivative can be written
as

Dβ,δ
0x u(t, x) = tγ−αDβ,δ

0η U(η).
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Substituting the time and space-fractional deriva-
tives after transformation, we get the desired or-
dinary differential equation (16).
The solution of the fractional ordinary differential
equation (16) is given in the next theorem.

Theorem 2. The solution of FPDE (13) using
transformation (15) with conditions (17) has the
following form

u(t, x) = tγ
[

aηm−1Γ(γ + 1− α(m− 1)/β)×
W(β,m),(−α,γ+1−α(m−1)/β)(η

β)
+bηm−2Γ(γ + 1− α(m− 2)/β))×
W(β,m−1),(−α,γ+1−α(m−2)/β)(η

β)
]

,
(20)

where m = β + δ − δβ, η = xt−α/β ,

W(β,m),(−α,γ+1−α(m−2)/β)(η
β) =

∞
∑

k=0

ηβk

Γ(m+ kβ)Γ(γ + 1− kα− (m− 1)α/β)

and

W(β,m−1),(−α,γ+1−α(m−2)/β)(η
β) =

∞
∑

k=0

ηβk

Γ(m− 1 + kβ)Γ(γ + 1− kα− (m− 2)α/β)
.

Proof. Applying Riemann-Liouville fractional
integral Iβ to both sides of differential equation
(16) and using property (2), we have

U(η) =
aηm−1

Γ(m)
+

bηm−2

Γ(m− 1)
+IβJγ+δ2,δ1

β/α P γ+δ2,σ1

β/α U(η).

Then, the solution can obtained using successive
iterations method. We set

U0(η) =
aηm−1

Γ(m)
+

bηm−2

Γ(m− 1)
,

so the nth term Un can be written as

Un(η) = U0(η) + IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α Un−1(η).

Now, we compute U1 as follows:

U1(η) = U0(η) + IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α U0(η).

Using properties (9)and (10), we calculate the fol-
lowing

IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α U0(η) =

IβJγ+δ2,δ1
β/α

[

aηm−1

Γ(m)

Γ(γ + δ2 + σ1 − (m− 1)α/β)

Γ(γ + δ2 − (m− 1)α/β)

+
bηm−2

Γ(m− 1)

Γ(γ + δ2 + σ1 − (m− 2)α/β)

Γ(γ + δ2 − (m− 2)α/β)

]

= Iβ
[

aηm−1

Γ(m)

Γ(γ + δ2 + σ1 − (m− 1)α/β)

Γ(γ + δ2 + δ1 − (m− 1)α/β)

+
bηm−2

Γ(m− 1)

Γ(γ + δ2 + σ1 − (m− 2)α/β)

Γ(γ + δ2 + δ1 − (m− 2)α/β)

]

=

[

aηm+β−1

Γ(m+ β)

Γ(γ + 1− (m− 1)α/β)

Γ(γ + 1− α− (m− 1)α/β)
+

bηm+β−2

Γ(m+ β − 1)

Γ(γ + 1− (m− 2)α/β)

Γ(γ + 1− α− (m− 2)α/β)

]

.

Hence, U1(η) is given by

U1(η) = a

(

1

Γ(m)
ηm−1 + ηm+β−1

Γ(γ + 1− (m− 1)α/β)

Γ(m+ β)Γ(γ + 1− α− (m− 1)α/β)

)

+b

(

1

Γ(m− 1)
ηm−2 + ηm+β−2

Γ(γ + 1− (m− 2)α/β)

Γ(m+ β − 1)Γ(γ + 1− α− (m− 2)α/β)

)

.

Similarly, we compute U2(η)

U2(η) = U0(η) + IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α U1(η)

= U0(η) + IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α ×
[

U0(η) +
aΓ(γ + 1− (m− 1)α/β)ηm+β−1

Γ(m+ β)Γ(γ + 1− α− (m− 1)α/β)

+
bΓ(γ + 1− (m− 2)α/β)ηm+β−2

Γ(m+ β − 1)Γ(γ + 1− α− (m− 2)α/β)

]

.

One can check that

IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α ηm+β−1 = ηm+2β−1×

Γ(m+ β)Γ(γ + 1− α− (m− 1)α/β)

Γ(m+ 2β)Γ((γ + 1− 2α− (m− 1)α/β)

and

IβJγ+δ2,δ1
β/α P γ+δ2,σ1

β/α ηm+β−2 = ηm+2β−2×

Γ(m+ β − 1)Γ(γ + 1− α− (m− 2)α/β)

Γ(m+ 2β − 1)Γ(γ + 1− 2α− (m− 2)α/β)
.

Thus,
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U2(η) = a

(

1

Γ(m)
ηm−1 + ηm+β−1×

Γ(γ + 1− (m− 1)α/β)

Γ(m+ β)Γ(γ + 1− α− (m− 1)α/β)

+
Γ(γ + 1− (m− 1)α/β)ηm+2β−1

Γ(m+ 2β)Γ(γ + 1− 2α− (m− 1)α/β)

)

+b

(

1

Γ(m− 1)
ηm−2 + ηm+β−2×

Γ(γ + 1− (m− 2)α/β)ηm+β−2

Γ(m+ β − 1)Γ(γ + 1− α− (m− 2)α/β)

+
Γ(γ + 1− (m− 2)α/β)ηm+2β−2

Γ(m+ 2β − 1)Γ(γ + 1− 2α− (m− 2)α/β)

)

.

We similarly compute U3(η) and get

U3(η) = a

(

1

Γ(m)
ηm−1+

Γ(γ + 1− (m− 1)α/β) ηm+β−1

Γ(m+ β)Γ((γ + 1− α− (m− 1)α/β)

+
Γ(γ + 1− (m− 1)α/β) ηm+2β−1

Γ(m+ 2β)Γ(γ + 1− 2α− (m− 1)α/β)

+
Γ(γ + 1− (m− 1)α/β)ηm+3β−1

Γ(m+ 3β)Γ(γ + 1− 3α− (m− 1)α/β)

)

+

+b

(

1

Γ(m− 1)
ηm−2+

Γ(γ + 1− (m− 2)α/β) ηm+β−2

Γ(m+ β − 1)Γ(γ + 1− α− (m− 2)α/β)

+
Γ(γ + 1− (m− 2)α/β) ηm+2β−2

Γ(m+ 2β − 1)Γ(γ + 1− 2α− (m− 2)α/β)

+
Γ(γ + 1− (m− 2)α/β) ηm+3β−2

Γ(m+ 3β − 1)Γ(γ + 1− 3α− (m− 2)α/β)

)

.

Now, we can write the nth term as follows:

Un(η) = aηm−1Γ(γ + 1− (m− 1)α/β)×
n
∑

k=0

ηβk

Γ(m+ kβ)Γ(γ + 1− kα− (m− 1)α/β))

+bηm−2Γ(γ + 1− (m− 2)α/β)×
n
∑

k=0

ηβk

Γ(m+ kβ − 1)Γ(γ + 1− kα− (m− 2)α/β))
.

As n goes to infinity, then

U(η) = a ηm−1Γ(γ + 1− (m− 1)α/β)
×W(β,m),(−α,γ+1−(m−1)α/β)(η

β)
+b ηm−2Γ(γ + 1− (m− 2)α/β)
×W(β,m−1),(−α,γ+1−(m−2)α/β)(η

β).

Substituting U(η) in the transformation (15), we
get the desired solution (20).

Remark 1. For δ = 0, Hilfer fractional deriv-
ative is reduced to Riemann-Liouville fractional
derivative and this case was considered by Luchko
and Gorenflo in [9]. The ordinary differential
equation becomes

Jγ,1−α
β/α P γ,α

β/αU(η) = Dβ
xU(η)

and one can check that the solution has the fol-
lowing form

U(η) = a ηβ−1Γ(γ + 1− α+ α/β)
×W(β,β),(−α,γ+1−α+α/β)(η

β)

+bηβ−2Γ(γ + 1− α+ 2α/β)
×W(β,β−1),(−α,γ+1−α+2α/β)(η

β),

which coincides with their result.

For β = 2 and 0 < α ≤ 2, this case was studied by
Buckwar and Luchko, for more details see [6,28].

Remark 2. One may consider the same problem
with n− 1 < α ≤ n and n− 1 < β ≤ n:

Dα,δ
0t u(t, x) = Dβ,δ

0x u(t, x)

with conditions

Dn−k−1In−m
0x u(t, 0+) = cn, m = β + δ − βδ,

and then use the same transformation in (15) to
find the exact solution. Proceeding the same, the
solution has the following form:

u(t, x) = tγ
n
∑

i=0

ci η
m−i−1

×

Γ(γ + 1− (m− i− 1)α/β)
×W(β,m−i),(−α,γ+1−(m−i−1)α/β)(η

β).

3.2. Fractional differential equation

involving hyper-Bessel operator

Consider the problem

(

tθ
∂

∂t

)α

u(t, x) = x−βρ ∂β

∂xβ
u(t, x), (21)

with the boundary conditions:

lim
x→0

xρ(β−1)(1− β +
1

ρ
x
d

dx
)I0,2−β

ρ u(t, x) =

U0t
γ−αρ(β−1)/β

(22)

lim
x→0

xρ(β−2)(2− β +
1

ρ
x
d

dx
)I0,2−β

ρ u(t, x) =

U1t
γ−αρ(β−2)/β

(23)
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where 1 < β ≤ 2, 0 < α ≤ 1, ρ = 1 − θ,
(

tθ
∂

∂t

)α

stands for hyper-Bessel operator defined

by (12) and
∂β

∂xβ
= D−β,β

ρ represents the left-sided

Erdélyi-Kober fractional derivative.

First, we use similarity method for FPDE 21 to
determine a symmetry group of scaling transfor-
mations. We introduce new independent and de-
pendent variables as before

t = λbt, x = λx, u = λcu.

The time fractional derivative becomes

(

tθ
∂

∂t

)α

u(t, x)

= ραt−ραI0,−αρu(t, x)

= ραt−ραD−α,α
ρ,t u(t, x)

= ραt−ρα

(

1− α+
1

ρ
t
d

dt

)

I0,1−α
ρ,t u(t, x)

= ραt−ρα

(

1− α+
1

ρ
t
d

dt

)

ρ t−ρ(1−α)

Γ(1− α)

∫ t

0
(t− s)−α

×sρ−1u(sλb, x)ds

= ραλbραt
−ρα

(

1− α+
1

ρ
t
d

dt

)

ρ λbρ(1−α) t
−ρ(1−α)

Γ(1− α)

×

∫ t/λb

0
(tλ−b

− s)−αsρ−1u(sλb, x)ds

= ραλbραt
−ρα

(

1− α+
1

ρ
t
d

dt

)

ρ λbρα t−ρ(1−α)

Γ(1− α)

×

∫ t

0
(t− τ)−ατρ−1u(τ, x)dτ

= ραλbραt
−ρα

(

1− α+
1

ρ
t
d

dt

)

I0,1−α

ρ,t
u(t, x)

= λbρα

(

t
θ ∂

∂t

)α

u(t, x).

Similarly, we do for the space-fractional derivative
and deduce

D−β,β
ρ,x u(t, x) =
1
∏

k=0

(

1− β + k +
1

ρ
x
d

dx

)

I0,2−β
ρ,x u(t, x)

=
1
∏

k=0

(

1− β + k +
1

ρ
x
d

dx

)

ρ λρ(2−β) x−ρ(2−β)

Γ(2− β)

×

∫ x/λ

0
(x/λ− s)1−βsρ−1u(t, sλ)ds

=
1
∏

k=0

(

1− β + k +
1

ρ
x
d

dx

)

ρ x−ρ(2−β)

Γ(2− β)

×

∫ x

0
(x− z)1−βzρ−1u(t, z)dz

=
1
∏

k=0

(

1− β + k +
1

ρ
x
d

dx

)

I0,2−β
ρ,x u(t, x)

= D−β,β
ρ,x u(t, x).

From the above we get

(

tθ
∂

∂t

)α

u(t, x)− xρβD−β,β
ρ,x u(t, x)

= λbρα

(

t
θ ∂

∂t

)α

u(t, x)− λρβxρβD−β,β
ρ,x u(t, x)

= 0,

if b =
β

α
. Thus, we choose the following invariant

of scaling transformation

u(t, x) = tγU(η), η = xt−α/β .

The result related to equation (21) is given in the
following theorem;

Theorem 3. The transformation given by (15)
reduces the FPDE (21) to the following ODE

ραηβρP
1−α+γ/ρ,α
ρβ/α U(η) = D−β,β

ρ U(η), (24)

with

lim
η→0

ηρ(β−1)(1− β+
1

ρ
η
d

dη
)I0,2−β

ρ U(η) = U0 (25)

and

lim
η→0

ηρ(β−2)(2−β+
1

ρ
η
d

dη
)I0,2−β

ρ U(η) = U1. (26)

Proof. We start by rewriting the time-hyper-
Bessel operator using definition (12):

(

tθ
∂

∂t

)α

u(t, x) = ραt−ραI0,−α
ρ tγU(η).

Then, make change of variable τ = t
(η

s

)β/α
and

simplify as follows
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ραt−ραD−α,α
ρ tγU(η)

= ραt−ρα

(

1− α+
1

ρ
t
d

dt

)

I0,1−α
ρ tγU(xt−α/β)

= ραt−ρα

(

1− α+
1

ρ
t
d

dt

)

ρt−ρ(1−α)

Γ(1− α)

×

∫ t

0
(tρ − τρ)−ατρ−1+γU(xτ−α/β)dτ

= ραt−ρα

(

1− α+
1

ρ
t
d

dt

)

ρβtγηρβ/α(1+γ/ρ)

αΓ(1− α)

×

∫

∞

η
(sρβ/α − ηρβ/α)−αs−ρβ(1−α+γ/ρ)−1U(s)ds

= ραtγ−ρα

(

1− α+
1

ρ
t
d

dt

)

J
1+γ/ρ,1−α
ρβ/α U(η).

Thus, we arrive

ραt−ραD−α,α
ρ tγU(η)

= ραtγ−ρα

(

1− α+
γ

ρ
−

α

ρβ
η
d

dη

)

J
1+γ/ρ,1−α
ρβ/α U(η)

= ραtγ−ραP
1−α+γ/α,α
ρβ/α U(η),

where J
1+γ/ρ,1−α
ρβ/α and P

1−α+γ/α,α
ρβ/α are right-sided

Erdélyi-Kober fractional operators. Similarly, we
transform the space fractional derivative

D−β,β
ρ u(t, x)

=
1
∏

k=0

(

1− β + k +
1

ρ
x
d

dx

)

I0,2−β
ρ tγU(xt−α/β),

and substitute s = x

(

z

η

)

in the above in the

integral as follows:

I0,2−β
ρ tγU(xt−α/β)

=
ρtγ x−ρ(2−β)

Γ(2− β)

∫ x

0
(xρ − sρ)1−βsρ−1U(st−α/β)ds

=
ρtγη−ρ(2−β)

Γ(2− β)

∫ η

0
(ηρ − zρ)1−βzρ−1U(z)dz

= tγI0,2−β
ρ U(η).

Hence,

D−β,β
ρ u(t, x)

= tγ
1
∏

k=0

(

1− β + k +
1

ρ
η
d

dη

)

I0,2−β
ρ U(η)

= tγD−β,β
ρ U(η).

Finally, substituting the transformed time and
space fractional derivatives in differential equa-
tion (21), we get

ραtγ−ραP
1−α+γ/α,α
ρβ/α U(η) = x−ρβtγD−β,β

ρ U(η)

which can be written as ordinary differential equa-
tion (24).

In the next theorem, we give the self-similar solu-
tion (invariant solution) of equation (21):

Theorem 4. The solution of FPDE (21) using
transformation (15) with conditions (25)-(26) has
the following form

u(t, x) = tγ
[

ηρ(β−1)Γ(γρ + 1 + α
β − α)

×W(β,β),(−α, γ
ρ
+1+α

β
−α)(ρ

αηβ)

+ηρ(β−2)Γ(γρ + 1 + 2α
β − α))

×W(β−1,β),(−α, γ
ρ
+1+ 2α

β
−α)(ρ

αηβ)
]

.

(27)

Proof. Applying Erdélyi-Kober fractional inte-
gral to both sides of equation (24) and using the
property (8), we have

U(η) = c0 η
ρ(β−1) + c1 η

ρ(β−2)

+ραI−β,β
ρ ηβρP

1−α+γ/ρ,α
ρβ/α U(η),

where c0 =
U0

Γ(β)
and c1 =

U1

Γ(β − 1)
.

Also, using property (7), we get

U(η) = c0 η
ρ(β−1) + c1 η

ρ(β−2)

+ραηβρI0,βρ P
1−α+γ/ρ,α
ρβ/α U(η).

Note that I−β,β
ρ ηβρ = ηβρI0,βρ , see [25].

To find the solution of the above equation, we use
successive iteration method. We start with

U0 = c0η
ρ(β−1) + c1η

ρ(β−2)

and

Un(η) = U0 + ραηβρI0,βρ P
1−α+γ/ρ,α
ρβ/α Un−1(η).

The first iteration is

U1(η) = U0 + ραηβρI0,βρ P
1−α+γ/ρ,α
ρβ/α U0(η)

= U0 + ραηβρI0,βρ P
1−α+γ/ρ,α
ρβ/α

(

c0η
ρ(β−1) + c1η

ρ(β−2)
)

.

Compute the second term of U1(η) using property
(11), we have
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I0,βρ P
1−α+γ/ρ,α
ρβ/α ηρ(β−1)

= I0,βρ ηρ(β−1)
Γ
(

γ
ρ + 1 + α

β − α
)

Γ
(

γ
ρ + 1 + α

β − 2α
)

= ηρ(β−1)
Γ(β)Γ

(

γ
ρ + 1 + α

β − α
)

Γ(2β)Γ
(

γ
ρ + 1 + α

β − 2α
) ,

and similarly we do for the last term

I0,βρ P
1−α+γ/ρ,α
ρβ/α ηρ(β−2)

= ηρ(β−2)
Γ(β − 1)Γ

(

γ
ρ + 1 + 2α

β − α
)

Γ(2β − 1)Γ
(

γ
ρ + 1 + 2α

β − 2α
) .

Substituting back the above results in U1(η), we
get

U1(η) = c0
[

ηρ(β−1) + ραηρ(2β−1)

×

Γ(β)Γ
(

γ
ρ + 1 + α

β − α
)

Γ(2β)Γ
(

γ
ρ + 1 + α

β − 2α
)





+c1
[

ηρ(β−2) + ραηρ(2β−2)

×

Γ(β − 1)Γ
(

γ
ρ + 1 + 2α

β − α
)

Γ(2β − 1)Γ
(

γ
ρ + 1 + 2α

β − 2α
)



 .

Repeating the same procedure, one can compute
U2(η) :

U2(η) = U0 + ραηβρI0,βρ P
1−α+γ/ρ,α
ρβ/α U1(η).

So,

I0,βρ P
1−α+γ/ρ,α
ρβ/α ηρ(2β−1)

= I0,βρ ηρ(2β−1)
Γ
(

γ
ρ + 1 + α

β − 2α
)

Γ
(

γ
ρ + 1 + α

β − 3α
)

= ηρ(2β−1)
Γ(2β)Γ

(

γ
ρ + 1 + α

β − 2α
)

Γ(3β)Γ
(

γ
ρ + 1 + α

β − 3α
)

and

I0,βρ P
1−α+γ/ρ,α
ρβ/α ηρ(2β−2)

= ηρ(2β−2)
Γ(2β − 1)Γ

(

γ
ρ + 1 + 2α

β − 2α
)

Γ(3β − 1)Γ
(

γ
ρ + 1 + 2α

β − 3α
) .

Thus, U2(η) can be written as follows

U2(η)

= c0



ηρ(β−1) + ραηρ(2β−1)
Γ(β)Γ

(

γ
ρ + 1 + α

β − α
)

Γ(2β)Γ
(

γ
ρ + 1 + α

β − 2α
)

+ρ2αηρ(3β−1)
Γ(β)Γ

(

γ
ρ + 1 + α

β − α
)

Γ(3β)Γ
(

γ
ρ + 1 + α

β − 3α
)





+c1

[

ηρ(β−2)

+ραηρ(2β−2)
Γ(β − 1)Γ

(

γ
ρ + 1 + 2α

β − α
)

Γ(2β − 1)Γ
(

γ
ρ + 1 + 2α

β − 2α
)

+ρ2αηρ(3β−2)
Γ(β − 1)Γ

(

γ
ρ + 1 + 2α

β − α
)

Γ(3β − 1)Γ
(

γ
ρ + 1 + 2α

β − 3α
)



 .

Now, the nth iteration can be written as

Un(η) = U0Γ
(

γ
ρ + 1 + α

β − α
)

n
∑

k=0

ρkαηρ(kβ−1)

Γ(k + 1)β)Γ
(

γ
ρ + 1 + α

β − (k + 1)α
)

+U1Γ
(

γ
ρ + 1 + 2α

β − α
)

n
∑

k=0

ρkαηρ(kβ−2)

Γ(k + 1)β − 1)Γ
(

γ
ρ + 1 + 2α

β − (k + 1)α
)

and as n approaches infinity, we have

U(η) = U0Γ
(

γ
ρ + 1 + α

β − α
)

ηρ(β−1)

W(β,β),(−α, γ
ρ
+1+α

β
−α)(ρ

αηβ)

+U1Γ
(

γ
ρ + 1 + 2α

β − α
)

ηρ(β−2)

W(β−1,β),(−α, γ
ρ
+1+ 2α

β
−α)(ρ

αηβ).

Substituting U(η) in the transformation (15), we
obtain the desired solution (27).

Remark 3. Particular case when ρ = 1, the frac-
tional derivatives in (21) are reduced to Riemann-
Liouville fractional derivatives and the problem
was considered by Luchko and Gorenflo as men-
tioned above, for more details see the reference
therein.

4. Conclusion

To summarize, Fractional Partial Differen-
tial Equations (FPDEs) involving hyper-Bessel,
Erdélyi-Kober and Hilfer fractional derivatives
were main targets in this investigation. Using
special transformation (see (15)) we first reduced
the considered FPDEs to the fractional ODEs (see
Theorem 1 and 3) and then we solved these ODEs
using successive iterative method (see Theorem 2
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and 4). The obtained self-similar solutions are ex-
pressed in terms of generalized Wright type func-
tion.

Our motivation is based on possible usage of sub-
diffusion equations with such special fractional
operators by specialists in applied mathematics
who may deal with such sub-diffusion equations.
Moreover, we believe that suggested approach
can be applied for investigation of more general
FPDEs and also in studying the symmetry group
analysis of these of derivatives.
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