An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703
Vol.11, No.3, pp.16-27 (2021)
http://doi.org/10.11121 /ijocta.2021.1065

RESEARCH ARTICLE

1JOCTA

An International Journal of
Optimization and Control:
Theories & Applications

On self-similar solutions of time and space fractional sub-diffusion

equations

Fatma Al-Musalhi®* and Erkinjon Karimov?,°

@ Center for Preparatory Studies, Sultan Qaboos University, Oman
b V.I. Romanouvskiy Institute of Mathematics, Uzbekistan

¢ Ferghana State University, Uzbekistan
fatma@squ.edu.om, erkinjon.karimov@mathinst.uz

ARTICLE INFO ABSTRACT

Article History:

Received 21 December 2020
Accepted 22 September 2021
Awailable 1 November 2021

Keywords:

Self-similar solution
Erdélyi-Kober fractional derivative
Hilfer derivatives

Hyper-Bessel operator

Successive iteration method

AMS Classification 2010:
26A33; 33E20; 33E30; 35C06; 45J05

In this paper, we have considered two different sub-diffusion equations in-
volving Hilfer, hyper-Bessel and Erdélyi-Kober fractional derivatives. Using a
special transformation, we equivalently reduce the considered boundary value
problems for fractional partial differential equation to the corresponding prob-
lems for ordinary differential equation. An essential role is played by certain
properties of Erdélyi-Kober integral and differential operators. We have ap-
plied also successive iteration method to obtain self-similar solutions in an ex-
plicit form. The obtained self-similar solutions are represented by generalized
Wright type function. We have to note that the usage of imposed conditions
is important to present self-similar solutions via given data.

(co) IS

1. Introduction

Fractional calculus became one of the intensively
developing theories in modern mathematics due
to its wide range of applications in real life pro-
cesses and also its generalized nature [1I]. In
particular, fractional derivative operators allow
the description of memory and hereditary prop-
erties and are useful for modeling dynamic. Re-
cently, several fractional operators have been de-
veloped to analyze the systems and models such
as Caputo-Fabrizio, Hilfer, hyper-Bessel, Erdélyi-
Kober fractional derivatives and many others. For
instant, in recent papers [213], fractional differen-
tial equations are used for modeling applications
in blood alcohol and fish farm models and in [4]
fractional partial differential equation is used for
Frankl-Type Problem.

Fractional order partial differential equations
(FPDE) is one of the key objects in mathemat-
ical modeling of many diffusion-wave processes
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[5]. Different kind of direct and inverse prob-
lems for such equations were studied using dif-
ferent approaches, such as, integral transforma-
tions (Laplace, Fourier, Mellin), Green function
method, method of separation of variables and
etc. For PDEs, in general, one can determine spe-
cial type of solutions, which are invariant under
some subgroup of the full symmetry group of sys-
tem. These ” group-invariant” solutions are found
by solving a reduced system of equations having
fewer independent variables than the original sys-
tem [6]. Such solutions named as self-similar solu-
tions which play an important role in understand-
ing of fundamental processes in mathematics and
mechanics, we refer readers to [7] for application
in problems of imploding shock waves and to [§]
for filtration-slow groundwater motion in porous
media.

The self-similarity of the solutions of partial dif-
ferential equations has allowed their reduction to
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ordinary differential equations, which often sim-
plifies the investigation. They have also served as
standards in evaluating approximate methods for
solving more complicated problems [8]. Moreover,
they often describe the intermediate asymptotics
behavior of solutions of wider classes of problems,
for more details see [§].

The idea of self-similarity of solutions and Lie
group analysis have been extended to fractional
differential equations. For instant, in [6] and [9],
the Lie group analysis of the equation

o
0xb’

0%u

bl
ote

£>0,t>0,d>0, a, B3>0

has been discussed by Buckwar, Luchko and
Gorenflo. Namely, the scale-invariant solutions
were found by solving an ordinary differential
equation of fractional order with a new indepen-
dent variable n = mf%. The general solution for
this equation is obtained in terms of the general-
ized Wright function.

Furthermore, the existence and uniqueness of the
space-fractional PDE with Caputo fractional de-
rivative

ou 0%
—=— 1 <2
ot  O0x%’ Sas

was discussed, under the self-similar form

u(e,t) =f (57 )+ (@,6) € [0.X] x [t9,00),

where X, tp > 0, § € R [10].

In [6], an admitted group dilations is found for the
linear wave-diffusion equation of fractional order
and these transformations are used for the con-
struction of self-similar solutions. In [I1], the
methods of Lie continuous groups for symme-
try analysis of FDEs were adapted and prolon-
gation formula for fractional derivatives was pro-
posed. Then, in [I2], this formula is used for find-
ing the exact solutions for nonlinear sub-diffusion
equations with the Riemann-Liouville and Caputo
fractional derivatives.

In [13], the similarity solution of the fractional
diffusion equation

d"p(r,t) 1 0 ( 4_,0p
ot _rds—lg T @ 5 7'>,t>0,
(v = %, ds = % is the spectral dimension of

the fractal) was considered and through the in-
variants of the group of scaling transformations,

authors derived the integro-ordinary differential
equation for the similarity variable.

In [I4], fractional nonlinear space-time wave-
diffusion equation was considered and solved by
the similarity method using fractional derivatives
in the Caputo, Riesz-Feller, and Riesz senses.
Some particular cases are presented and the cor-
responding solutions are shown by means of 2-D
and 3-D plots.

The following time-fractional cylindrical KdV
equation with Riemann-Liouville fractional deriv-
ative

0%u n U np ou n d3u
e ue— 4 ="
ote 2« O0r Ox3

=0, a€(0,1)
was reduced to the nonlinear fractional ordinary
differential equation with Erdélyi-Kober frac-
tional differential operator, using similarity trans-
formation u(x,t) = t_%af(z) along with the sim-
ilarity variable z = xt~5 [I5].

There are other approaches, were authors have
found self-similar solution by reducing considered
PDEs to the hypergeometric equations. For ex-
ample, Hasanov and Ruzhansky have found self-
similar solutions for degenerate PDEs of the sec-
ond, third and fourth orders using special method
(see for details [16]). Precisely, they considered
the following fourth order degenerate PDE:

2" — Uy = 0, n,k=const>D0.

They are looking for a solution of this equation as
u(z,t) = P(t)w(o),
where

1 -1 k+1
P: 7tk+1 = —— TL+4'
<k+1 > T T ikt

Then they have got the equation with respect to
w:

xgwmmra: + (3 +c1+co+ Cg)xQmex
+(1+ ¢y +ca+cg+crea + cres + cac3)Twant+
(c1cc3 — )w, — aw = 0,

which has special solutions represented with hy-
pergeometric functions ,Fy.

The main motivation of the present research is the
consideration of combinations of special fractional
derivatives such as hyper-Bessel, Erdélyi-Kober
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(due to singularity) and Hilfer (due to generalized
character). The obtained self-similar solutions
will allow specialists in applied mathematics, who
may deal with such FPDEs to study in details,
since an explicit form of solutions are available.
Moreover,the offered approach can be developed
to conduct further investigations for more general
FPDE with aforementioned fractional derivatives
and also will contribute in studying the symmetry
group analysis of FPDEs with these derivatives.
In the present paper, we consider two problems,
namely, fractional differential equation involving
time and space Hilfer derivatives

Dgtéu(t x) = Dgg’fu(t,x), 0<a<l,1<p<2,

and fractional differential equation involving
hyper-Bessel operator in time and Erdélyi-Kober
fractional derivative in space variable

o\ o°
(t‘g 825) u(t,z) = x_ﬂpwu(t,x),
where 1 < <2, 0<a<1.

The key result is the finding of self-similar solu-
tions of the above given equations with the spe-
cific conditions. The main tool is the reduction of
considered FPDESs to the integral equations using
specific transformation.

In literature, we refer some works devoted to
the considered fractional derivatives, for exam-
ple, hyper-Bessel operator was used to general-
ize the standard process of relaxation [17] and to
model fractional diffusion equations governing the
law of the fractional Brownian motion [18]. Also,
FPDEs with hyper-Bessel operator were consid-
ered in [19] for studying direct and inverse source
problems and in [20] for non-local problem of
mixed type equation. Furthermore, there are dif-
ferent works related to applications of Erdélyi-
Kober and Hilfer fractional derivatives such as
fractional diffusion with Erdélyi-Kober derivative
[21] and higher order partial differential equations
with Hilfer fractional derivatives [22], for more de-
tails see the reference therein.

The rest of the paper is organized as follows. In
the next section, we recall preliminaries related to
some fractional derivatives. The main results are
given in Section 3. The conclusion of the work is
given in the last section.

2. Preliminaries

In this section, we present some basic definitions
on fractional operators and their properties that
are used further in this article.

Definition 1 ( [1]). The Riemann-Liouville frac-
tional integral of order o > 0 is defined by

T = 7

a > 0.

o / (t— ) f(s)ds

Definition 2 ( [23]). The right-sided Hilfer frac-
tional derivative of order a and type & is defined
as

I(S(n a) d” A" (a-8)(n— oz)f(t), (1)

a,d

wheren —1<a<n,0<§<1.

For § = 0, Hilfer fractional derivative is reduced

to the Riemann-Liouville fractional derivative, i.e;
5

Dgt f(t) = D, f (D).

Now, we recall the following property [24]

17, D7, f(t) = I3, D £(t)

n-l,. a)o—k-1
= py - Y A

n—k—1n—o
P(O’ - k) Da+ Ia+ (a)?

(2)

=

=0

where o0 = o+ 6 — «f.

Definition 3. ( [25]) The left and right-sided
Erdélyi-Kober fractional integrals of order «, re-
spectively, are defined as follows:

I3 f(t) =

B ptta) (4B a1 BT
T(a) ' " /o(t s)r st f(S)djg)

Jﬁ’ f()_

B 87 B Bye—1lg—Blyta—1)=1 £\ s
(@) /t e 7 " (4)

where a, 5 > 0 and v € R.

Definition 4. ( [25]) The left and right-sided
Erdélyi-Kober fractional derivatives of order a,
respectively, are given by (n —1 < a <n,n €N)

Dga 1:[(7+]+Btjt> I’7+an ozf(t)7
(5)
and
v, o . 1. d Yta,n—a
Pg f(t):H(’H'J Etﬁ)t] f(#), (6)
=0

where v € R, > 0.
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The following property of Erdélyi-Kober frac-
tional operators [25]

N f(a) = I f (@), (T)
n—1
Ig’aDg’af(x) = f(z) — Z cpa AR o (g)
k=0
are true, where
= Mlim 2BA+Y+E) o
P(Oé — )cc—)O
n—1 d
I @+r+i+ —xd—)ﬂ*a” “f(x).
i=k+1 B

Furthermore, the Erdélyi-Kober fractional opera-
tors of power function are needed in the compu-
tations [26]:

T,0p F(a+7—_p/ﬁ)p T —

Bt = =5 T wB )
T,Qp __ F(T_p/ﬂ) P o
T = S p/B>0  (10)

L(y+1+p/B)
Nla+~vy+1+p/8)

Iyt = P, y+14+p/B > 0. (11)

Definition 5. ( [27/) The hyper-Bessel operator
of order order 0 < a < 1, is defined as

tejt) (1) =

(1— 9)%—0—9)&10 TE(), if 0 < 1,
(6 — 1)1y - o o f(t), if @ > 1.

(12)

Note that Ig’fa = D/ga’a and when 6 = 0, this
operator coincides with the Riemann-Liouville
fractional derivative.

Also, we need to recall the generalized Wright
function:

Definition 6. ( [9,[28/) The generalized Wright
function is defined by the series expansion:

K
ZF (a+ pk)T(b+ vk)’

W), v,0)

where
v,u €R, a,beC.

3. Main Result

3.1. Fractional differential equation
involving Hilfer derivative

Consider a time and space-fractional PDE

Dg‘téu(t,x) = Dgfu(t,:n), 0<a<l,1<p<2,

(13)

with the following conditions:
0 o5_ _
o Loz "u(t,0%) = agrtattzmis,
v (14)
Ig, ™u(t,01) = birte=ml/s,

where a, b are constants and m = 5+ § — 30.
We start by using similarity method to FPDE
([I3) to determine a symmetry group of scaling
transformations. We introduce new independent
and dependent variables

Au.

t=X\t, T=Xx, uw=

The time fractional derivative becomes (o7 =
a+0—ad, i =061-—a))

D*u(t,z) = I DY (L, T)
BTy R Ry
T(1—o) ot J, s u(A’s,x)ds

e A\t 9 /A o o
= (I‘(l—al)at/o (=) )

xT(\s, T) ds

c+boq t
)\73 (t — 7')_01> u(r,T)dr
0

I'(l—o0y)0t
)\c-{—bal t 51 ) b
— 1—-1poiz =
= IW/O (t —s)" 7 D7'u(N’s, T)ds
)\c-l—bal t

/A
= 7F(51) /0 (f)fb — s)él*nglﬂ()\bs,E)ds

)\c+b01—b—b(61—1) £ B
] [
I'(61) 0

)\c+ba151DU1 ( 7*)
Ac+baDa5 (L, 7).

T)‘Sl_nglﬂ(T, T)dr

One can do the same for the space-fractional de-
rivative, we have

DEu(t, z) = AP D27 (T, 7).

From the above we get

DMu(t,z) — DEu(t,z)
= A+ D% (E, 7) — AP DE0u(E, T) = 0,
if b= é Thus, we choose the following invariant

o
of scaling transformation
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u(t,x) =0U(n), n=at"""" >0

Now, using the above transformation, we have the
following result:

Theorem 1. The transformation

u(t,x) = U (n), n =t~ */7 (15)
reduces FPDE (I3) to the following ODE
82,0 82,0 )
TIROPR U () = DGYU (), (16)
with
DIG™U(0%) = a and I5,™U(0T) =b,  (17)

where 01 = a+d —ad, 6o = 1 — 01 and 61 =
(1 — ).

Proof. We begin by calculating the time-
fractional derivative in terms of U(n) using trans-
formation (I5]). Using the definition of Hilfer frac-
tional derivative ([Il) for n = 1, we have

0
DS u(t, z) = Iélaﬁ%m(xt—a/ﬁ). (18)
. N n\ P/
Now, using the substitution 7 = ¢ <7) , the
S

second integral of (I8]) can be reduced as follows:

127U (xt=/P)

t
— F(EQ) ; (t— T)‘SQ*ITVU(M'*O‘/'B)dT
6 oo
_ 5t 2+V7]5/a(7+1) / (Sﬁ/a . nﬁ/a)&z—lx
aF(ég)
876/0‘(7+52)71U(3)d3
= 011U ().

Then, taking the derivative of the above integral,
we arrive to the following

d
v (/B
g7 (z )

a d
<7 + 02 — Bndn> T3ERU(n)

_ t62+'yflpg/-;52701 U(n).

— t(52+’y—1

Using the above result and proceeding the same

. o n\ B/
as above using substitution 7 = ¢ <—> and re-
S

lation z = 27~*/#, the expression in (I8) becomes

d
I 120U (wt=/B
A C )

1 t
= g =P

_ B {Y+o2+d1—1 nﬂ/a(”y+52)

o Bla . BJaydi—1
S

x s~ Alalr o =)L pUE RO () ds.

The power v+ d2 + 1 — 1 =y — « and hence the
time fractional derivative can be written as

¥ — +62,0 +62,
Do ult,x) = 07T g " Py > Uln).

Next, we compute the space-fractional derivative

in terms of U(n)

5?2
Doy ult,x) = 01 S5 19U (et=/%), - (19)

where 03 = (2 — )(1 — ¢) and 64 = 6(2 — 3). We
use the substitution & = st~%/# then the inner
integral of (I9) can be written as

1 mx—363_1 st=/PYds
5 [ @9

[ -9t v = ).
0

19U (zt=/P) =
B o0 /B
 T(8)

Computing second derivative of the above gives

82 5 ) d2 d
7[(2*/8)(17 )U(I‘tia/ﬁ) = ta( 372)/572-[ SU(n)a

Ox? dn
since

a_du dn

de  dndz’

Now, we do the same for the first integral of (I9)
with € = st7%/ and z = st=*/8 we obtain

2
I548—2I53U(a:t_a/3 )

alss-2)/8 fa 2
= e / (x — 5)64_1d—I63U(z)d5
0

['(64) / dz?
to(93+04—2)/B  rn 5iot d2 s
= — )11y (6)d
1o | -9 g1 uiee
=t % —_]% .
e U(n)

Thus, space-fractional derivative can be written
as

Dgfu(t, x) = tV_O‘Dng(n).
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Substituting the time and space-fractional deriva-
tives after transformation, we get the desired or-
dinary differential equation ().

The solution of the fractional ordinary differential
equation ([I6]) is given in the next theorem.

Theorem 2. The solution of FPDE ({13) using
transformation (13) with conditions (I7) has the
following form

u(t,z) =t [an™ 'T(y+1—a(m—1)/8)x

W(a,m).(—an+1-am—1)/8)(1°)
+on™ 20 (y + 1 — a(m — 2)/8)) x

W(g.m-1)(—ar+1-am-2)/8)1°)]
(20)

where m =+ 8 — 68, n = xt—*/B,

W (.m),(—an+1—am—2),8) 10°) =
00 Uﬁk

Z Fm+kB)I(y+1—ka—(m—1)a/B)

k=0

and

V})/o(,&m—1),(—a,'y+1—a(m—2)/g3€(n'8) =

n
kgoF(m—1+k6)F(7+1—ka—(m—2)0¢/5)'

Proof. Applying Riemann-Liouville fractional
integral I® to both sides of differential equation

(I6) and using property (2), we have

m—1 m—2

an b’l] B 77+02,01 py+d2,01
— I ) P ’ .
v I'(m) i I'(m—1) 75/ sja U)

Then, the solution can obtained using successive
iterations method. We set

1
+

anm— m—2

U%(n) = ) i

L(m—1)

so the nth term U™ can be written as

n d2,0 02,01 77N—
U™ () = U°(n) + 1703702 PY o7 U= ().

Now, we compute U as follows:

Uln) =U0) + 17300 Py U0 ().

Using properties ([@)and (I0]), we calculate the fol-
lowing

42,0 2,
Iﬁjg}i;f 1Pg/—f(—12 01U0(n) —

187+ an™ ' T(y + 0y + 01 — (m = 1)/ B)

B/a T'(m) TD(y+6 —(m—1)a/B)
L b T4t or = (m— 2)04/6)]
T(m—1) T(y+0—(m—2)a/B)

_ 18 [anm—l L(y+8s + 01 — (m — 1)a/B)

Fgm) I(y+d2+ 61— (m—1)a/B)

N ™= I(y+0d2+01 —(m— 2)04/5)]
I'(m—1)T(y+ 2+ 01 — (m —2)a/B)

) [anm%—l L+ 1 (m— 1)a/d)
F'm+pB)T(v+1—a—(m—1)a/p)
bnm+ﬁ—2

L(y+1—(m—2)a/p) ]
F'm+p—-1)T(y+1—a—(m—2)a/8)]

Hence, U'(n) is given by

1
Ul — m—1 m+pB—1
(m)=a Ty

F(y+1—(m—1)a/B) >
Fm+B8)IT(y+1—a—(m-—1)a/p)

+b (F(nﬂbl_l)nm—2 + nm+ﬁ—2
P(y+1—(m—2)a/B) )
'm+B8-1)I(y+1—a—(m-2)a/8))"

Similarly, we compute U?(n)

62,0 02,0
U(n) = UO(n) + 17T, 2 P U ()

82,8 82,0
=U0(n) + 1P 0> P07 x

al(y+1— (m—1)a/B)y™0!

UO(T’) + F(m + 5)F(")/ +1—a— (m - 1)0(/5)
bL(y+1— (m—2)a/B)y™ 72

T(m+p -y +1-a—(m-2a/f)]

One can check that

m+ Iy +1-a—(m—1)a/5)
T(m+28)0((y+1—2a— (m—1)a/B)

and

Iﬁjg+£2,5lpgzé270'lnm+ﬁ—2 — nm+26—2x
Fm+B8-DI'(vy+1—a—(m—2)a/b)
Fm+28-1DI'(y+1-2a— (m—2)a/B)

Thus,
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%nm71 + nerﬁ*lx
POy +1 = (m=1)a/B)
L(y+1—(m—1)a/B)ymt28-1 )
+b (r(m1)”m_2 A2
I(y+1—(m—2)a/B)ymtF—2
T(m+B8—1C(y+1-a-—(m-_2)a/B)
4 My+1—(m— 2)04/5)77m+2g_2 )
T(m+26 - D07 +1—2a— (m—2)a/B) )

U*(n)=a

We similarly compute U3(n) and get

Us(n) =a %m)nm‘“r
L(y+1—(m—1)a/B)ny™*+o
L(m+ B ((y+1—a—(m—1)a/p)
L(y+1—(m—Da/B)n™+2""
F'm+28)(y+1—-2a—(m—1)a/p)
JEECEIMEN Y
T'(m +135)F(’y +1—-3a—(m—1)a/p)
+b (F(m — 1)77 +
L(y+1—(m—2)a/B)n™ 52
F'm+pB-1)T(v+1-—a—-(m—-2)a/p)
D41 (m — 2)a) )07
Fm+28—-1I(y+1-2a—(m—2)a/8)
L(y+1—(m—2)a/B)ym™+3—2 )
I'm+38-1DI'(y+1-3a—(m—2)a/B))"

+

Now, we can write the nth term as follows:

U™(n) = an™ 'T(y+1 - (m - 1)a/B)x
kz;) Fm+kB)I'(y+1—ka—(m—1)a/B))
+bi" 2T (y 4 1 = (m — 2)a/B)
kzof‘(m—i—k:ﬁ— DP(y+1—ka—(m—2)a/B))
As n goes to infinity, then
Umn) =an™ 'T(y+1—(m~—1)a/B)

xWig, sy~ at1-m-ba/2) (n°)
+bon"™T'(y+1— (m —2)a/p)
XW(g,m—1),(—apy+1—(m—2)a/8) (7).

Substituting U(n) in the transformation (I3, we
get the desired solution (20).

Remark 1. For § = 0, Hilfer fractional deriv-
ative is reduced to Riemann-Liouville fractional
derivative and this case was considered by Luchko
and Gorenflo in [9]. The ordinary differential
equation becomes

J'y,l aP'y ,Q U(T/)

— DB
sja Lol (M) = DaUM)

and one can check that the solution has the fol-
lowing form

=an’ 'T(y+1-a+a/B)
XW(s,8),(~ant1-atas) (1°)
+on" 2T (y + 1 — a + 2a/8)

XW(g 8-1),(—any+1-a+2a/8) (1°);

U(n)

which coincides with their result.

For 8 =2 and 0 < a <2, this case was studied by
Buckwar and Luchko, for more details see [6,[28].

Remark 2. One may consider the same problem
withn—1<a<nandn—1<pg<n:

D u(t, ) = Dy u(t, z)

with conditions

DR u(E,0%) = ¢p, m= B +6— 35,

and then use the same transformation in ({I3) to
find the exact solution. Proceeding the same, the
solution has the following form:

tVZcZn Ly

F(7+1—( —2—1)06/5)
XW(B.m—i) (—am+1—(m—i—1)a/8) (1)

3.2. Fractional differential equation

involving hyper-Bessel operator

Consider the problem

« B
(ﬁ §t> u(t,z) = a:_ﬁpaiﬁu(t, 2, (21)
with the boundary conditions:
i p(B-1) d 0,2—8 —
lia V(1= -+ a1 u(t,a) =
Upt'—ar(B-1)/8
(22)
im P(8—2) 1 d\02-8
ili%x (2—-8+ fx@)fp u(t,x) =
Uy tr—ar(B-2)/8
(23)
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where 1 < 6 < 20 < a <1 p=1-06,

a (e
<t98t> stands for hyper-Bessel operator defined

B
by (I2]) and % =D, P8 vepresents the left-sided
x

Erdélyi-Kober fractional derivative.

First, we use similarity method for FPDE 2] to
determine a symmetry group of scaling transfor-
mations. We introduce new independent and de-
pendent variables as before

The time fractional derivative becomes

<t9§t> u(t,T)
= pt= P10~ pu(t, T)
— D, (e, )

1.d
(1—04+ptdt> 10 °u(t, @)

8 \

:poztfpa
1. d\ pt—rl-a) 3
—ptre(1—at—t— ) — [ (t—s)®
p Q “ts dt) F(l—a)/o( °)
x sP~ 1 (sA%, T)ds

p )\bp(lfa) E_P(l_a)
I'l—a)

_ 1_d
= PN PN —a + —E—
’ (1o i)

72N
X / (AN — 5)"sP (AP, T)ds
0

+ L4
p dt

p \bpox t—p(l—a)

— aAbpaE_Pa 1—a
g ( [(-a)

t —

< -
0

— paAbpaE—Pa Q‘l —a+ 1td) [01 o

dt pit
= \bpa (t‘) ;) u(, 7).

Similarly, we do for the space-fractional derivative
and deduce

(7, T)dr

u(t, )

D, 2P, )
! d
H(l—,6’+k+ —z— >1025(tx)
k=0 P dz
1 _
1. d p)\p( B) z—r(2—8)
H(l‘/”“‘””d) rz- )

//\
x/ (/X — s)' PP~ u(t, s\)ds
0

! 1_d\ pz—Ph)
H(““’”p%x)m—m

/ “Br1a(t, 2)dz

_H<1—5+k+ dd>102 Pu(t, )
k=0
=D, 2"u(t,T).

From the above we get

if b= é Thus, we choose the following invariant
Q
of scaling transformation

n=atP,

u(t, x) = ”U(U%

The result related to equation (2I)) is given in the
following theorem:;

Theorem 3. The transformation given by (I3)
reduces the FPDE (Z1) to the following ODE

l—«o ,Q _
PP U () = DU ), (24)
with
d
p(ﬁ 1 J— — 0’2_5 =
limn ‘(1 ﬁ+ dn)fp U(n) =Uo (25)
and
d
P(B-2) 0.2-5 _
Joany 72— B+p ap) e U = U1 (26)

Proof. We start by rewriting the time-hyper-
Bessel operator using definition (I2)):

98 “ ap—pa 70,0 4y
t 5 u(t,z) = p =Py " tU(n).

B
Then, make change of variable 7 =t ( ) and
s

simplify as follows
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1.d _
= ot (1 —a+ t> 1P U (/)
ti
“Tpa) T a)

P D, U )
dt
1 —p(l—a)
- ( d) pt
p dt
¢
x/ (t* —T’))_O‘T’)_HVU(J:T_O‘//S)CZT
0

1 d tYpPB/a(l+v/p)
=t (1 L) PO
p dt ol'(1 —«)
« (Spﬂ/a _npﬁ/a) asfpﬁ(lfaﬂ/p)*lU(S)dS
7
o e 1,dY\ J14q/p1-a
= ptIP <1—a+ tdt) T U ().

Thus, we arrive

PP D (1T (1) )

apy—po Y « 1+ d—a
=pitrr (1—04+p—p577dn)t7p5/’ya/p U(n)
_ apy—pa pl-aty/oa
= p PP U (),
1+7/p’1 “ and P;B/ZJFWQO‘ are right-sided

Erdélyi- Kober fractional operators. Similarly, we
transform the space fractional derivative

where J

D—ﬁ Pu(t, z)

d
— H (1 —ﬁ+k+ e ) 19278y (=P,
and substitute s = x <Z> in the above in the

n
integral as follows:

197 PU (wt—/P)
Y x—P(2=8)
= Ptr(f; ey /0 (xf — sp)l_ﬁsp_lU(st_a/ﬁ)ds
tYn—P(2=B) .
= 7PFE72 — 5 /0 (nf — 2°)t Bor U (2)d=
= 01,27 U ().

Hence,

D, Pu(t, x)
t7H<1—/3+k‘+ ndd>102 BU )
=D, WU()

Finally, substituting the transformed time and
space fractional derivatives in differential equa-

tion (1), we get

1—a+ — —
PP U () = 2D PP ()

which can be written as ordinary differential equa-
tion (24)).

In the next theorem, we give the self-similar solu-
tion (invariant solution) of equation (ZI):

Theorem 4. The solution of FPDE (Z1) using

transformation (13) with conditions (23)-(20) has
the following form

ult,z) =t [np(ﬁfl)p(z +1+4%-a)
xWig,8),(—a 7+1+E*a)(pan6)
+77p(ﬁ 2)p( +14 26(1 —a)
xW( ,%+1+%‘—a)(ﬂ )| .

(27)

ﬂ_lvﬁ)v(_a

Proof. Applying Erdélyi-Kober fractional inte-
gral to both sides of equation (24]) and using the
property (B)), we have

U(n) = Cp np(ﬁ_l) + c1 fr/p(ﬁ_2)

_ 1— )
+paIp /Byﬂnﬁpppﬂ/?;ﬂ“ﬂp aU(n)’

o _ U
I'(8) rp-1)
Also, using property (), we get

U(fr]) — CO np(ﬂfl) _|_ cl np(ﬁfz)

where ¢y = and ¢; =

Note that I;ﬁ"gnﬁp = nﬁplg’ﬁ, see [25].

To find the solution of the above equation, we use
successive iteration method. We start with

U = ¢onPB=1 4 ¢pPB=2)

and

Un(n) =U°+ panﬁpjg,ﬁppl/g—/zﬂ/p,a(]n—l(,,7)'

The first iteration is

Ul(n) =% 4+ panﬁpjg,ﬁpsﬂ—/tyv/p,a(]o(n)
_ 7170 Bp 70,8 pl—a+v/p,a
=U" + p*nPPI, Ppﬂ/a
(conp(lg_l) _|_ ClnP(B_Z)) .

Compute the second term of U!(n) using property

(D), we have
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0,8 pl—a+vy/p,o pP(B=1)
Ip Ppﬂ/a

_ oo F(;+1+%—a)
F(%+1+%—2a)
: P(ﬁ)r(%+1+%—a>

T(28)T (%+1+%—2a)’

= 770(6_1

and similarly we do for the last term

1P P P p(5=2)
r(5—1)r( +1+——a)

F(26—1)F<;+1+%"‘—2a)

Substituting back the above results in Ul(n), we
get

Ul(n) =co [np(ﬁ—l) + pop(26-1)

) F(ﬁ)l“(%—l—1+%—a>

T(26)0 (% +1+9 20
+Cl [np(lg_2) _|_ panp(2ﬁ_2)
r@-Dr(2+1+% —a)
r(26 — )T (;+1+7—2a>
Repeating the same procedure, one can compute
U*(n) :
U?(n) =

X

1—a+ ,
UO 4 panﬁplgyﬁppﬂ/z 'Y/p aUl(T])

So,
Igyﬁpgg/z+7/Pvanp(2ﬂ—l)
i o
r (p +1+9 2a)
0l a
T (p +1+% 3a)
i o
T(28)T (p +1+% Qa)

PEAT (24145 —30)

— I[gﬂnp(Z,B—l)

and

P(26-2)
(25—1)r(1+1+2—“—2a)
I(36 — 1) ( +1+2 3a)

0,8 pl—a+vy/p,a
Ip Ppﬁ/a

= np(25_2)

Thus, U?(n) can be written as follows

U?(n)
r(ﬁ)r(%+1+%—a)

= ¢ | PP 4 papp(26-1)
T(28)T (% +1+8 - 2a)

I‘(B)F(%—l—l—&-%—a) ]

+p2anp(35—l)
D(36)0 (% +1+8 - 3a)

+cl{np(ﬂ2)

LB (2+1+2% —a)
I‘(26—1)I‘(1+1+2—“—2a)
F(,B—I)F( +1—|——oz>:|
PEA- DN (2+1+2 —3a) |

+panp(2ﬁ—2)

+p2a np(3[3—2)

Now, the nth iteration can be written as

U”(n):U0F<g+1+%—a)
n pkanp(kﬁ—l)

D

k=0 I'(k +1)B)T <1+1+%—

+U1F< —i—l—i-f—oz)
n pkanp(k,@—Q)

2 1)F(g+1+%a—(k+1)a)

(k + 1)a>

k=0 I'(k+1)8 —

and as n approaches infinity, we have

U(n) = Ul (% +1+ G- a) PP
W(s.8).(~a, ARG (p"n”)
+U T (7 +1+ 7 — a) nPB=2)
W(5—1,ﬂ),(—a,g+1+%a—a)(PO‘??’B)-
Substituting U(n) in the transformation (I5), we
obtain the desired solution (27]).

Remark 3. Particular case when p = 1, the frac-
tional derivatives in (21) are reduced to Riemann-
Liouville fractional derivatives and the problem
was considered by Luchko and Gorenflo as men-
tioned above, for more details see the reference
therein.

4. Conclusion

To summarize, Fractional Partial Differen-
tial Equations (FPDEs) involving hyper-Bessel,
Erdélyi-Kober and Hilfer fractional derivatives
were main targets in this investigation. Using
special transformation (see (15)) we first reduced
the considered FPDES to the fractional ODEs (see
Theorem 1 and 3) and then we solved these ODEs
using successive iterative method (see Theorem 2
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and 4). The obtained self-similar solutions are ex-
pressed in terms of generalized Wright type func-
tion.

Our motivation is based on possible usage of sub-
diffusion equations with such special fractional
operators by specialists in applied mathematics
who may deal with such sub-diffusion equations.
Moreover, we believe that suggested approach
can be applied for investigation of more general
FPDEs and also in studying the symmetry group
analysis of these of derivatives.
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