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Abstract. In this paper, we introduce a new class of generalized a-univex functions where the
involved functions are locally Lipschitz. We extend the concept of a-type | invex [S. K. Mishra, J. S.
Rautela, On nondifferentiable minimax fractional programming under generalized a-type | invexity,
J. Appl. Math. Comput. 31 (2009) 317-334] to a-univexity and an example is provided to show that
there exist functions that are a-univex but not a-type | invex. Furthermore, Karush-Kuhn-Tucker-
type sufficient optimality conditions and duality results for three different types of dual models are
obtained for nondifferentiable minimax fractional programming problem involving generalized o-
univex functions. The results in this paper extend some known results in the literature.
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1. Introduction

Fractional programming models have become a
subject of wide interest since they provide a
universal apparatus for a wide class of models.
For example, it can be used in engineering,
corporate planning, agricultural planning, public
policy decision making, financial analysis of a
firm, health care, and educational planning. In
these sorts of problems the objective function is
usually given as a ratio of functions in fractional
programming form (see Stancu Minasion [20]).
The problems, in which both a minimization and
a maximization process of fractional objectives
are performed, are usually called in decision
science as generalized minimax fractional
programming problems. These problems have
arisen in game theory [3], goal programming
[4], minimum risk problems [21], economics [22]
and multiobjective programming [23].

Nonlinear programming problems containing
square roots of positive semidefinite quadratic
forms have arisen in stochastic programming, in
multifacility location problems, and in portfolio
selection problems, among others. A fairly
extensive list of references pertaining to various
aspects of these problems is given in Zalmai [26].
Generalizations of convexity related to optimality
conditions and duality for minimax fractional
programming problems have been of much
interest in the recent past and many contributions
have been made to this development. For
example, see [1, 5, 8-20, 24] and the references
cited therein. Yadav and Mukherjee [24]
formulated two dual models for minimax
fractional programming problem and established
some duality results. In view of some omissions
and inconsistencies in Yadav and Mukherjee
[24], Chandra and Kumar [5] constructed two
dual models, and proved various duality theorems
under convexity assumptions.
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The necessary and sufficient conditions for
generalized minimax programming were first
developed by Schmitendorf [19]. Bector and
Bhatia [1] relaxed the convexity assumptions in
the sufficient optimality condition in [19] and
also employed the optimality conditions to
construct several dual models which involve
pseudo-convex and quasi-convex functions, and
derived weak and strong duality theorems.

Liu [13, 14] obtained the necessary and
sufficient optimality conditions and derived
duality theorems for a class of nonsmooth
multiobjective fractional programming problems
involving  (F, p)-convex and pseudoinvex
functions. Lai and Lee [12] focus his study on
nondifferentiable minimax fractional
programming problems and its two parameter-
free dual models. They also established weak,
strong and strict converse duality theorems under
the assumptions of  pseudo/quasi-convex
functions. In the formulation of the dual models
in [12] optimality conditions given in [11] are
used. Zheng and Cheng [25] introduce a new
class of nonsmooth generalized (F,p,@)-d-
univex function and derived sufficient optimality
conditions and  duality  theorems  for
nondifferentiable minimax fractional
programming problem and its three different
types of dual models.

To relax the definition of invex function
recently Noor [18] introduced the concept of o -
invex functions. Mishra and Rautela [17] study a
nondifferentiable minimax fractional
programming problem under the assumption of
generalized o-type | invex which has been
defined in the setting of Clarke’s derivative and
established sufficient optimality conditions and
duality theorems for the three different type of
dual problems.

Bector et al. [2] established optimality and
duality results for a nonlinear multiobjective
programming  problem involving  univex
functions which have been defined by relaxing
the definition of an invex function by Bector et
al. [2] itself.

In this paper, firstly we introduce the concept
of nonsmooth « -univex functions and a counter
example is given to show that there exists a
function which is nonsmooth ¢ -univex but not
a -type | invex given in [17]. Then we establish
sufficient optimality conditions for
nondifferentiable minimax fractional
programming problems involving the aforesaid
functions. Finally, weak, strong and strict

converse duality theorems are discussed in order
to relate the efficient solutions of primal problem
and its three different types of dual models.

This paper is organized as follows. Section 2
is devoted to some definitions and notations. In
Section 3, we derive the sufficient optimality
conditions  for  nondifferentiable ~ minimax
fractional programming problems under the
assumption of generalized o -univex functions.
Duality results are presented in Sections 4-6. This
work extends the works of Mishra and Rautela
[17] and partially the results of Jayswal [10] to
the nonsmooth case.

2. Preliminaries

Throughout this paper, let R" be the n-
dimensional Euclidean space and R be its non-
negative orthant. Let X be a nonempty subset of
R". First, we recall the following definitions.

Definition 2.1 [6] A function f : X — Riis said

to Lipschitz near x € X if for some K >0,
[f(y)-f(z) <K|y-z],

VY, z within a neighbourhood of X .

We say that f : X — R is locally Lipschitz on
X if it is Lipschitz near any point of X .

Definition 2.2 [6] If f:X — R is locally

Lipschitz at x € X , the generalized derivative (in
the sense of Clarke) of fat Xe Xin the
directionv € R", denote by f °(x;v), is given by
f°(x;v) = limsup f(y+lz)— f(y).
y—X

ado

Definition 2.3 [6] The Clarke’s generalized
gradient of fatxe X, denoted bydf(x), is
defined as follows:

oF(x)={eR": F(x;v)2 &V WeR")

It follows that, for any ve R"

£O(x;v)= max{Tv: & e of (x)}.

Definition 2.4 [18] A subset X is said to be « -
invex set, if there exists 7:X xX — R",
a(x,u): X x X — R, \ {0}such that

u+Aa(x,ulp(x,u)e X, VxueX, 1[01].
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It is well known that the « -invex set need not
be a convex set, see Noor [18].

Definition 2.5 [18] The function f on the « -
invex set is said to be « -preinvex with respect
ton, if
f(u+Aa(x,ulp(x,u)) < @—2)f(u)+ Af ()
vx,ue X, A €[0,1].

Note that every convex function is a preinvex
function, but the converse is not true. For

example, the function f(u)=—-u/ is not a
convex function, but it is a preinvex function
with respect tor and a(x, u) =1, where

)= {u — X, otherwise.

The following example shows that « -preinvex
function exist.

Example 2.1 [7] Let X =R . For any X,ue X,
let a(x,u)=1, n(x,u)=e* —e" and f(u)=c,
where C e Ris a constant. Then X is an « -
invex set with respect too and n and

f(u+Aa(xuk(x,u))=@L-2)f(u)+Af(x),
vx,ue X, VA e[0]],
which indicates that F is « -preinvex with
respect to o and n on X .

From now onwards, unless otherwise is
specified, we assume that X is a nonempty « -
invex set with respect to o and 7.

Consider the following nondifferentiable
minimax fractional programming problem:

f A 1/2
(P)  inf sup () +{x X>1,2 .
*<R" e g(x, y)-(x, BX)
subject to h(x)é 0,
where f, g:R"xR™ - R and h:R" - R"

are locally Lipschitz functions, A and B be
Nnxn positive semi-definite matrices and Y , an

o -invex set, is a compact subset of R™ .
Let 3, be the set of all feasible solutions of

(P). For each (X, y)e R" xR™, define
f(x, y)+(x, AX)"”

g(x, y)—(x, Bx>1/2 '

p(x.y) =

Suppose that for each (x, y)e R" xY,
f(x, y)+(x, AX)>0

and g(x y)—(x, Bx)>0.
Denote
f(X, ¥)+ (X, AX vz
yey: ( X) < >1/2
Y= g(x, ¥)—(x, Bx)
o f(x, y)+(x, Ax>1/2 '
- yeg g(x, y)—(x, Bx>1/2

X—u, if x<0,u<0and x>0,u>0, LetKbea triplet such that

K(x)={(st, ) NxR*xR™ :1<s<n+1
t=(t,,t,,...t;) e R® with iti =1
i=1
and y =(,,,,... V,) and y, Y (x), Vi=1..,s}

Since Y is a compact subset of R™, it follows
that for eachx, € 3, Y (X,) # ¢ . Thus, for any

. €Y(x,), we have a positive constant

0= ¢(Xo’ Yi )

=~ <

We shall make use of the following generalized
Schwartz inequality:

(x, Av) < (X, Ax>1/2<v, Av>1/2 (1)
for somex,ve R", the equality holds when
Ax = AAv for some A > 0.

Hence if <v, AV>1/2 <1, we have

1/2

(X, Av) < (X, AX)" " )

In order to relax the convexity assumption in
the above problem, we impose the following
definitions. Let f:X — R be a locally

Lipschitz function.

Definition 2.6 The function f is said to be
(strictly) o -univex at ae X with respect to

b, ¢, @ and n, if there existy: X x X — R",
o1 X x X — R, \{0}, nonnegative functions b,
also defined on X x X, and function ¢ :R —> R
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such that, forall x e X,

b(x,a)g[ f (x)- T (@)] = (>)({e(x, a)¢.n(x. a)),

vEedf(a).

Remark 2.1 From Definition 2.5, there are
following special cases:
(i) If the function f is differentiable at a, and

a(x,a)=1, then we can see that the

definition 2.6 implies the definition of
univex function given in Bector et al. [2].

(i) Evidently, if we choose h(x,a)=1,
a(x,a)=1 and ¢ as an identity
function and f is differentiable, then we

see that definition 2.6 reduces to
definition of invex function given in
Hanson [8].

If the function f is differentiable at a,
then we obtain definition of « -univexity
given in Jayswal [10].

If we define ¢: R — Rwith ¢(V):

andb(x,a)=1, then we get the

definition of « -type | invex given in
Mishra and Rautela [17].

(iii)

(iv)

It is noted that, not every o -univex function
is «a -type | invex function [17]. We have the
following counter-example, which shows that the
function f is « -univex but not « -type | invex.

Example 2.2 Let xe R, a=0 and

X, X >0,

f (X) - {Zx, x<0.
Clearly,of (a)=[1, 2]. Let b(x,a)=6/x*and
let ¢:R—>R given by ¢(V)=V?. Let
a(x,a)=1/(L+sinx|) and n(x,a)=|sinx.
Then f is « -univex at awith respect to b, ¢,

and np forallxeR.
On the other hand, if we take X < 0, we have

f(x)— f(a)< <a(x,a)§,n(x,a)>, Ve eof (a),

which shows that f is not « -type I invex at a
with respect to same o and 7.

Definition 2.7 The function f is said to be pseudo
o -univex at a € X with respect to b, ¢, « and

n, if n:XxX—>R",
o1 X x X — R, \{0}, nonnegative functions b,

there exist

also defined on X x X, and functiong: R — R
such that, forall x e X,

<a(x, a)é,n(x, a))z 0
= b(x,a)¢[f (x)- f(a)]>0, V& eof(a)
equivalently,
b(x,a)p[ f(x)- f(a)] <0
= (a(x,a)é,n(x,a)) <0, V& e of (a)

The following example shows that there exists
function which is pseudo « -univex but neither
a -type | invex nor pseudo « -type | invex.

Example 2.3 LetX = R\{O}, f:X >R be
defined by f (x)=|x].
1, x>0,

Obviously,&f(x):{ L %<0
-1, <0.

Let b(x,a)=|x—a and let ¢:R — R given by
¢(V)=V?. Let a(xa)=[sinx  and
1, x>0, _
n(x,a)= {_1’ <0 Then f is pseudo « -

univex on X with respect to b,¢,a andn.But
f is neither o -type | invex nor pseudo « -type |
invex with respect to sameca andn as can be
seen by taking x< a.

Definition 2.8 The function f is said to be strict
pseudo o -univex at ae X with respect to

b, ¢, « and n, if there existn : X x X - R",
o1 X x X —R_\{0}, non-negative functions

b, also defined onX x X, and function
¢ :R — Rsuchthat, forallx € X,

<a(x,a)§,n(x,a)>2 0

= b(x,a)¢[f (x)- f(a)] >0, V& e df(a)
equivalently,
b(x, a)¢[ f (x)- f(a)] <0

= (a(x,a)é,n(x.a))<0, V&eof(a)
Example 2.4 Let X, f, b, ¢, @ andnbe same

as in Example 2.3. By Example 2.3, we know
that f is pseudo o -univex on X with respect to

b, and 7. However, if we assume
X#a, VX,ae X, in the above Example 2.3,
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then f is strictly pseudo « -univex with respect
to b,¢, and .

Definition 2.9 The function f is said to be quasi
o -univex at a € X with respect to b, ¢, a and

n, if
o1 X x X — R, \{0}, nonnegative functions b,
also defined on X x X, and function ¢ :R —> R
such that, forall x e X,

b(x,a)¢[f(x)- f(a)] <0
= (a(x,a)é,n(x,a))<0, VEeof(a)
equivalently,

<a(x,a)§,n(x,a)>> 0

there existy : X x X —> R",

= b(x,a)¢[f(x)- f(a)] >0, V& e of (a).

The following example shows that quasi « -
univex function exists.

Example 2.5 Let X, f, b and a be same as in

Example 2.3. However, if we define
-1, x>0
V)=-V?Z?andn(x,a)= ’ "
o) (x.a) {1, o

Then f is quasi o -univex with respect to
b,¢,a andn.

The following example shows that there exists
function which is quasi « -univex but not pseudo
a -type | univex not pseudo c -type | invex and
not o -type I invex.

Example 2.6 The function f :R — R is defined
by f(x): X. Let

1, X>a,
b(x,a)=|x-a/,n(x,a)={ -1 x=a,
0, x<a,

1 X>a,
-1,

and alx.a) :{

X<a.

Further assume that ¢:R — R be given by
¢(V)=V. Then f is quasi a-univex with
respect tob,¢,a ,n and of (x)={f'(x)}={L}
for allx e R. But f is neither pseudo o -type |
univex with respect to b, ¢, o and r nor pseudo
o -type | invex with respect to o and n onR.

Also it can be easily seen that for x<a, fis
not « -type | invex with respect to @ and non
R

.The following result from [12] is needed in
the sequel.
Lemma 2.1 Let X, be an optimal solution for (P)
satisfying <x0, AX0>>0, <X0, BX0>>0 and
6hj(x0), jeJ(x,) are linearly independent.
Then there exist (s,t*, V)G K(x,), u, veR"
and ¢~ € R such that

oeit:@f(xo,vi>+Au—ko<ag<xo, 7,)- Bv)

+0(u”,h(x,), ©)

f(XO’yi)+<XO’ AX0>1/2_ko(g(X0’ Vi)'
~(X. Bx0>”2)=o, i=12,..s (4)

(170 )) =0, ©)

t. e R® with Zs:tj =1, (6)

(u, Au)y<1, (v, Bv)<1,
(u, Auy<1, (v, Bv)<1,
(Xgr AU)=(Xg, Ax)", ©)
(Xg, BV)=(Xg, BX,)" .

It should be noted that both the matrices A and
B are positive definite at the solution X, in the

above Lemma. If one of (Ax,, X,) and
(BXq, X, ) is zero, or both A and B are singular

at Xy, then for (s, t”, ) K(x, ), we can take

Z,(x)={zeR": (¢, 2)<0,v¢; edn;(x,)
je J(Xo)}'

with any one of the following (i) - (iii) holds

‘v’Ve@f(XO,Vi), 9€6g(X0,7i)1

(i) (AXy, Xy) >0, (BXy, X,) =0



12 A. Jayswal et al. / Vol.3, No.1, pp.7-22 (2013) © IJOCTA

:><Zslti*v+L—

=) (AXg, %o )"?

Ko 9, z>

+ <(k02 B)z, z>1/2 <0,

(ii) (AXy, X)=0, (BX,, X,) >0

(-l

+(Bz, z>1/2 <0,

(iii) (AXy, Xo) =0, (BX,,Xp) =0

. @t:(v k,9) z> (B, )"

+(Bz, z>1/2 <0.

If we take the condition ZV(XO): ¢ in Lemma

2.1, then the result of Lemma 2.1 still holds.
Throughout the paper, we assume that b, and b,

are nonnegative functions defined on X x X and
¢y, ¢ :R—>R.

3. Sufficient Optimality Condition

We now establish sufficient optimality conditions
for (P) under the assumptions of generalized « -
univexity discussed in previous section.

Theorem 3.1 Suppose that X, € 3, be a
feasible solution for (P). Suppose that there exist
k, €R,, (s,t",¥)e K(x, ), u, veR"and

u" e RP satisfying (3) - (7). Assume that one of
the foIIowing conditions holds:

Zt (+6. 90+ (. Au)- ks (9(, )

—<-, Bv>)) and <y ,h(-)> are « - univex with
respect to b,,b,¢,,¢,,a, and 7 with
$(V)>0=V >0 and ¢,(V)>V

Zt (+6. 90+ (. Au)- ks (9(, )

—(-Bv))) is pseudoc -univex with respect to
by, ¢y, and 1 with V <0 = ¢,(V)<0 and

@ ol)

) ()

<u*,h(-)> is quasi « - univex with respect to
bl,(bl,al and n with V <0=¢(V)<0

D00 =3 £ ((F6.5.)+ () ko(gle )

—(-Bv))) is quasia -univex with respect to

by, #y,, and n and <u*, h()> is  strictly
pseudo « - univex with respect to b;,¢,,a, and
nwithV <0= ¢, (V)< ¢,(V)>
=V 20.

Then X, is an optimal solution of (P).

and

Proof. Suppose the contrary that X, is not an
optimal solution of (P). Then there exists
X, € Jp such that

f (% y)+(x,, Ax1>1/2
Sup 1/2
yer g(X11 <X11 BX1>
1/2
<sup f (X, ¥)+ (X, Ax0>1/2.
yeY g(xw ) < >

We know that
f(Xo, ¥)+ (X, AXy)

1/2

1/2

sup
yey g(X01Y)_<X01 BX0>
_ f(X017i)+<X01 AX0>1/2

g(xm yi)_<X0
fory, eY(x,),i=12,...,

1 BX0>1/2 —Tor

s, and

Thus, we have

7 A 1/2
f(Xl, yl) <X ' X1>1/2 < kOfOI’i 21,2,...,5
g(Xliyi)_<X1’ BX1>

It follows that
f(X11 yi )+<X11 AX1>1/2

oy ®
koo, 7)- (x, Bx)?)<0
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fori=12,...,s
From (2), (4), (6) (7) and (8), we get

Zt (04, v) + (%, Au>)

That is
@(Xl) < CD(XO ) - )
If hypothesis (a) holds, then

o o (15,5 (0 )
—k(9(%,, 7)~ (%, BV))
—Zt ((f (0, 90)+ (x5, Au))
~ko(00%: ¥)= (%5, BY)))]
2<aJM>%E7ﬂ X)) VEeap(x)
= (etg (%, % [R(RITICY X))

V¢ edh(x,) (by(3))
2 _bl(Xv Xo )¢1 K#*’ h(Xl )> - <ﬂ*’ h(Xo )>J(by
the & -univexity of <u* h()>
> Ky*,h(x0 )> <# h(x1)>J (by the positivity
of b,and ¢,(V)>V)
>0 (by the feasibility of X, for (P) and (5)).

Since ¢,(V)> 0=V >0andb, >0, we get

@(Xl) 2 CD(XO ) '

which contradicts (9).

If hypothesis (b) holds, by the positivity of b,

V < 0= ¢,(V)<0 and from the inequality (9),
we get

b (Xl 1 Xo )[@(Xl ) - CD(XO )] <0.

By the pseudo « -univexity of¢, the above

inequality give
(o (31, %0 )&, (%1, %)) < 0, %€ € dplx, ). (10)

From (10) and (3), we get

<0‘0 (X1’ Xo ){_ <,u*, §>}’77(X1, Xo )> <0,

V¢ e an(x,),
by the positivity of «,, we get

<<H*’§>’U(X1’ Xo )> >0, Ve ah(xo)- (11)

Since X, € Jp,u" € R, from (5), we get

(" h(x)) (i h(x, )< 0.

(12)

By the condition V <0= ¢1(V)£ Oand the
positivity of b, , (12) gives

bl(Xp Xo )¢1 |_<,U*’ h(Xl )> - <,u*, h(Xo )>JS 0.

By the quasi o -univexity of <u*,h(-)> and the
above inequality, we get

<051(X1’ Xo )<,U*’§>a77(xli Xo )> <0,V{ e 6h(X0).

By the positivity of o, , we get

<<u*,C>ﬂ7(X1, X0)> <0, V(e 6h(X0),

which contradicts (11).
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For hypothesis (c) the proof is similar to the
proof of case (b). This completes the proof. o

Remark 3.1
(i) If the functions f,gandh are continuous

differentiable, then Theorem 3.1 above
reduces to Theorem 3.1 given in [10].

(i) Evidently, if we choose ¢,,¢, as the identity
maps, b, =1=Db, and if the functions
f,gandh are continuous differentiable,
then we obtain the Theorem 3.1 given in
[16].

(iii) If we take ¢,,¢, as the identity maps, and
b, =1=0D, in the above Theorem 3.1, we
get Theorem 3.1 given in [17].

4. First Duality Model

In this section, we consider the following dual to
(P):

max
(DI) (s.t,y)eK

sup k,
(z.t,¥)eHy(s,1,y)
subject to

~k(9(z. ¥, +(z, Bv>)}2 0, (14)
(uh(z)) >0, (15)
(z, Az)<1,(z,Bz)<1, (16)

where Hl(s,t,)_/)denotes the set of all triplets
(z,,v)e R"xR? xR, satisfying (13) - (16)
and (s,t,¥)e K(z). For a triplet(s,t,¥) e K, if

the set Hl(s,t,)_/)is empty, then we define the

supremum over it to be -co. In this section we
denote

)+ (. Au))
- k(g(-, y))-( Bv))

O=2t(r¢

i=1

Theorem 4.1 (Weak duality). Let X e 3, be a

feasible solution for (P) and let (Z,/,t,u,v,s,t, )7)
be a feasible solution for (DI). Assume that one
of the following conditions holds:

@ w() and (uh()) are a-univex with
respect to b,,b,¢,,¢,,2, and 7 with
$(V)>0=V >0 and ¢,(V)>V

(b) l//() is pseudoa - univex with respect to
by, ¢y, and 1 with V <0 = ¢,(V)<0 and
(u,h(-)) is quasic -univex with respect to
b,, ¢, and nwith V <0 = ¢, (V)<

© l//() is quasia -univex with respect to
by, ¢y, and 1 with V <0 = ¢,(V)<0and
(u,h(-)) is strictly pseudo o - univex with

respect to  b,¢,a,
V<0=g¢(V)<

f A 1/2
Then sup (X,y)+<x, X>1/2 >
ver g(x, y)—(x, Bx)
Proof. Suppose contrary to the result, that is
f 1/2
sup (X, y)+(x, AX)
ver g(x, y)—(x, Bx)

and 7 with

1/2

Therefore we get the following relation
f(x ¥,)+(x, Ax>1/2
—k(g(x, yi)—(x, Bx>1/2)< 0, Vy eY .
It follows from t. > 0,i =1,2,..., s, with Zs:ti =1
, that :
ti[f(x, yi)+(x, Ax>1/2
- k(g(x, yi)—(x, Bx>1/2)]£ 0, i=1..s,

with at least one strict inequality because
t=(t,t,,..t;)#0.

From (2), (14), (16) and the above inequality, we

get
:gti ((£G3)+(x, Au)
—k(g(x 7))-(x, BV))
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That is,

W) <w(z)

If hypothesis (a) holds, then

b2 3t (1)
—k(g(X, y,)-(x BY)))
—iti ((f(z y )+<z,Au>)

~k(g(z,3,)-(2,8v)))
> (oo (x, 2v,m(x,2)), Vv €oy(z)
= (oo 2= 0 )fim(x,2),
V¢ eah(z), (by(3))
> b, (%, 2), (12, h(x)) = (. h(2))] oy

the & -univexity of (1, h(-)>)

> [(,h(z)) — (e, h(x))]

positivity of b, and¢,(V)>V)

(by the

>0 (by the feasibility of Xfor (P) and
(15)).

Since ¢,(V)> 0=V >0andb, >0, we get

w(x)2y(2),

which contradicts (17).

If hypothesis (b) holds, by the positivity of b,
V<0=4¢,(V)<0 and from the inequality

(17), we get
~y(z)]<0.

b (X’ Z)¢o [W(X)

By the pseudo o« -univexity ofy , the above
inequality gives

(ao(x, zv,(x,2)) <0, Vv edy(z). (18)

From (18) and (13), we get
(o, 2 )= (1,¢ ) hm(x,2)) <0, V¢ e an(2),
by the positivity of «,, we get

((w.¢)m(x2))>0, V¢ eoh(z). (19)

Since X € J,,u € R, from (15), we get

[(1,1(x)) = (. h(@)) < 0.

By the condition V <0= ¢1(V)£ Oand the
positivity of b, , the above inequality yield

b, (x, 2), [<ﬂ1 h(x)) —(u h(z)>] <0.

By the quasi « -univexity of (x,h(-)) and from
the above inequality, we get

(o, (x, 2w & hn(x, 2))<0, V¢ edh(z).

By the positivity of ¢, , we get

((w.¢)m(x2))<0, V¢ eoh(z),

which contradicts (19).

For hypothesis (c) the proof is similar to that
of the proof given above for case (b). o

Theorem 4.2 (Strong duality). Assume that X~ is

an optimal solution for (P) and X satisfies a
constraints qualification for (P). Then there exist

(s*,t*, 7*)6 K(X*) and
(x*, u ko, u*,v*)e Hl(s*,t*, T)such that
(x*,u*,k*,u*,v*,s*,t*, 7*) is feasible for
(DI). If any of the conditions of Theorem 4.1
holds, then (X*,u*,k*,u*,v*,s*,t*,V*) is an
optimal solution for (DI), and problem (P) and
(D) have the same optimal value.

Proof. By Lemma 2.1, there exist
(s*,t*, 7*)6 K(x*) and (x*, u*,k*,u*,v*)
€ Hl(s*, t", V*) such that
(X*,u*,k*,u*,v*,s*,t*,V*) is a feasible for



16 A. Jayswal et al. / Vol.3, No.1, pp.7-22 (2013) © IJOCTA

(DI), and
- - f(x*,yi*)+<x*, Ax*>: |
g(x*, yi*)—<x*, Bx*>

The optimality of this feasible solution for (DI)
follows from Theorem 4.1. O

Theorem 4.3 (Strict Converse Duality). Let X~
and (Z,E, k,T,v,s,f, 7) be optimal for (P) and
(DI), respectively. Assume that the hypothesis of

Theorem 4.2 is fulfilled. Further if any one of the
following conditions holds:

@ XLE(C v+ (o Am)-K (gl v)
(- BV))) s strictly o -univex with respect to
by, ¢y, and 1 with V <0 = ¢,(V)<0 and
(I,n()) is o -univex with respect to by, ¢;,a;
and nwith V <0=¢,(V)<0;

®  XLE(fC 5+ (- AT)-K(g(.3,)
—(,BV))) s strictly pseudoc -univex with
respect to  Dby,4,, with
V <0=4,(v)<0 and (z,h()) is quasia-
univex with respect to b,,é,,, and nwith
V<0=¢(V)<0.

and @

Thenx™ =7 ; that is, Z is an optimal solution for
(P) and

Proof. Suppose on the contrary thatx = Z.
From Theorem 4.2, we know that there exist

(s*,t*, 7*)6 K(X*) and
(x*, u*,k*,u*,v*)e Hl(s*,t*, V*) such that
(X*, w kot v st V*) is optimal for (DI)
with the optimal value

f(x*, y*)+<x*, Ax*>

sup
yeY g(x*, 7*)—<x*, Bx*>
Following as in [12], we get
v(x)<w(2).

1/2

*

=k .

1/2

Since V <0= ¢, (V)S 0 and the positivity of
b, , the above inequality yield

by (X", 2} (') (2)] < 0.
If condition (a) holds, then by the strict « -
univexity y, () we get
<a0(x*, Z)v,n(x*, Z)> <0, YVve 61//(7).

Now from (13) and the above inequality, we get

(@l Z)-(m.0) (X Z)) <0, V¢ e an(z).

By the positivity of o, we get

(@.c)n(x.z)>0, v¢ean(z). ()

~
~

Since X" € 3., € RY, from (15), we get

[htc ) <o

By the condition V <0= ¢1(V)£ Oand the
positivity of b, , the above inequality yield

b, (X", 2|70 ) - (7 h(2) < 0.

By the « -univexity of <ﬁ,h(-)> and from the
above inequality, we get

(e 2@ o)n(x z) <0, V¢ ean(z).

By the positivity of ¢, , we get

((mchmlx z) <0, v con),
which contradicts to (20).
Hence, we get

f(x*, 7*)+<x*, Ax*>1/2
sup — — >
yeY g(x Y )—<x , BX >
The above inequality contradicts the fact that
f(x*, 7*)+<x*, Ax*>1/2
Sup * * * «\1/2
yeY g(x Y )—<x , BX >

=k" =k.

Therefore, we conclude thatx™ = Z.
For hypothesis (b) the proof is similar to that of
the proof given above for case (a). o
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Remark 4.1

(i) If the functions f,gandh are continuous
differentiable, then the above Theorem 4.1
and 4.2 reduces to Theorem 4.1 and 4.2
given in [10].

(i) Evidently, if we choose ¢, ¢, as the identity
maps, b, =1=0Db, and if the functions f,g

and h are continuous differentiable, then we
obtain the Theorem 4.1 and 4.2 given in
[16].

(iii) If we take ¢,,¢, as the identity maps, and
b, =1=D, in the above Theorem 4.1, and
4.2 we get Theorem 4.1 and 4.2 given in

[17].
5. Second Duality Model

In this section, we formulate the Wolfe-type dual
model to problem (P) as follows:

DIl) max su F(z
(1 (st.¥)eK(2) (z,y,u,V)EHz(Svth) ( )
subject to

Oe gti {(g(z, yi)-(z, Bz>1/2X6f (z,y,)+ Au)
@)+ (2 A2)" Joolz. 7,)-BY)f

+0(p,h(z)) (21)
(uh(z))=0, (22)
(z,Az)<1,(z,Bz) <1,

(z, Az>1/2 =(z, Au) (z, Bz>1/2 =(z, Bv), (23)

f(z,y)+(z, Az>1/2

/2

where F(z)=su

) erp 9(z, y)-(z,Bz)
y, €Y(z) andH,(s,t,¥)denotes the set of
(z,1,u,v) e R" xR” x R" x R"satisfying (35) -
(37). If the setHZ(S,t,)_/) is empty, then we

define the supremum over it to be -co. In this
section, we denote

%(-):gti (o(z,7,)- (2, BYXF(,7,)+
< Au

9(z, v,
(1 .5+ (2. Au))ate 5,)~ (B

Theorem 5.1 (Weak duality) Let X e 3, be a

feasible solution for (P) and let (Z,/,t,u,v,s,t, )7)
be a feasible solution for (DII). Assume that one
of the following conditions holds:

@ w,() and (u,h()) are o -univex with
respect to b,,b,¢,,¢,2, and 71 with
$(V)=0=V >0and ¢,(V)>V;

(b) l//l(-) is pseudo « -univex with respect to
by, ¢y, and 1 with V <0 = ¢,(V)<0 and
(u,h(-)) is quasic -univex with respect to
b,, ¢, and nwithV <0= ¢,(V)<0;

© l//l(-) is quasic -univex with respect to
by, &, 0, and 1 with V < 0= ¢,(V)< Oand
(u,h(-)) is strictly pseudo o -univex with

respect to  b,¢,a, with
V <0=¢,(V)<0.Then

)+(x, Ax>1/2 .

> F(z).

and 7

f
sup

yeY g

(x,y
(%, y)—(x, Bx>1/2

Proof. Suppose contrary to the result that for
eachx e 3,

f(x,y)+(x, AX)

1/2

S F(z). 24
yli\rf) g(x, y)—(x, BX>1/2 <F@). @
Sincey, €Y (z),i=12,..,s, we have
— 1/2
F(z)= fz.9.)+ (. AZ>1,2, i=12,..,5.(25)
o(z.3,)- (2. B2)
Following as in [12], we get
Wl(x) < l//1(2) ' (26)

Now if condition (a) holds, then

b (X’ Z)¢o [Wl(x)_Wl(Z)]
> (oy(x,2)v 1 (x,2)), Vv edy,(z)

= (e (% 2= (.6 )jm(x,2)), ¢ e oh(z)
(by (21))
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Z—bl(x,z)gbl[(u,h(x>—</,z,h(z)>] (by the

o -univexity of<y, h(-)>)

> [{y,h(z)}—{y,h(x)}] (by the positivity of
b,and¢,(V)>V)

>0 (by the feasibility of xfor (P) and (22)).

Since ¢,(V)> 0=V >0andb, >0, we get
Wl(x) 2 l//1(2)'
which contradicts (26).
If hypothesis (b) holds, by the positivity of b,
V<0=4¢,(V)<0 and from the inequality

(26), we get
by (X’ Z)¢o [Wl(x) _Wl(z)] <0.

By the pseudo o -univexity ofy,, the above
inequality gives
(ao(x,z)v,n(x,2))<0, Vv edy,(z). @7)

From (21) and (27), we get
(ot (x, ) (& pm(x, 7)) <0, V¢ € h(z),
by the positivity of «,, we get
(—(u.¢)m(x2))<0, V¢ eah(z).
ie. (1.8)n(x2))>0, V¢ eah(z). (28)

Since X € J,,u € R, from (22), we get

(12, h(x)) = (. (2] < 0.

By the condition V <0= ¢1(V)£ Oand the
positivity of b, , (29) gives

b, (x, 2), [<ﬂ1 h(x)) — (&, h(z)>] <0.

(29)

By the quasi « -univexity of (x,h(-)) and from
the above inequality, we get

(o, (x, W, ) hm(x, 2))<0, V¢ eoh(z).

By the positivity of o, , we get

((u¢)m(x2))<0, V¢ eah(z),
which contradicts (28).

The proof is similar when hypothesis (c)
holds. This completes the proof. o

Theorem 5.2 (Strong duality). Assume that X~ is

an optimal solution for (P) and X satisfies a
constraints qualification for (P). Then there exist

(s*,t*, 7*)6 K(X*) and
(x*,u*,k*,u*,v*)eHZ(S*,t*,V*)such that
(X*,/J*, k“,u",v',s ,t", 7*) is feasible for
(DI). If any of the conditions of Theorem 5.1
holds, then (X*,u*,k*,u*,v*,s*,t*,V*) is an
optimal solution for (DII), and problem (P) and
(D) have the same optimal value.

Proof. By Lemma 2.1, there exist
(s*,t*,y*)eK(x*) and (x*,u*,k*,u*,v*)
eH,(s"t",y) that
(x*,u*,k*,u*,v*,s*,t*,7*) is feasible for
(D), and

such

f(x*,y*)+<x*, Ax*>1/2
g(x*,y*)—<x*, Bx*>1/2 .

The optimality of this feasible solution for (DII)
follows from Theorem 5.1. O

Ky =

Theorem 5.3 (Strict Converse Duality). Let X
and (Z,u,u,v,s,t,y) be optimal for (P) and
(D), respectively. Assume that the hypothesis of
Theorem 5.2 is fulfilled. Further if any one of the
following conditions holds:

@ 1//1(-) is strictly o -univex with respect to
by, @, 0, and n with V <0= ¢,(V)<0 and
(1,h(-)) is o -univex with respect to by, ¢;,a;

and n withV <0=¢,(V)<0;

(b) v, () is strictly pseudo & -univex with respect
to by,d,,, and n with V <0=¢,(vV)<0
and <uh()> is quasi o -univex with respect to
b,,é,c, and nwithV <0 = ¢,(V)<0.

Thenx” =z ; that is, z is an optimal solution for

(P).
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Proof. Suppose on the contrary thatX = z.
Similar to the proof of Theorem 5.1, we get

f(x*, y)+<x*, Ax*>1/2

sup <F(z) (30
yey g(x*, y)—<x*, Bx*>1/2
Following as in [12], we get
v ()< ). (31)

By the positivity ofb,, V <0= ¢, (V)S 0 and
from the inequality (31), we get ]
)|<0.

by (X*’ Z)¢o [Wl(x*)_l//1(z

If hypothesis (a) holds, then by the strict « -
univexity of t//l(-)and from the above inequality,
we get

<a0(x*, 2 (x", z)>< 0, Vvedy,(z). (32

Now from (32) and (21), we get
<a0(x*, z){—(y,§>},n(x*, z)> <0, V¢ eah(z).

By the positivity of o, we get
(- (. )hnlx 2)) <0, V¢ ean(z).
ie. (1. ¢)lx . 2) >0, V¢ ean(z). (33)

Since X" € 3, /J €
By the condition V <0= ¢1(V)£ Oand the
positivity ofb,, (34) gives

(x z)¢[<yh > uh()>J <0.

By the o -univexity of<u, h()> , from the above
inequality, we get

o DWon

By the positivity of ¢, , we get

((n)nlx z) <0, v¢ean(),
which contradicts (33). Hence (30) is false, and
we have

R, from (22), we get

(2))]<o0. (34)

2)) <0, V¢ eah(2).

f(x*, y)+<x*, Ax*>1/2
* «\1/2
X , Bx >

sup > F(z)

(35)
yey g(X*, y _<

Since x is an optimal solution for (P), from
Theorem 5.2 there exist (S*,t*, 7*)6 K(X*) and

(x*, u, u*,v*) € HZ(S*,t*, 7*) such that
(X*, woun v st V*) is an optimal solution
for (DI1) with the optimal value

f(x*, y)+<x*, Ax*>1/2
Sup * * «\1/2
yeY g(x ,y)—<x , BX >
which contradicts (35). Hence X~ = z; that is, z

is an optimal solution for (P).
Since V<0= ¢, (V)S Oand the positivity of

b, , from (31), we get

0y (", Wy, (¢ ) - v, ()] < 0.

If hypothesis (b) holds, then by the strict pseudo
o -univexity of w,and from the above
inequality, we get

<a0(x*, 2 (x", z)>< 0, Vv edy,(2).

The remaining part of the proof is similar to the
case of case (a). This completes the proof.
O

)=o),

Remark 5.1

(i) If the functions f,gandh are continuous
differentiable, then the above Theorem 5.1,
5.2 and 5.3 reduces to Theorem 5.1, 5.2 and
5.3 given in [10].

(i) Evidently, if we choose ¢, ¢, as the identity
maps, b, =1=D, and if the functions f,g

andh are continuous differentiable, then we
obtain the Theorem 5.1, 5.2 and 5.3 given in
[16].

(iii) If we take ¢,,¢, as the identity maps, and
b, =1=D, in the above Theorem 5.1, 5.2

and 5.3 we get Theorem 5.1, 5.2 and 5.3
given in [17].
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6. Third Duality Model

In this section we take the following form of
Lemma 2.1:

Lemma 6.1 Letx” be an optimal solution for (P).
Assume  that Ghj(x*), jed(x) are linearly
independent. Then there exist (S,t*, V)e K and

1" eRP such that

etk
> (ol 5,)-(x',BY))

(36)
(" h(x)) =0, (37)
(u, Auy<1, (v, Bv)<1,
<x*, AX" (39)
|

*

t zo,zs“ti =1y, eY(x )i=12..,5".(39)

Now we consider the following parameter free
dual problem for (P):

(DI)

max

su
(st.y)eK (z) ’

(zpuv)eHs(s.t,y)

[Zl.( )

+(z,A
t/(9(z.v:)

i)+ <u,h(2)>}0
—(z, Bv>)

subject to
Oea{z:*ltxfgavi>+<z,Au>>+<u,h<z>>},
"t (o(z, v,)—(z.Bv))
(40)

(u,Au)<1, (v,Bv)<l1,
(z, Az>1/2 =(z, Au) (z,Bz)

1/2

=(z,Bv), (41)

H,(s,t,y) denotes the set of
(z,1,u,v) e R"xR” x R" x R" satisfying (40).

If the set H,(s,t, ¥)is empty, then we define the

where

)+ (x, Au>)+<y*,h(x*)>}

supremum over it to be -co. Throughout this
section for the sake of simplicity, we denote by

¥, ()
[ ote.5)-(2. 89 St 1)

+iujgj<->}[z; (1 (2 3,)+ (2, Au)
)]k (o 7,)- - BV

Now we shall state weak, strong and strict
converse duality theorems without proof as they
can be proved in thelight of Theorem 5.1 to
Theorem 5.3, proved in the previous section.

Theorem 6.1 (Weak duality) Let X e 3, be a
feasible solution for (P) and let (Z,/,t,u,v,s,t, )7)
be a feasible solution for (DIII). If 1//2(-) is
pseudo o -univex with respect to b,,¢,,a, and
n with V < 0= ¢,(V) <0, then

f(xy)+(x, Ax>1/2

1/2

sup
ver g(x, y)—(x, BX)

. {zin (f (2. 5)+(2.Au)+ (uh(2)) |
ot (0(z v)~(2.8v)

Theorem 6.2 (Strong duality). Assume that X~ is
an optimal solution for (P) satisfying the
hypothesis of Theorem 6.1. Then there exist

(s*,t*, 7*)6 K(X*) and
(x*,u*,u*,v*)e H3(s*,t*,7*) that
(X", u",u", v, 8"t §") is feasible for (DIII).
If any of the conditions of Theorem 6.1 holds,
then (X*,u*,u*,v*,s*,t*,y*) is an optimal
solution for (DIII) and problem (P) and (DIII)
have the same optimal value.

such

Theorem 6.3 (Strict Converse Duality). Let X
be an optimal solution for (P) and

(Z,u,u,v,s,t,y) be an optimal solution for
(DH). Assume that the hypothesis of Theorem
6.2 is fulfilled and 1//2(-) is strictly pseudo« -
univex with respect to by,d,,a, and n with
V <0= ¢,(V)<0. Then z =x"is an optimal
solution of (P).
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Remark 6.1
(i) If the functions f,gandh are continuous

differentiable, then the above Theorem 6.1,
6.2 and 6.3 reduces to Theorem 6.1, 6.2 and
6.3 given in [10].

(i) Evidently, if we choose ¢,,¢, as the identity
maps, b, =1=D, and if the functions f,g

andh are continuous differentiable, then we
obtain the Theorem 6.1, 6.2 and 6.3 given in
[16].

(iii) If we take ¢,,¢, as the identity maps, and
b, =1=D, in the above Theorem 6.1, 6.2

and 6.3 we get Theorem 6.1, 6.2 and 6.3
given in [17].

7. Conclusion and Further Developments

In this paper, we have introduced the classes of
a -univex and generalized o -univex functions
where the involved functions are locally
Lipschitz, and have used these different classes
of functions to derive sufficient optimality
conditions and three types of duality results for
nondifferentiable minimax fractional
programming problems. The results developed in
this paper improve and generalize a number of
existing results in the literature. In fact, some
researchers have paid much attention on
extending some known results for univex
functions. Hence, for this purpose, we may
conclude that this paper enriched optimization
theory in the view of mathematics.

Furthermore, the results developed in this
paper can be generalized to the following
nondifferentiable multiobjective programming
problem:

Minimize (fl(x)+(x‘81X)uz,
f,(x)+ (X‘Bzx)‘/2
f(x)+ (Xt By X)Uz)

subjectto x €S =1{xe X :g(x) <0}

(MOP)

where X is an open subset ofR",
f:X>R, i=12.,k,g: X>R"™ and
B,,i=12,..,k is an nxn  positive

semidefinite symmetric matrix. This will orient
the future research of the authors.
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