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 Efficient planning and management of the workforce resources is one of the most 

essential requirements for the companies operating in the service sector. For banks, 

a large number of transactions comes to Central Operations Department from the 

branches or directly from the customers and their aim is to provide the best 

operational service with the highest efficiency with the limited workforce 

resources in the departments. In this study, a real assignment problem was 

discussed and the problem was considered as Generalized Assignment Problem. 

For the solution of the problem, related algorithms were listed and examined in the 

literature survey section. Then, a two-step method is proposed. First step 

prioritizes the task coming to the system by considering the customer types, 

service level agreement (SLA) times, cut-off times, task type.  In the second step, 

a multi-objective mathematical model was developed to assign task to employee 

groups. A preference based optimization method called Linear Physical 

Programming (LPP) is used to solve the model. Afterward, proposed model was 

tested on real banking data. For all the tests, GAMS was used as a solver. Results 

show that proposed model gave better results compared with current situation. 

With the proposed solution method, the workloads of the profile groups working 

above their capacity were transferred to other profile groups with idle capacity. 

Thus, the capacity utilization rates of the profile groups were more balanced and 

the minimum capacity utilization rate was calculated as 41%. 
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1. Introduction 

It is a well-known fact that workforce is the most 

important resource for the companies operating in the 

service sector. A company's success or failure depends 

mainly on the skill level of the people working for it. 

Without positive and creative employee contributions, 

organizations are unable to advance and thrive. Thus, 

they need to recruit employees with the necessary 

abilities, experience and capabilities to accomplish a 

company's objectives or events. In this way, both the 

present and the company's future requirements should 

also be kept in mind. Therefore; effective and efficient 

utilization, planning and directing of the workforce 

resource are the most essential requirements. To enable 

companies to respond quickly to its clients by 

managing their available workforce resource 

effectively, some major challenges related to business 

and marketing constraints are needed to be considered 

such as; number of available workforce, customer 

segmentation, SLA times  and cut-off times, operation 

type and their processing time, workforce competence, 

number of operations executed by customers and 

priority score. 

This study’s main goal is to develop a task assignment 

methodology that based on optimization techniques 

which assigns a set of jobs to a set of employees with 

different levels of expertise to meet the due dates and 

satisfy SLAs. As a result,  the proposed model aims to 

assign the proper number of workforce to the 

appropriate jobs by considering competence, 

experience and other capabilities of employees, and 

also prioritize the incoming jobs considering some 

criteria such as; customer types, amount of money, 

SLAs, cut-off times and operation type. 

http://www.ams.org/msc/msc2010.html
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In this study, a two-step method is proposed to solve a 

real life assignment problem. First step prioritizes the 

jobs coming to the system based on a multi-criteria 

evaluation.  In the second step, a mathematical model 

is developed to assign jobs to employee groups. The 

methodology has been proposed in order to make the 

best assignment in the best way considering different 

objectives. Our mathematical model has three different 

objectives. The first objective function seeks to assign 

tasks to the most appropriately qualified employee. The 

second objective tries to maximize assignment level of 

higher priority tasks. Although all tasks are required to 

be completed, the workload of the employees also 

wanted to be more balanced. Therefore; the third 

objective function tries to balance the workloads of the 

profile groups. After that, the jobs assigned to the 

related employee groups are pushed to the employees 

according to the priority score calculated in the first 

step. 

The rest of this paper is organized as follows: A 

definition of the GAP and an overview of related works 

is given in Section 2. Solution methodology is 

explained in Section 3.  Section 4 describes the 

methodology and algorithm proposed to solve the 

problem. The computational results and conclusions 

are given in Section 5. 

2. Literature review 

The assignment problem which is the subject of our 

study is called The Generalized Assignment Problem 

(GAP) in the literature. In a simple definition, the 

Generalized Assignment Problem (GAP) is the 

problem of assigning a set of tasks to a set of agents 

with a minimum total cost. In each agent, there is a 

single resource and the resources in the agents have 

limited capacity. Each tasks that are assigned to an 

agent, needs a certain number of resource. The 

generalized assignment problem (GAP) is a well-

known, NP-complete combinatorial optimization 

problem [1]. The first study for GAP in literature is 

proposed by Kuhn [2]. GAP has been applied in many 

real world problems ranging from job assignment from 

computer networks to machine loading in flexible 

manufacturing systems [3-6]. 

Several optimization and the approximation algorithms 

are proposed in order to solve the GAP effectively in 

the literature. Osman [7] has presented λ-generation 

mechanism. In this paper, different kind of parameter 

settings and search methods were examined for hybrid 

Simulated Annealing (SA) and Tabu Search (TS) 

algorithms. The results of this technique is compared 

with SA, branch and bound algorithm and set 

partitioning heuristics. A genetic algorithm (GA) which 

tries to improve feasibility and optimality 

simultaneously was presented by Chu and Beasley [8]. 

This algorithm was applied on a set of relatively large 

84 test problems with 20 agents and 200 jobs. The 60 

of these problems were accepted as small-size and 

optimal solutions can be found. Racer and Amini [9] 

presented a hybrid heuristic (HH) method which 

consists of Variable-Depth-Search Heuristic (VDSH) 

and Heuristic GAP (HGAP). The HH was tested on 450 

test problems and after all, it is found that VDSH gives 

better solutions, HGAP gives results quickly. Laguna et 

al. [10] proposed a new heuristic approach to solve the 

multi-level generalized assignment problem (MGAP). 

MGAP is different from the classical GAP. Lot sizing 

problem can be formulated as MGAP. An optimum 

solution cannot be found by using commercial solvers. 

Therefore, a new heuristic approach is presented to 

overcome this problem and also, this approach involves 

TS applications with neighbourhood search mechanism 

defined by ejection chains. A Tabu Search Heuristic 

presented by Diaz and Fernandez [11]. This method 

uses short term and long term computer memories in 

order to find feasible solutions and to fix up the penalty 

weights. In this paper, a relaxed formulation of GAP 

which is called Relaxed GAP (RGAP) is considered. In 

this way, the capacity constraints are eliminated and a 

penalty parameter is added to objective function of the 

GAP model. Yagiura and Ibaraki [12] proposed a 

methodology by using the ejection chain algorithms 

and a neighbourhood construction method. Variable 

Depth Search (VDS), Tabu Search with Ejection 

Chains (TSEC) and Path Relinking with Ejection 

Chains (PREC) were compared on benchmark cases. 

Randall [13] studied the solution components and the 

local search heuristics from the literature. And also, two 

different probabilistic component selection heuristics 

were proposed with the adaptive and static schemes. As 

a result, performance of Ant Colony Optimization 

based methods gives better results against SA and TS. 

Lourenco and Serra [14] proposed a hybrid approach 

which combines a Greedy Randomized Adaptive 

Search Procedure (GRASP) and a Max-Min Ant 

System (MMAS). MMAS is a generation of the Ant 

Colony Optimization Algorithm to improve ant system. 

GRASP is a two-phase iterative randomized sampling 

method. Alfandari et al. [15] presented a Path-

Relinking (PR) heuristics which is a kind of generalized 

scatter search for the GAP. This algorithm has two 

phases. The first phase contains LP and local search. In 

the second phase, paths are created between the feasible 

solution pairs picked from the first phase. It can be seen 

in the paper, TS might be very effective compared with 

PR. Yagiura et al. [16] proposed an algorithm which 

features ejection chains and a path relinking approach 

for the GAP. A neighbourhood construction is used to 

provide more complex and strong moves. And also, this 

algorithm has a mechanism for fitting parameters to 

keep the balance among feasible and infeasible regions. 

Haddai and Ouzia [17] presented an algorithm for 

generating and improving feasible assignments. This 

algorithm is applied at each iteration of a subgradient 

method for the weak Lagrangian relaxation of the GAP. 

Qu et al. [18] proposed an algorithm for multi-agent 

assignment problem where there is a need for a group 

of agents to select assignments from their eligible 

assignments. The objective is to find an assignment 
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profile that maximizes the global utility. Jacyna et al. 

[19] presented a mathematical model to solve task 

assignment problem of vehicles for a production 

company. They defined two stages for this problem. 

The first stage is to identify the tasks, the other is to 

determine the amount of vehicles required to fulfill 

these tasks. The algorithm was applied for real data. 

Demir and Canpolat [20] addressed due date 

assingment problem. In this study; genetic algorithms, 

evolutionary strategies and random search techniques 

are used and compared. 

In addition, Cattrysse et al. [21] discussed some 

extensions of the generalized assignment problem. 

According to Mozzola [22], the GAP is a well known 

model for allocation, production planning and 

scheduling. In their paper, generalization of the GAP 

called the 0-1 generalized assignment problem with 

nonlinear capacity constraints (NLGAP) was 

presented. They aimed to consider capacity interactions 

among the tasks which are assigned to same employees. 

The multi-constraint generalized assignment problem 

(MCGAP) is a generalization of the GAP with multiple 

resources. LeBlanc et al. [23] proposed a methodology 

to solve the MCGAP with the considiration of the 

effects of setup times and costs to permit partitioning 

the inputs among the different machines. Genetic 

Algorithm (GA), Simulated Annealing (SA) and 

Lagrangian Relaxation (LR) are used to obtain results 

with systematic evaluations. The bottleneck GAP 

(BGAP) is defined by Mazzola et al. [24] and there are 

two types of this problem. First one is task based which 

minimizes the maximum cost of the assignments 

(TBGAP) and second one is employee based which 

minimizes the maximum of the total costs assigned to 

each employee (ABGAP). Martello and Toth [25] 

introduced approximation algorithms and an exact 

branch and bound approach to solve BGAP. 

In the literature, many studies have been carried out on 

the service sector. Thomas and Terry [26] presented 

mixed-integer stochastic programming approach which 

has two stages for call centers. First stage compounds 

the staff scheduling and server sizing steps. And the 

second stage considers the uncertainty in arrival rates 

from period to period. According to them, the 

stochastic model generally gives a substantial reduction 

in the expected operation costs. Rodney and Ward [27] 

developed an algorithm for staffing and routing 

problems to minimize the overall workforce. They 

focused on the necessary agents with limited cross-

training. Christian and Rainer [28] proposed a mixed-

integer linear programming (MIP) model to minimize 

labor costs. They considered  assigning multi-skilled 

employees to IT-projects.  Krishnamoorthy et al. [29] 

presented a model to the Personnel Task Scheduling 

Problem (PTSP). They focused on minimising overall 

cost of employee with different skills required to 

perform the given set of tasks. Cordeau et al. [30] 

proposed  an adaptive large neighborhood search 

heuristic and a construction heuristic for a 

telecommunication company to overcome technician 

and task scheduling problem. Hojati  and Patil [31] 

proposed an integer linear programming model and a 

heuristic to solve assingment and scheduling problem 

in service sector for part-time service employee with 

different availability and skills. The proposed model 

contains two steps. First step is determining shifts and 

second step is assigning the proper shifts to employees. 

Lin et al. [32] presented a problem-specific approach 

with three stages for crew rostering problem. Fuzzy sets 

are used to deal with job characteristics and the 

personal attributes.   A linear goal programming model 

is proposed for effective assingment. Borenstein et al. 

[33] proposed a stochastic model to solve workforce 

scheduling problem for  the British Telecom, in which 

technicians with different abilities are assigned to tasks 

which require different competences. 

As can seen from the literature review, several methods 

are presented in the literature to address to GAP and a 

large number studies have examined to deal with this 

problem. 

3. Linear physical programming 

As Messac et al. [34] stated, optimization problems can 

be classified into two categories: blind optimization 

and physical optimization. The decision maker does not 

really know the nature of the problem or the nature of 

the solution expected in blind optimization. In physical 

optimization, the decision maker has information and 

clearly defined objectives which can be expressed as 

physically meaningful terms related to the problem. 

Almost all operational research and engineering 

problems fall into the second category. In this chapter, 

linear physical programming (LPP) is described. 

Physical programming is a technique that requires the 

retrieval of physically meaningful information from the 

designer and produces a problem structure that is 

appropriate to the structure of the designer's 

preferences [35]. Within the Physical Programming 

procedure, DM explains their preferences using 4 

different classes for each criterion (each criterion is 

described as belonging to one of 4 different classes). 

The lower value of the class function is better than the 

higher value. The ideal value of the class function is 

zero. Each class, depending on the sharpness of the 

choice, includes two states: hard and soft. All soft class 

functions will be a part of the integrated objective 

function (to be minimized). A class criterion is defined 

in one of 8 sub-classes: 4 soft (S), 4 hard (H). Physical 

programming avoids the limits of such a problem 

structure. In the flexible case, it characterizes the 

degree of desirability up to 11 intervals. The 6 intervals 

of the degree of desirability is defined in the 1S and 2S 

class criteria. 10 of the intervals is defined in class 3S, 

11 of the intervals is defined in class 4S.  

There are many studies using LPP in the literature. 

Onut et al. [36] presented a model to allocate the current 

energy resources to the Turkish manufacturing industry 

sub-groups by using LPP. Gulsun et al. [37] proposed a 

multi-objective model for aggregate production 
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planning and solved by using LPP. A production 

planning model developed by Maria et al. [38] and 

multi-objective model is solved by using LPP. 

Kucukbay and Araz [39] focused on the portfolio 

selection problem. In this study, fuzzy goal 

programming and linear physical programming are 

used and compared. 

3.1. Linear physical programming problem model 

This section will describe the procedure that will shape 

the problem of physical programming. Physical 

programming application procedure requires 4 short 

steps [35]: 

1. For each criterion, class function type will be 

determined by decision maker (DM) among 

from 4 hard and 4 soft classes. 

2. For each criterion, DM will determine the 

target values. 

3. The LPP weight algorithm (LPPWA) is used 

to obtain weights with the DM inputs 

specified in the range limits. 

4. Then problem is converted to LPP model.  

4. Problem definition 

The Central Operations Department (MOB), which 

aims to provide the best operational service with the 

highest efficiency, has a large number of transactions 

from the branches and directly from the customers 

during the day, such as loan application, guarantee 

letters preparation, money order based on written 

instructions, etc. After the transactions coming to the 

MOB, they are directed to the related departments. 

They try to complete the transactions with the limited 

employee resources in the departments. Transactions 

occur in multiple steps. As an example of the steps of 

the process, welcome (reading the customer order and 

specifying what they want), data entry, document 

control, approval steps can be provided. There are 

certain cut-off times for some operations. For example, 

the final closing time for EFT transactions should not 

exceed 17:30 as it is linked to the central bank system 

and the central bank system is being closed at 17:30. In 

addition, the SLA durations are calculated for the steps 

(steps of the operations) and the steps are intended to 

be completed within the calculated SLA period from 

the moment each step arrives at the MOB. 

Depending on the workload intensity, other 

departments can support the related departments. 

Employees are empowered to perform certain 

operations according to their experience and training 

they have received, and the probabilities of making 

mistakes with the duration of operations can vary from 

employee to employee. The competencies of the 

employees gain importance at the point of giving 

support to other departments in a busy situation. The 

competencies of the employees are improved with the 

help of training programs organized by the bank. 

In the current situation; in the MOB departments, 

certain employees are selected to determine which 

transactions are related to their departments from the 

common pool, and they assign to transactions to the 

employees in their own departments. Prioritization of 

transactions and assignment of employees are based on 

the responsible employee’s preferences and general 

rules could not be defined. Thus, while transactions 

with less priority levels can be completed, transactions 

that have already exceeded the SLA durations in other 

departments can be pretermited. In the departments 

where the transactions are directly selected by the 

employees, relatively easy and short transactions can be  

selected and priority of the transactions are not 

considered. 

In this study, a two-step solution procedure is proposed 

to solve problems such as administrative difficulties, 

inefficient use of employees and inadequate 

management of priorities (Figure 1). 

 

 

Figure 1. Problem solution procedure 

 

Stage 1 is about the prioritization of tasks coming to the 

system. Tasks can be prioritized based on customer 

type, transaction type, urgency status and SLA times. 

The outputs of this stage are used in the second stage as 

inputs of mathematical model. Stage 2 is the 

assignment of tasks to profile groups created by 

considering specific experience and competencies. The 

second stage of the problem is the solution of the 

integer programming model by using the Linear 

Physical Programming (LPP). In the second stage, the 

transactions assigned to profile groups are directed to 

the relevant professionals. Each profile group has more 

than one employee, and each profile group is competent 

to conduct the transactions directed to them. Then first 

stage’s results (prioritization stage) are used to push the 

tasks, assigned to the related profile groups, to the 

employees. 

To summarize briefly, the following problems are 

observed in the current system:   

• Inproper assignments of tasks to the profile 

groups,  

• Non-effective use of resources,  

• Unbalanced workloads of profile groups,  

• Tendency of empleyees on easy tasks during 

task selection phase 

• Waiting transactions in the pool 

In response to these problems; solutions have been 
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produced with two-step methododology. Since, by 

applying this approach, task prioritazion phase 

becomes more standardized, their acceptance by the 

related employees and managers becomes easier. With 

the new system, the selection of tasks is entirely 

independent from the initiative of the employees. 

Hence, the tendency of employees on selecting easier 

tasks firstly is eliminated and the tasks with higher 

priority levels are assigned and finalized initially. 

Also, the proposed methodology  increases the 

communication level among profile groups. Employees 

have the flexibility of carrying out tasks of other profile 

groups when needed.  It is possible for an employee to 

perform urgent and higher priority tasks of another 

profile group instead of performing a task with less 

priority score of his/her own profile group. In the 

current situation, employees wouldn’t know the tasks 

in the queues of other profile groups and may remain 

idle when the other profile groups are overloaded. By 

applying the new methodology, capacity utilization 

balanced can be accuired among profile groups, and 

this would have a positive effect on the employees’ 

moral. And finally, the proposed methodology would 

have a positive effect on customer satisfaction level.  

In this study, below assumptions are made: 

• Each incoming job consists of different tasks. 

• Similar tasks are grouped into specific task 

pools. 

• Different types of tasks in the same group 

require similar competences. 

• Each employee in the same profile groups has 

similar competences. 

• Each employee must be part of a profile group. 

• Each employee can only be included in one 

profile group. 

• Each task type may be carried out by different 

profile groups. 

• All employees work hours are restricted to 

their shift start and end times. 

• Each employee's completion time is different. 

However, it was assumed to be equal and 

average processing times were taken into 

account. 

• Preparation and setup times for the works are 

neglected. 

• Lunch times, break times etc. are neglected. 

4.1. Prioritization stage 

The prioritization stage constitutes the first step of the 

proposed method. During the working hours, many 

transactions are coming to the bank. These tasks have 

different importance levels. The order of importance in 

the current structure is determined by SLA time, cut-

off time, customer information, and type of tasks. 

Generally, importance level of the tasks are determined 

by the employees. With our proposed method, the 

prioritization structure is unbounded from the 

employees’ initiative and a new structure is introduced. 

With the new structure, the priority score of each tasks 

is calculated. Employees will receive the most 

prioritized task among all tasks assigned to their group 

according to the calculated priority score. The priority 

score is calculated according to following rules: 

1. Step: Calculation of Tolerance. 

2. Step: Calculation of Significance Coefficient. 

3. Step: Calculation of Final Score. 

Firstly, the tolerance value is calculated. The tolerance 

value refers to the difference between the SLA time and 

average process time. The tasks can be kept up to 

tolerance value in the queue. However, only the 

tolerance value is not sufficient. Because; although the 

duration of the SLA is taken into account, there may be 

different types of tasks with the same duration and there 

may be different importance ratings among them. There 

may be a difference in the importance level between 

two similar transactions according to the customer type 

or the urgency of the transaction. Therefore; tolerance 

value is multiplied by the significance coefficient. 

Significance (Final) scores are calculated by using 

Analytic Hierarchy Process (AHP) method in second 

step. Then, final score value is calculated from second 

step’s value for tasks with cut off time. 

 

 

Figure 2. Structure of hierarchy 

 

By using AHP technique, our aim is to standardize the 

tasks selection logic of employees. With this technique, 

the criteria are compared with each other. Thus, the 

importance of the criteria can be expressed 

numerically. The Analytic Hierarchy Process (AHP) is 

a multi-criteria decision-making technique and was 

developed by Saaty [40] to deal with complex decision 

problems. AHP Scores are calculated as follows and 

structure of hierarchy can be seen in Figure 2. A 

questionnaire is prepared to obtain the evaluations and 
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a 1 to 9 scale is used. According to Saaty’s [40] 

pairwise comparison scale, 9 is extremely important 

and 1 is equally important. After the surveys were 

completed, inconsistency rates were performed and 

final scores were obtained. 

And final score is calculated by using each criterion’s 

score as shown in Figure 3.  

 

 

Figure 3. Final score calculation 

4.2. Assignment stage 

Parameters and decision variables of the model are 

listed as follows:  

Index:  

 j:      index for tasks                              j=1,2,3,…,J 

 i:      index for profile groups               i=1,2,3,..,I 

Parameters: 

 αji:  Competence level for profile group i for task j  

 aji:    Ability matrix for profile group i for task j 

 bj:     Importance level of task j 

 tpi:   Available time for profile group i 

 ki:    Available employee number for profile group i 

 p:     Planning period 

 tj:     Process time of task j 

 c:     Minimum capacity usage 

Decision Variables: 

     xji:  {
1,   if task j assigned to profile group i  
0,  otherwise                                          

} 

 

Proposed task assignment model is given as follow: 

Objective Function 1: 

            𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: (∑ ∑ 𝑥𝑗𝑖 ∗ 𝛼𝑗𝑖

𝐼

𝑖=1

𝐽

𝑗=1

)                       (1) 

                        
Eq. (1) tries to maximize the level of task assignments 

to appropriate profile groups. 

 

 

Objective Function 2: 

    𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: (∑ ∑ 𝑥𝑗𝑖 ∗ 𝑏𝑗

𝐼

𝑖=1

𝐽

𝑗=1

)                        (2) 

Eq. (2) tries to maximize assignment level of higher 

priority tasks. 

Objective Function 3: 

    𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: (𝑐)                                                     (3) 

 
Eq. (3) tries to maximize capacity usage of least 

occupied profile group. Capacity utilization rates are 

tried to be balanced. 

Subject to: 

𝑥𝑗𝑖 ≤  𝑎𝑗𝑖        ∀𝑖, ∀𝑗  (4) 

 

       ∑ 𝑥𝑗𝑖
𝐽
𝑗=1 ∗  𝑡𝑗 ≤  𝑡𝑝𝑖        ∀𝑖              (5) 

 

              ∑ 𝑥𝑗𝑖
𝐼
𝑖=1 ≤  1       ∀𝑗   (6) 

 

         ∑ 𝑘𝑖 ∗ 𝑝𝐼
𝑖=1 =  𝑡𝑝𝑖        ∀𝑖  (7) 

 
∑ ((𝑥𝑗𝑖

𝐽
𝑗=1 ∗  𝑡𝑗)/ 𝑡𝑝𝑖) ≥ 𝑐        ∀𝑖   (8) 

 

𝑥𝑗𝑖  ∈  {0, 1} ,    ∀𝑖, ∀𝑗       (9) 

 

Eq. (4) tries to ensure that a task can be assigned to a 

proper profile group. Eq. (5) tries to ensure that 

available time of profile groups cannot be exceeded. 

Eq. (6) tries to ensure that each task should be assigned 

to a profile group. Eq. (7) gives the relation between the 

total available time and the number of employees in 

profile groups. Eq. (8) determines the minimum 

capacity usage of profile groups. Eq. (9) determines the 

range of variables.   

5. Experimantal study  

The model is developed by considering the problem of 

a private bank in Turkey and the related literature. One 

day banking data taken from this private bank is given 

in Figure 4, and some details are given below: 

 

 

Figure 4. Hour based daily transactions  
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• Each new job progresses through a separate 

process. This study covers 6 different process 

types.  

• Each incoming job consists of different tasks. 

For example; in terms of EFT; depending on 

the amount can consist of at least 2, up to 5 

tasks. If the EFT amount is less than 1000 TL, 

only two task types are composed, while the 

amount is above 1000000 TL, five task types 

are formed.  

• Similar tasks are grouped into specific task 

pools. The employee, assigned to this task 

pool, is able to do the different jobs such as 

EFT, remittance, etc. in this task pool. 

• Each employee in the profile groups has 

similar competences.  

• Each task type may be carried out by different 

profile groups. 

5.1. Linear physical programming application and 

weight determination 

First of all, optimal values are found for each objective 

function by solving the model by considering them one 

by one. Class intervals have been determined in the 

direction of optimum results. 

The objective functions is classified as 2S (2nd soft 

class). Our preferences and target values for the three 

goals are as shown in Table 1. Table 2 shows the final 

weight deviations of performance criteria. Steps of the 

LPPWA are given below [35] and mathematical 

relations for weight determination algorithm can be 

found in [35]. 

Step 1       Start: 

            𝛽 = 1,1; 𝑤𝑝1
+ = 0, 𝑤𝑝1

+ = 0, �̃�2 =

                   𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑒. 𝑔. 0.1)   

             p=0 ; s=1, nek = # soft criteria 

Step 2       p=p+1 

Step 3       p=s+1 

            Evaluate sequentially; 

                   �̃�𝑠 , �̃�  𝑝𝑠
+   , �̃�  𝑝𝑠

−   , 𝑤  𝑝𝑠
+   , 𝑤  𝑝𝑠

−   ,            

                 �̃�  𝑝𝑠
+   , �̃�  𝑝𝑠

−   , �̃�  𝑚𝑖𝑛
    

                 If  �̃�  𝑚𝑖𝑛
  is smaller than the selected small            

                 positive number (e.g., 0.01), increase β and   

                 go to step 2. 

Step 4       If s≠5 then go to step 3. 

Step 5       If p≠ nsc then go to step 2. 

Then, the objective function (to be maximized) is 

constructed as a weighted sum of deviations (dps) for all 

ranges and criteria. 

 

Table 1. Management preferences concerned objectives (Target values). 

Preference degree g1 g2 g3 

Ideal >2870 >3525 > 0.487 

Desirable 2870 - 2670 3525 - 3300 0.487 – 0.467 

Tolerable 2670 - 2470 3300 - 3100 0.467 – 0.447 

Undesirable 2470 - 2270 3100 - 3000 0.447 – 0.427 

Highly Undesirable 2270 - 2070 3000 - 2900 0.427 – 0.407 

Unacceptable  <2070  <2900  < 0.407 

Table 2. Normalized weight deviations of objectives. 

  �̃� 12
−  �̃� 13

−  �̃� 14
−  �̃� 15

−  

g1 0.426086 0.043478 0.47826 0.052173 

 �̃� 22
−  �̃� 23

−  �̃� 24
−  �̃� 25

−  

g2 0.371212 0.037878 0.5 0.090909 

 �̃� 32
−  �̃� 33

−  �̃� 34
−  �̃� 35

−  

g3 0.4260869 0.0434782 0.47826 0.0521739 

 

Our model in the LPP structure is given as follows: 

• Piecewise Linear Archimedian Aggregate Function 

         𝑚𝑖𝑛  𝑗 = ∑ ∑(�̃� 𝑝𝑠
− 𝑑𝑝𝑠

− +  �̃� 𝑝𝑠
+ 𝑑𝑝𝑠

+ )

5

𝑠=2

3

𝑝=1

          (10) 

• Goal Constraints 

                𝑔1 = (∑ ∑ 𝑥𝑗𝑖 ∗ 𝛼𝑗𝑖

𝐼

𝑖=1

𝐽

𝑗=1

)                             (11) 

                 𝑔2 = (∑ ∑ 𝑥𝑗𝑖 ∗ 𝑏𝑗

𝐼

𝑖=1

𝐽

𝑗=1

)                              (12) 

                             𝑔3 = (𝑐)                                         (13)

              
      𝑔𝑝 + 𝑑𝑝𝑠

− ≤ 𝑡𝑝(𝑠−1)
− ; 𝑑𝑝𝑠

− ≥ 0; 𝑔𝑝 ≤ 𝑡𝑝5
−             (14) 

 (for all p classes 2S,  p=1,2,..., 𝑛𝑠𝑐,  s=2,…,5) 

• System Constraints (Hard constraints) 

 

              𝑥𝑗𝑖 ≤  𝑎𝑗𝑖    ∀𝑖, ∀𝑗   (15) 

 

            ∑ 𝑥𝑗𝑖
𝐽
𝑗=1 ∗  𝑡𝑗 ≤  𝑡𝑝𝑖     ∀𝑖  (16) 

 

               ∑ 𝑥𝑗𝑖
𝐼
𝑖=1 ≤  1  ∀𝑗   (17) 

 

                        ∑ 𝑘𝑖 ∗ 𝑝𝐼
𝑖=1 =  𝑡𝑝𝑖  ∀𝑖                       (18) 
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         ∑ ((𝑥𝑗𝑖
𝐽
𝑗=1 ∗  𝑡𝑗)/ 𝑡𝑝𝑖) ≥ 𝑐 ∀𝑖  (19) 

 

              𝑥𝑗𝑖  ∈  {0, 1}    ∀𝑖 , ∀𝑗    (20) 

 

The model is solved by using GAMS 25.0.1 solver, and 

results are given in Table 3.  

Table 3. Results 

 
First Goal 

Second 

Goal 
Third Goal 

Target 

Value 
2683 3525 0.41 

Preference Desirable Desirable 
Highly 

Undesirable 

 

Considering the numerical results, the first and second 

objective function are found in desirable range, and the 

third objective function is found in a highly undesirable 

range.  

5.2. Results 

In this study, GAMS 25.0.1 solver is used. The CPU 

time was 19 minutes and 32 seconds. Banking daily 

data is stored on Excel files and daily data was 

separated into hourly data. Therefore 12 separate 

datasets were obtained for each day. Then, datasets 

were tested on the proposed algorithm by using the 

program. In this study; only the busiest time zone 

(15:00 pm – 16:00 pm) data is used because of the 

continuous and large number of transactions coming to 

the banking system at that time interval. In this time 

zone, 11 different profile groups are available and each 

profile group has a different number of employees (see 

Table 4). According to data; it can be seen in Figure 5 

that the capacity of the profile groups cannot be used in 

a balanced manner. While some profile groups use very 

small part of their capacities, some profile groups have 

had to work far beyond their capacity. When the Figure 

5 is examined, it is seen that the capacity utilization 

rates of some profile groups are more than 100%. The 

reason of this situation can be explained as follows: The 

transactions performed by the profile groups are 

expressed in seconds and are based on standard 

transaction times. However, in order to complete the 

transactions in busy profile groups, it is worked in 

periods well below the standard processing times. For 

example, in the first profile group, 47 transactions are 

completed. The standard processing time is 265 

seconds. In this case; 47 transactions are completed in 

a total of 12,455 seconds. But, the capacity of this 

profile group is 7200 seconds. This conclusion is 

reached here. Employees in this profile group 

completed the transactions in an average of 153 

seconds. They had to work faster than standart 

processing times to finish the assigned tasks.  

 

Figure 5. Capacity usage (%) in current situation 

In the proposed solution, the capacity utilization level 

differences among the profile groups started to 

decrease and can be seen in Table 5. In the current 

situation, maximum capacity usage of any profile group 

could be 73% more than its own capacity as can be seen 

in Table 4. This unfair situation is tried to be balanced 

with the new methodology and maximum capacity 

utilization level among profile groups is not exceeded 

100% with optimum solution (Table 5, Figure 6). As a 

result, the amount of unused idle capacity of the profile 

groups has decreased. As can be seen in Table 3, the 

result of the third objective function is highly 

undesirable because it may be due to the narrow range 

we have determined. We set the range between 0.407 

and 0.487. Therefore; we wanted to observe the results 

by widening the ranges further. First, we set the lowest 

limit of the highly undesirable range to 0.30 as can be 

seen in Table 6. In this case; this value corresponds to 

the tolerable range from the ranges in Table 3 that we 

obtained earlier.

Table 4. Current situation 

Profile 

Groups 

Number of 

Employees 

Profile 

Groups 

Capacity in 

Seconds 

Number of 

Tasks 

Total 

Demand 

Time in 

Seconds 

Capacity 

Usage (%) 

1 2 7200 47 12455 173% 

2 9 32400 75 37885 117% 

3 17 61200 114 34113 56% 

4 19 68400 36 6713 10% 

5 8 28800 232 31576 110% 

6 38 136800 1199 161537 118% 

7 36 129600 160 32855 25% 

8 30 108000 82 86973 81% 

9 10 36000 19 1283 4% 

10 8 28800 26 4381 15% 

11 4 14400 59 10095 70% 
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Table 5. Optimum solution 

Profile 

Groups 

Number of 

Employees 

Profile 

Groups 

Capacity in 

Seconds 

Number of 

Tasks 

Total 

Demand 

Time in 

Seconds 

Capacity 

Usage (%) 

1 2 7200 38 7158 99% 

2 9 32400 62 32054 99% 

3 17 61200 82 25092 41% 

4 19 68400 245 28555 42% 

5 8 28800 263 27119 94% 

6 38 136800 890 136778 100% 

7 36 129600 335 62090 48% 

8 30 108000 19 68400 63% 

9 10 36000 55 14774 41% 

10 8 28800 39 11934 41% 

11 4 14400 21 5912 41% 

 

Figure 6. Capacity usage (%) in the proposed solution 

 

When we solve the model for this range, the result for 

this objective function is found as 0.30, which means 

that it is highly undesirable. As can be seen in Table 6, 

we set the lowest limit of the highly undesirable range 

to 0.25 to extend the range a little further. When we 

solve the model again for this range, the result for this 

objective function is found as 0.25 which is highly 

undesirable. 

 

Table 6. New Preference Values for the Third Goal 
 

Target 

values 

Target 

values 

Target 

values 

Ideal > 0.487 > 0.487 > 0.487 

Desirable 0.487 – 0.45 0.487 – 0.44 0.487 – 0.48 

Tolerable 0.45 – 0.40 0.44 – 0.38 0.48 – 0.47 

Undesirable 0.40 – 0.35 0.38 – 0.32 0.47 – 0.46 

Highly 

Undesirable 
0.35 – 0.30 0.32 – 0.25 0.46 – 0.45 

Unacceptable  < 0.30 < 0.25 < 0.45 

 

It is seen that the minimum capacity utilization rates of 

the profile groups decrease significantly as the range 

values for the third objective function increase. It 

ignores the balance among profile groups. Therefore, 

we can observe that when we narrow the ranges, the 

minimum capacity utilization rate becomes higher. 

When we set the minimum target value to 0.45 for 

testing, the range is still fairly undesirable but a more 

balanced assignment takes place. The results can be 

seen in Table 7. 

Once the relevant tasks have been assigned to the 

relevant profile groups by proposed solution, the 

priority scores calculated in the first stage is taken into 

account. The tasks assigned to each profile group are 

sorted by ascending order according to the calculated 

priority score and these tasks are done by the 

appropriate employees defined in the profile groups, 

respectively.  

 

Table 7. Capacity Usage (%)  

Profile 

Groups 

Minimum 

Target 

Value 0.30 

Minimum 

Target 

Value 0.25 

Minimum 

Target 

Value 0.45 

1 99% 99% 93% 

2 99% 99% 94% 

3 30% 25% 45% 

4 91% 100% 45% 

5 100% 100% 94% 

6 100% 100% 98% 

7 30% 25% 45% 

8 66% 73% 63% 

9 30% 25% 45% 

10 31% 26% 45% 

11 30% 25% 45% 

6. Conclusion 

This study investigates personnel task assingment 

problem in central operational departments for banking 

sector. Although many methods have been proposed to 

address personel task assignment problem, there is no 

direct solution for this specific problem in the banking 

sector. Therefore, a two-step methodology has been 

proposed to solve this real life problem with the 

consideration of task priorities, task-profile group 

compability, capacity utilization balance of profile 

groups. 

The proposed method consists of two stages. The first 

stage is about the prioritization of tasks. At this stage; 

customer types, transaction types, urgency status, task 

create times, processing times, cut-off times and SLA 
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times  are taken into account, task priorities are found 

and the outputs of this stage are used in the second stage 

as inputs. The second stage is the part where tasks are 

assigned to profile groups or employees by considering 

competence, experience and other capabilities of 

employees. A multi-objective mathematical model is 

developed for this stage and the linear physical 

programming technique is used to solve this model. 

In our study, real banking data is used and according to 

results, capacity usage levels of profile groups  

becomes more balanced and minimum capacity usage 

among them is increased to at least 41%. As a result, it 

has been observed that tasks are prioritized in a more 

precise way and more accurate and balanced task-

employee assignments are obtained. There are no 

unassigned tasks when attempting to make a balanced 

assignment. When we evaluate the results of objective 

functions separately, the first and second objective 

function are found in desirable range, and the third 

objective function is found in a highly undesirable 

range.  

In this study, completion times for different employees 

are assumed to be same. In a future study, variations in 

completion times can be taken into account. Also, 

number of tasks coming to task list can be forecasted 

and this can be added to proposed model as a new input. 

And then, we offered that tasks are assigned to the any 

available employees according to priority scores. In the 

future studies, scheduling algorithms can be used to 

create the tasks lists of the employees at this stage. Our 

proposed model gives optimal solution for small 

problem sets. However, it would be difficult to reach 

the optimum solution if the problem size increases. For 

larger size problem sets, heuristics /metaheuristics 

methods can be used. 
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1. Introduction

Fuzzy logic is studied in many areas [1,2]. To solve
many problems, Sturm-Liouville Theory is used
in mathematical physics [3, 4]. Sturm-Liouville
fuzzy problem was defined by Gültekin Çitil and
Altınışık [5]. They studied Sturm-Liouville fuzzy
problems with reel and fuzzy coefficients in the
boundary conditions under the Hukuhara differ-
entiability [6, 7]. Also, fuzzy eigenvalue problems
were investigated under the approach of gener-
alized differentiability in many papers [8, 9]. In
the other hand, the fuzzy problem with eigen-
value parameter in the boundary condition was
studied [10, 11]. But, eigenvalue parameter was
not fuzzy in these papers. The problem with
fuzzy eigenvalue parameter was defined and in-
vestigated by Gültekin Çitil [12].

This paper is on the problem with fuzzy eigen-
value parameter in one of the boundary condi-
tions. That is, we concern the fuzzy eigenvalue
problem

τ =
d2

dt2
,

τu+ [λ]α u = 0, t ∈ (a, b) (1)

[A]α u(a) + [λ]α [B]α u
′

(a) = 0, (2)

[C]α u(b) + [D]α u
′

(b) = 0, (3)

where [A]α =
[

Aα, Aα

]

, [C]α =
[

Cα, Cα

]

are neg-

ative triangular fuzzy numbers, [B]α =
[

Bα, Bα

]

,

[D]α =
[

Dα, Dα

]

are positive triangular fuzzy

numbers, [λ]α =
[

λα, λα

]

is positive fuzzy eigen-
value parameter and u(t, λ) is positive fuzzy func-
tion.

Definition 1. [13] A fuzzy number is a mapping
u : R → [0, 1] satisfying the following properties:

u is normal,

u is convex fuzzy set,

u is upper semi-continuous on R,

cl {xǫR | u (x) > 0} is compact, where cl denotes
the closure of a subset.

We show the space of fuzzy sets with RF .

Definition 2. [14] Let u ∈ RF . The α-level set
of u is defined as

[u]α = {x ∈ R | u (x) ≥ α} , 0 < α ≤ 1

*Corresponding Author
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The α-level set of u is denoted as

[u]α = [uα, uα] .

Definition 3. [15]A fuzzy number u is called
positive (negative), denoted by u > 0 (u < 0), if
its membership function u(x) satisfies u(x) = 0,
∀x < 0 (x > 0).

Remark 1. [14] The sufficient and necessary
conditions for [uα, uα] to define the parametric
form of a fuzzy number as follows:

uα is bounded monotonic increasing (nondecreas-
ing) left-continuous function on (0, 1] and right-
continuous for α = 0 ,

uα is bounded monotonic decreasing (nonincreas-
ing) left-continuous function on (0, 1] and right-
continuous for α = 0,

uα ≤ uα, 0 ≤ α ≤ 1.

Definition 4. [14] For u, v ∈ RF and λ ∈ R,
the sum u + v and the product λu are defined by
[u+ v]α = [u]α+[v]α, [λu]α = λ [u]α where means
the usual addition of two intervals (subsets) of
R and λ [u]α means the usual product between a
scalar and a subset of R.

Definition 5. [16] Let u, v ∈ RF , [u]α =
[uα, uα] , [v]

α = [vα, vα] . The product uv is de-
fined by

[uv]α = [u]α [v]α , ∀α ∈ [0, 1] ,

where

[u]α [v]α = [uα, uα] [vα, vα] = [wα, wα] ,

wα = min {uαvα, uαvα, uαvα, uαvα} ,

wα = max {uαvα, uαvα, uαvα, uαvα} .

Definition 6. [17] Let u, v ∈ RF . If there exists
w ∈ RF such that u = v + w, then w is called
the Hukuhara difference of fuzzy numbers u and
v,and it is denoted by w = u⊖ v.

Definition 7. [14, 18] Let f : [a, b] → RF and
t0 ∈ [a, b] .We say that f is Hukuhara differen-

tiable at t0, if there exists an element f
′

(t0) ∈
RF such that for all h > 0 sufficiently small,
∃f (t0 + h)⊖f (t0) , f (t0)⊖f (t0 − h) and the lim-
its hold

lim
h→0

f (t0 + h)⊖ f (t0)

h
= lim

h→0

f (t0)⊖ f (t0 − h)

h

= f
′

(t0) .

2. The fuzzy eigenvalues and fuzzy

eigenfunctions of the problem

In this section, we investigate the fuzzy eigenval-
ues and the fuzzy eigenfunctions of the problem
(1)-(3).

Let be [λ]α =
[

λα, λα

]

=
[

k2α, k
2

α

]

, kα > 0,

kα > 0. Then, using the Hukuhara differentia-
bility and fuzzy arithmetic, the general solution
of the fuzzy differential equation (1) is

uα (t, λ) = c1 (α, λ) cos (kαt) + c2 (α, λ) sin (kαt) ,
(4)

uα (t, λ) = c3 (α, λ) cos
(

kαt
)

+ c4 (α, λ) sin
(

kαt
)

,

(5)

[u(t, λ)]α = [uα (t, λ) , uα (t, λ)]. (6)

Let

[ϕ(t, λ)]α = [ϕ
α
(t, λ) , ϕα (t, λ)]

be the solution of the equation (1) satisfying the
conditions

u (a) = [λ]α [B]α , u
′

(a) = − [A]α (7)

and

[χ(t, λ)]α = [χ
α
(t, λ) , χα (t, λ)]

be the solution of the equation (1) satisfying the
conditions

u (b) = [D]α , u
′

(b) = − [C]α (8)

Then, ϕ
α
(t, λ) , ϕα (t, λ) , χα

(t, λ) , χα (t, λ) can
be shown as

ϕ
α
(t, λ) = c11 (α, λ) cos (kαt)+c21 (α, λ) sin (kαt) ,

ϕα (t, λ) = c31 (α, λ) cos
(

kαt
)

+c41 (α, λ) sin
(

kαt
)

,

χ
α
(t, λ) = c12 (α, λ) cos (kαt)+c22 (α, λ) sin (kαt) ,

χα (t, λ) = c32 (α, λ) cos
(

kαt
)

+c42 (α, λ) sin
(

kαt
)

.

For [ϕ(t, λ)]α, from the first condition in (7), since
[B]α =

[

Bα, Bα

]

is positive fuzzy number, we
have

[λ]α [B]α =
[

k2α, k
2

α

]

[

Bα, Bα

]

=
[

k2αBα, k
2

αBα

]

.
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Then, using the conditions (7), it is obtained

c11 (α, λ) cos (kαa) + c21 (α, λ) sin (kαa) = k2αBα,

(9)

c11 (α, λ) kα sin (kαa)−c21 (α, λ) kα cos (kαa) = Aα,

(10)

c31 (α, λ) cos
(

kαa
)

+ c41 (α, λ) sin
(

kαa
)

= k
2

αBα,

(11)

c31 (α, λ) kα sin
(

kαa
)

−c41 (α, λ) kα cos
(

kαa
)

= Aα.

(12)

From (9)-(10),

c11 (α, λ) =
k3αBα cos (kαa) +Aα sin (kαa)

kα
,

c21 (α, λ) =
k3αBα sin (kαa)−Aα cos (kαa)

kα

are obtained. From (11)-(12), we have

c31 (α, λ) =
k
3

αBα cos
(

kαa
)

+Aα sin
(

kαa
)

kα
,

c41 (α, λ) =
k
3

αBα sin
(

kαa
)

−Aα sin
(

kαa
)

kα
.

Then, the solution of the equation (1) satisfying
the conditions (7) is

ϕ
α
(t, λ) =

(

k2αBα cos (kαa)

+
Aα

kα
sin (kαa)

)

cos (kαt)

+
(

k2αBα sin (kαa)

−
Aα

kα
cos (kαa)

)

sin (kαt) ,

ϕα (t, λ) =
(

k
2

αBα cos
(

kαa
)

Aα

kα
sin

(

kαa
)

)

cos
(

kαt
)

+
(

k
2

αBα sin
(

kαa
)

−
Aα

kα
cos

(

kαa
)

)

sin
(

kαt
)

,

[ϕ(t, λ)]α = [ϕ
α
(t, λ) , ϕα (t, λ)].

For [χ(t, λ)]α, using the conditions (8), we have
the equations

c12 (α, λ) cos (kαb) + c22 (α, λ) sin (kαb) = Dα,

(13)

c12 (α, λ) kα sin (kαb)−c22 (α, λ) kα cos (kαb) = Cα,

(14)

c32 (α, λ) cos
(

kαb
)

+ c42 (α, λ) sin
(

kαb
)

= Dα,

(15)

c32 (α, λ) kα sin
(

kαb
)

−c42 (α, λ) kα cos
(

kαb
)

= Cα.

(16)

From (13)-(14),

c12 (α, λ) =
Dα cos (kαb) + Cα sin (kαb)

kα
,

c22 (α, λ) =
Dα sin (kαb)− Cα cos (kαb)

kα

are obtained. From (15)-(16), we have

c32 (α, λ) =
Dα cos

(

kαb
)

+ Cα sin
(

kαb
)

kα
,

c42 (α, λ) =
Dα sin

(

kαb
)

− Cα sin
(

kαb
)

kα
.

Then, solution of the equation (1) satisfying the
conditions (8) is

χ
α
(t, λ) =

(

Dα

kα
cos (kαb)

+
Cα

kα
sin (kαb)

)

cos (kαt)

+

(

Dα

kα
sin (kαb)

−
Cα

kα
cos (kαb)

)

sin (kαt) ,

χα (t, λ) =

(

Dα

kα
cos

(

kαb
)

+
Cα

kα
sin

(

kαb
)

)

cos
(

kαt
)

+

(

Dα

kα
sin

(

kαb
)

−
Cα

kα
cos

(

kαb
)

)

sin
(

kαt
)

,

[χ(t, λ)]α = [χ
α
(t, λ) , χα (t, λ)].



162 H. Gültekin Çitil / IJOCTA, Vol.10, No.2, pp.159-165 (2020)

Since the eigenvalues of the fuzzy boundary
value problem (1)- (3) if and only if are consist

of the zeros of functions W
(

ϕ
α
, χ

α

)

(t, λ) and

W (ϕα, χα) (t, λ) [5], we find Wronskian functions

W
(

ϕ
α
, χ

α

)

(t, λ) = ϕ
α

(t, λ)χ
′

α
(t, λ) (17)

−χ
α
(t, λ)ϕ

′

α
(t, λ) ,

W (ϕα, χα) (t, λ) = ϕα (t, λ)χ
′

α (t, λ) (18)

−χα (t, λ)ϕ
′

α (t, λ) .

Computing the values (17) and (18) and making
the necessary operations, we obtain

W
(

ϕ
α
, χ

α

)

(λ) =

(

AαDα

kα

−k2αBαCα

)

cos (kα (a− b))

−
(

k2αBαDα

+
AαCα

kα

)

sin (kα (a− b)) ,

W (ϕα, χα) (λ) =

(

AαDα

kα

−k
2

αBαCα

)

cos
(

kα (a− b)
)

−
(

k
2

αBαDα

AαCα

kα

)

sin (kα (a− b)) .

Example 1. Consider the fuzzy eigenvalues and
fuzzy eigenfunctions of the problem

u
′′

+ [λ]α u = 0, t ∈ (0, 1) (19)

− u(0) + [λ]α [2]α u
′

(0) = 0, (20)

[−1]α u(1) + u
′

(1) = 0, (21)

where [A]α = −1, [B]α = [2]α = [1 + α, 3− α] ,
[C]α = [−1]α = [−2 + α,−α] , [D]α = 1 and
[λ]α =

[

λα, λα

]

positive fuzzy eigenvalue parame-
ter and u(t, λ) is positive fuzzy function.

Let be [λ]α =
[

λα, λα

]

=
[

k2α, k
2

α

]

, kα > 0,

kα > 0. Solution of the equation (19) satisfying
the conditions (20) is

ϕ
α
(t, λ) = k2α (1 + α) cos (kαt) +

1

kα
sin (kαt) ,

ϕα (t, λ) = k
2

α (3− α) cos
(

kαt
)

+
1

kα
sin

(

kαt
)

,

[ϕ(t, λ)]α = [ϕ
α
(t, λ) , ϕα (t, λ)]

and solution of the equation (19) satisfying the
conditions (21) is

χ
α
(t, λ) =

(

1

kα
cos (kα)

−
α

kα
sin (kα)

)

cos (kαt)

+

(

1

kα
sin (kα)

+
α

kα
cos (kα)

)

sin (kαt) ,

χα (t, λ) =

(

1

kα
cos

(

kα
)

−
(2− α)

kα
sin

(

kα
)

)

cos
(

kαt
)

+

(

1

kα
sin

(

kα
)

+
(2− α)

kα
cos

(

kα
)

)

sin
(

kαt
)

,

[χ(t, λ)]α = [χ
α
(t, λ) , χα (t, λ)].

Then, it is obtained

W
(

ϕ
α
, χ

α

)

(λ) =
(

k2αα (1 + α)

−
1

kα

)

cos (kα)

+
(

k2α (1 + α)

+
α

kα

)

sin (kα) ,

W (ϕα, χα) (λ) =
(

k
2

α (2− α) (3− α)

−
1

kα

)

cos
(

kα
)

+
(

k
2

α (3− α)

+
(2− α)

kα

)

sin
(

kα
)

.

Since the eigenvalues of the fuzzy boundary value
problem (19)- (21) if and only if are consist of

the zeros of functions Wα (λ) = W
(

ϕ
α
, χ

α

)

(λ)

and Wα (λ) = W (ϕα, χα) (λ) , computing the val-
ues kα satisfying the equation Wα (λ) = 0 and
kα satisfying the equation Wα (λ) = 0 for each
α ∈ [0, 1], we get infinitely many values as

α = 0 ⇒

k1 = 0.915811,
k2 = 3.17289,
k3 = 6.28721,

...

k1 = 0.343085,

k2 = 2.0719,

k3 = 5.17844,
...
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α = 0.2 ⇒

k1 = 0.808395,
k2 = 2.97581,
k3 = 6.08948,

...

k1 = 0.368214,

k2 = 2.11559,
k3 = 5.222,

...

α = 0.5 ⇒

k1 = 0.674971,
k2 = 2.71138,
k3 = 5.82291,

...

k1 = 0.413302,

k2 = 2.19653,

k3 = 5.30307,
...

α = 0.8 ⇒

k1 = 0.571662,
k2 = 2.50229,
k3 = 5.61159,

...

k1 = 0.470075,

k2 = 2.30274,

k3 = 5.41,
...

α = 1 ⇒

k1 = 0.516499,
k2 = 2.39268,
k3 = 5.50079,

...

k1 = 0.516499,

k2 = 2.39268,

k3 = 5.50079,
...

We show that this values are kn and kn, k=1,2,. . .
for each α ∈ [0, 1]. Then, the eigenvalues are

[λn]
α =

[

λα,n, λα,n

]

=
[

k2α,n, k
2

α,n

]

with associated

solutions

[ϕn(t, λ)]
α = [ϕ

α,n
(t, λ) , ϕα,n (t, λ)],

ϕ
α,n

(t, λ) = k2α,n (1 + α) cos
(

kα,nt
)

+
1

kα,n
sin

(

kα,nt
)

,

ϕα,n (t, λ) = k
2

α,n (3− α) cos
(

kα,nt
)

+
1

kα,n
sin

(

kα,nt
)

and

[χn(t, λ)]
α = [χ

α,n
(t, λ) , χα,n (t, λ)],

χ
α,n

(t, λ) =

(

1

kα,n
cos

(

kα,n
)

−
α

kα,n
sin

(

kα,n
)

)

cos
(

kα,nt
)

+

(

1

kα,n
sin

(

kα,n
)

+
α

kα,n
cos

(

kα,n
)

)

sin
(

kα,nt
)

,

χα,n (t, λ) =

(

1

kα,n
cos

(

kα,n
)

−
(2− α)

kα,n
sin

(

kα,n
)

)

cos
(

kα,nt
)

+

(

1

kα,n
sin

(

kα,n
)

+
(2− α)

kα,n
cos

(

kα,n
)

)

sin
(

kα,nt
)

.

When

∂ϕ
α,n

(t, λ)

∂α
≥ 0,

∂ϕα,n (t, λ)

∂α
≤ 0, (22)

ϕ
α,n

(t, λ) ≤ ϕα,n (t, λ) ,

∂χ
n,α

(t, λ)

∂α
≥ 0,

∂χn,α (t, λ)

∂α
≤ 0, (23)

χ
n,α

(t, λ) ≤ χn,α (t, λ) ,

for all n = 1, 2, ..., [ϕn(t, λ)]
α and [χn(t, λ)]

α

are valid α−level sets. That is, [ϕn(t, λ)]
α and

[χn(t, λ)]
α are eigenfunctions when (22) and (23 )

are satisfied.

Now, we draw the graphics of [ϕn(t, λ)]
α and

[χn(t, λ)]
α for α = 0.2 and n = 2.

Figure 1. Graphic of [ϕn(t, λ)]
α:

Red → ϕ
α,n

(t, λ), Blue

→ ϕ
α,n

(t, λ), Green → ϕ
1,n

(t, λ) =

ϕ
1,n

(t, λ).
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Figure 2. Graphic of [χn(t, λ)]
α:

Red → χ
α,n

(t, λ), Blue

→ χ
α,n

(t, λ), Green → χ
1,n

(t, λ) =

χ
1,n

(t, λ).

In Figure 1, [ϕn(t, λ)]
α is a valid α−level set for

t ∈ [0, 0.538478] and in Figure 2, is a valid
α−level set for t ∈ [0.912106, 1] , since the in-
equalities (23) and the solution is positive fuzzy
function.

Then, the eigenfunctions are [ϕn(t, λ)]
α on

[0, 0.538478] and [χn(t, λ)]
α on [0.912106, 1] as-

sociated with eigenvalues [λn]
α =

[

λα,n, λα,n

]

=
[

k2α,n, k
2

α,n

]

for α = 0.2 and n = 2.

3. Conclusion

In this work, we study the problem with fuzzy
eigenvalue parameter in one of the boundary con-
ditions. We find infinitely many eigenvalues for
each α ∈ [0, 1]. Also, we find solutions associated
with eigenvalues. We draw graphics of solutions.
But solutions are not valid α−level sets every
time. That is, solutions are valid fuzzy functions
different interval for each α ∈ [0, 1]. Thus, found
solutions are solutions only in interval which they
are valid fuzzy function. That is, found solutions
are eigenfunctions only in interval which they are
valid fuzzy function.
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[10] Gültekin Çitil, H. (2019). Important notes
for a fuzzy boundary value problem. Applied
Mathematics and Nonlinear Sciences, 4(2),
305–314.
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[12] Gültekin Çitil, H. (2019). Sturm-Liouville
fuzzy problem with fuzzy eigenvalue param-
eter. International Journal of Mathematical
Modelling & Computations, 9(3), 187- 195.

[13] Liu, H.-K. (2011). Comparison results of two-
point fuzzy boundary value problems. Inter-
national Journal of Computational and Math-
ematical Sciences, 5(1), 1-7.

[14] Khastan, A., Nieto, J. J. (2010). A boundary
value problem for second order fuzzy differen-
tial equations. Nonlinear Analysis, 72, 3583-
3593.



The problem with fuzzy eigenvalue parameter in one of the boundary conditions 165

[15] Shirin, S., Saha, G. K. (2011). A new compu-
tational methodology to find appropriate so-
lutions of fuzzy equations. Mathematical The-
ory and Modeling, 2(1), 1-10.

[16] Lakshmikantham, V., Mohapatra, R. N.
(2003). Theory of Fuzzy Differential Equa-
tions and Inclusions. Taylor and Francis, Lon-
don, New York.

[17] Puri, M. L., Ralescu D. A. (1983). Differ-
entials of fuzzy functions. Journal of Mathe-
matical Analysis and Applications, 91(2), 552-
558.

[18] Bede, B. (2008). Note on “Numerical
solutions of fuzzy differential equations

by predictor-corrector method”. Information
Sciences, 178(7), 1917-1922.
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 The mosquito-borne infectious diseases like malaria and dengue are putative as 

important tropical infections and cause high morbidity and mortality around the 

world. In some cases, simultaneous coexistence of both the infections in one 

individual is seen which is very hard to distinguish as both diseases have almost 

similar symptoms. In this proposed article, dynamical system of non-linear 

differential equations is constructed with the help of mathematical modeling, 

which describe dynamics of the spread of these infectious diseases separately and 

concurrently. Basic reproduction number is evaluated to understand dynamical 

behaviour of the model. Local and global stability criteria have been deliberated 

rigorously. Control parameters are used to perceive effect of medication on these 

prevalent tropical diseases. Numerical simulations are used to observe effect of 

control parameters graphically.  
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1. Introduction 

The present era witneses the globalization of infectious 

diseases that occurs frequently by an unprecedented 

level. In this “globalized” environment of 

interdependent trade, travel, migration, and 

international economic markets, many factors now play 

an important role in the emergence and spread of 

infectious disease, which necessitates a coordinated, 

global response [17]. Mosquitoes are one of the 

deadliest insects in the world, with their ability to carry 

and spread disease to humans causes millions of deaths 

every year. Mosquito-borne infectious disease is 

accepted as one of the important tropical infections and 

is the focused topic in tropical medicine [23]. There are 

several tropical mosquito borne infections. Malaria and 

dengue are the two common mosquito infections that 

are easily spread and cause high morbidity and 

mortality for many patients around the world. Malaria 

is caused by Plasmodium parasites, which spreads 

through the bites of infected female Anopheles 

mosquitoes, called ‘malaria vectors’ [18]. Dengue is 

single positive-stranded RNA virus of the family 

Flaviviridae which is ingested by female mosquitoes 

(Aedes mosquito) during feeding [22]. The virus then 

infects the other mosquito and humans over its 

incubation period. Due to tremendous progress in 

malaria and dengue infection, the disease burden 

remains high mostly in subtropical and tropical areas 

[21]. 

Presence of infection in the body results in weakness in 

immune system, it increases the probability that 

individual gets infected by another infections. Hence 

there is a possibility that both malaria and dengue 

infection can be present in the individual at the same 

time (e.g., [4], [6], [8], [13], [21], [24], [30] or [13]). 

This scenario is called concurrent malaria-dengue 

infection. This overlapping of two different infections 

can result in more severe situations where both 

diagnosis and treatment of a patient may become 

difficult [10]. Initially, two cases of concurrent malaria 

and dengue infection were identified in July, 2005 and 

November, 2006 [4]. Malaria and dengue fever 

represent 2 major public health concerns in South 

America, whose 92% of area is covered by Amazon 

rain forest. According to the report in a French territory 

in South America, 0.99% from overall febrile patients 

are infected by malaria and dengue concurrently [4]. 

Malaria vectors and dengue vectors are habited in the 

forest [20] and in the city [7] respectively. Hence, 

overlapping of the habitat cannot be easily available 

and therefore concurrent malaria dengue infection 

cases are less in number. 

Mathematical models relevant to the concurrent 

infections helps the researchers, biologists and public 

http://www.ams.org/msc/msc2010.html
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health personnel to adopt improved and most effective 

strategies to control the diseases. Aldila D. and Agustin 

M. R. developed a nine-dimensional mathematical 

model to understand the spread of dengue and 

chikungunya in a closed population [1]. Isea R. & 

Lonngren K. E. presented two preliminary models that 

consist of the individual transmission dynamics of 

dengue, Chikungunya or Zika, and any possible co-

infection between two diseases in the same population 

[12]. Sharomi et. al. developed a deterministic model 

which incorporates many of the essential biological and 

epidemiological features of HIV and tuberculosis and 

the synergistic interaction between them [25]. Silva C. 

J. & Torres D. F. proposed a population and introduced 

optimal treatment strategies for co-infection 

transmission dynamics of TB and HIV [26]. 

Some cases are reported where patients have symptoms 

of malaria and dengue both at the same time. In such 

situations, higher mortality rate is observed. On the 

basis of this observation, a mathematical model is 

constructed in the present work. Also two optimal 

controls are applied in the model in such a way that it 

helps to analyse malaria-dengue concurrent case and 

effect of recovery rate on the disease transmission. The 

paper is organized as follows. The malaria-dengue 

model construction will be discussed in section 2. 

Section 3 focuses on formulating basic reproduction 

number for concurrent malaria-dengue infection, 

moreover the equilibrium points of the given model are 

calculated. Local and global stability of all four 

equilibrium points are proved in section 4. Optimal 

control theory is introduced and applied to the model in 

section 5. The model is analysed numerically and 

graphically in the next section which provides better 

explanation of the analytic results. 

2. Mathematical modeling 

The environmental stress also damages the immune 

system and makes the individual weak to resist various 

kinds of infections. Motivated from this concurrent 

disease problem, we have proposed a compartmental 

model to analyze the spread of malaria and dengue 

infections individually and concurrently. The model 

subdivides the human population ( )N into four 

mutually-exclusive compartments, namely susceptible 

individuals ( )S , malaria infected individuals ( )M , 

dengue infected individuals ( )D and corresponding to 

two infectious agent class of recovered individuals is

( )R . Total recruitment rate in class of susceptible at 

time t is B . Susceptible individuals are infected by 

malaria infection with transmission rate 1 . The disease 

transmission from the class of susceptible individuals 

to the class of dengue infected individuals is taken as a 

saturated form with disease transmission rate 2 and  

3  be the reciprocal of the half saturation constant. 

Therefore, from compartment S to D the disease 

transmission form is taken as 2

31

SD

D



+
. The parameter 

4  represents the rate of the malaria infection giving 

rise to the dengue infection due to weak immunity. 5  

and 6 are the rates at which the population infected by 

malaria and dengue are recovered respectively.   is 

assumed as a natural death rate and D be the dengue 

infection related death rate. 

In Figure 1 the schematic diagram of the transmission 

of disease is shown. Here a concurrent disease case in 

which individual first get affected by dengue and then 

by malaria is ignored.
 

 

Figure 1. Schematic diagram of malaria-dengue model 

On the basis these assumptions and figure 1, we 

formulate our model as: 

2
7 1

3

1 54

2
4 6

3

6 5 7

1

( )
1

D

SDdS
B R SM S

dt D

dM
SM M MMD

dt

SDdD
MD D D

dt D

dR
D M R R

dt


  



  


   



   

= + − − −
+

= − −−

= + − − +
+

= + − −

           (1) 

The initial conditions of the system (1) are (0) 0S  , 

(0) 0M  , (0) 0D  , (0) 0R  . 

3. Basic reproduction number ( 0R ) and 

equilibrium 

EnvironmentsNote that S M D R N+ + + = and all the 

compartments are taken positive. Summing all the 

equations of the system (1) gives, 

( ) ( ) 0D

d
S M D R B S M D R D

dt
 + + + = − + + + − 

Hence, ( )limsup
t

B
S M D R

→
+ + +   

Therefore, the feasible region for system (1) is: 

( ) ( )/ ;

0, 0, 0, 0

B
S M D R S M D R

S M D R



 
+ + + + + +  

 =  
     

 (2) 
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Clearly the point ( )0 0 ,0,0,0E S= , where 0

B
S


=  is an 

equilibrium point of the system (1), which is called a 

disease free equilibrium point. The model has three 

more equilibrium points as follows, 

I. Dengue free equilibrium point ( )1 1 1 1, ,0,E S M R=

where, 5

1

1

S
 



+
= , 7 1

1

1

( )k
M

 

 

+
= , 

5 1

1

1

k
R



 
=  and 

2

1 5

1

5 7

( )

( )

B
k

   

   

− −
=

+ +
 

II. Malaria free equilibrium point

( )2 2 2 2,0, ,E S M R= where, 2 2 7( )M k  = + , 

2 6 2R k= , where 

(

)
7 6 3

2

3 6 6 6

2

6 2

( ) ( ) ( )

( ) ( )

( )

D D

D D

D

B
k

B
S

B

      

         

     

+ + + + 
 
 + + + + + 

=
+ + −

and

( )
6 2

2

7 3 3 6 2

2 6

( )

( ) ( 1) ( )

D

D D

B
k

     

          

  

+ + −
=
 + + + + + 
  + 

 

III. Endemic equilibrium point 

( )* * * * *, , ,E S M D R= , where 

* 4 3 5

1

k
S

  



+ +
= , *

3D k= , 

( )7 1 3 4 3 5 1*

1 5 7

( ) ( ) ( )

( )

Dk k B
M

         

    

+ + + + + −
= −

+ +
 

1 5 3 3 4 5 1 6

1 5 5 5*

1 5 7

( ) ( )

( )

( )

Dk k

B
R

        

     

    

+ − − 
 
− + + 

= −
+ +

, 

(

) ( (

)

)

(

)

3 7 3 4 1 1 4

2

1 3 4 6 7 1 3 1 4

3 4 5 1 3 4 6

4 4 2 1 3 5 6

1 3 5 1 4 6 2 4 5

7 1 6 1 4

4 2 5 1 5

( ) ( ( ))

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) (

D

D

D

D

k Root of

z

B

z

B

         

             

         

         

            

         

       

= + + +

+ + + + +

+ + + +

+ − + +

+ + −

+ + + + −

+ − + +


6

2 5 5 1 5

)

( ) D

 

        

+

− + +

Since the threshold parameter is useful in 

characterizing the spread of an infectious disease. Here, 

we use the next generation matrix ([9], [28], [3]) to 

obtain the expression of basic reproduction number 0R  

for concurrent malaria-dengue infection. 

Let ( )X S M D R= + + + , then system (1) can be 

written as ( ) ( )X X X = −F V  such that, 

1

2
4

31

0

0

SM

SD
MD

D








 
 
 +
 +=
 
 
  

F ,

4 5

6

6 5 7

2
7 1

31

D

MD M M

D D D

D M R R

SD
B R SM S

D

  

  

   


  



+ + 
 

+ +
 
 = − − + +
 
 − − + + +
 + 

V  

Let matrices  and  are be the Jacobian of F and 

V respectively around disease free equilibrium point

0( )E : 

1

2

0 0 0

0 0 0

0 0 0 0

0 0 0 0

B

B









 
 
 
 

=  
 
 
 
 

, 

5

6

5 6 7

1 2
7

0 0 0

0 0 0

0

D

B B

 

  

   

 
 

 

+ 
 

+ +
 
 = − − +
 
 −
  

 

Here, the matrix  is related to the rate of increase of 

new individual in compartment and to the rate of the 

diseases transmission in compartments. 

The next generation matrix 1( )K −= have non 

negative eigenvalues. The basic reproduction number 

0R  for the model is the spectral radius of 1( )K −=

, which is: 

1 2
0

5 6( ) ( )D

B B
R

 

      
= +

+ + +
              (3) 

4. Stability analysis 

This section includes stability results of all the 

equilibrium points of the proposed malaria-dengue 

model. 

4.1. Local stability 

Local stability of all the equilibrium points has been 

established by following theorems. 

Theorem 1. The disease free equilibrium point 0E  of 

model is locally asymptotically stable if it satisfy 

following two conditions.  

I. 1
5

B
 


 +  
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II. 2
6D

B
  


 + +  

Proof. Jacobian matrix of the model around point 0E  is: 

( )

1 2
7

1

5

0

2
6

5 6 7

0 0 0

0 0 0

0

D

B B

B

J E

B

 
 

 


 




  



   

− − 
− 
 
 

− − 
=  
 

− − − 
 
 − − 

 

Eigenvalues of the matrix ( )0J E  are 0

1 = − , 

0 1
2 5

B
  


= − − , 

0 2
3 6D

B
   


= − − − ,  

0

4 7( )  = − + .  

Clearly all the eigenvalues are negative if 

1
5

B
 


 +  and 2

6D

B
  


 + + , hence disease 

free equilibrium point is locally asymptotically stable 

under these conditions. 

Theorem 2. The dengue free equilibrium point 1E  is 

locally asymptotically stable if it satisfy following two 

conditions.  

I. 1 5( )B    +  

II. 2 5 1( ) ( )D     +  + and 6 5B    

Proof. Jacobian matrix of the model around point 1E  

is: 

( )

1 5 2 7

4 1
1

1

1

4 1
2 6

1

5 6 7

0 0

0 0 0

0 ( )

D

n n n

n
n

J E
n

n

  






  



   

− − − − − 
 
 −
 

=  
 + − − −
 
 

− +  

 

Where, 

2

1 5 7

1

5 7

( )( )

( )

B
n

     

   

− − +
=

+ +
 and 

2 5

2

1

( )
n

  



+
= . 

Eigenvalues of the Jacobian matrix ( )1J E  are: 

1

1 = − , ( )1

2 1 2

5 7

1

2 ( )
  

   
= − −

+ +
, 

( )1 21

3

5 72 ( )

 


   

+
= −

+ +
, 

( (

))
7 1 5 1 5

1 6 5 4 2 51

4

1 5 7

( ) ( ) (1 )

( )( (1 )

( )

D B        

         


    

+ + + −

+ + + − +
= −

+ +
 

Where, 1 7 1 7( )( )B    = + + , 

( (

)
)

2

2 7 7 7 7 1

2 2

5 5 1 1 1 5 7

2

5 1 5

( ) ( ) ( ) (4 ( ) 2 )

2 ( )(4 ) ( 6 )

4 ( )

B

B B B

B

           

           

    

= + + + + −

+ + − + − +

+ − + +

Eigenvalues 1

2 and 1

3 are complex when 2 is negative, 

real part of both these eigenvalues are negative and 

when 2 is positive, real part of both the eigenvalues 1

2

and 1

3 are negative when ( )1 2 0 −  , 

 i.e ( )2

1 2 0 −   

( (

) )

2

1 2

2

7 7 7 1 5

2 2 2 2

5 1 5 5 1 5

( ) ( ) ( ) 4 ( )

8 ( ) 4 ( )

B

B B

 

          

           

−

= + + + − −

+ − − + − −

 

Hence, real part of eigenvalues 1

2 and 1

3 are negative 

when 1 5( )B    + . 

( (

)
7 4 2 5 1

1 5 1 6 1 5 2 5 51

4

1 5 7

( ) ( ) ( ) ( )

( ) ( )

( )

D

DB

          

              


    

+ − + + +

− + + + − +
=

− + +
1

4 0   when 2 5 1( ) ( )D     +  + and 6 5B  

. Clearly, all the eigenvalues are negative under these 

conditions. Hence, the theorem. 

Theorem 3. The malaria free equilibrium point 2E  is 

locally asymptotically stable if it satisfy following two 

conditions.  

I. 1 3 2

2 7 4 5

4

( )
n k

k
n


    + +  +  

II. 6n  , 6 5n   and 2 2

5 6 62n n n+   

Proof. Jacobian matrix of the model around point 2E  

is: 

( )

1 3 2

6 5 7

4

1 3 2

2 7 4 52

4

6 2 7 4 5 6

5 6 7

0 ( ) 0 0

( ) 0

0

D

n k
n n

n

n k
kJ E

n

n k n


 


    

     

   

 
− − − 

 
 

+ + − −=  
 
 − − + − − −
 

− −  

 

Where, 3 6 2( )Dn B     = + + − , 

(

)
4 7 6 3

3 6 6 6

( ) ( ) ( )

( ) ( )

D D

D D

n B

B

      

         

= + + + +

+ + + + +
, 

2 2 2
5 2

4 2 7 3( ( ) 1)

n k
n

n k



  

−
=

− + +
, 2 2 7

6

5 7 3

( )

( ) 1

k
n

n

  

  

+
=
− + +

. 

Clearly, 
2 1 3 2

1 2 7 4 5

4

( )
n k

k
n


     = + + − − is one of 

the eigen value of 2( )J E , hence characteristic equation 

is given by: 

( )1 3 2

2 7 4 5

4

( ) ( )
n k

Ch x x k x
n


     

 
= − + − + + 
 

 

Where, ( ) 3 2

1 2 3x x a x a x a = + + +  

1 7 5 6 63 Da n n   = + − + + − , 
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2 7 6 6 6 7

5 7 6

( )( ) ( )( )

( )( 2 )

Da n

n n

        

   

= + + + − + + +

+ − + −
, 

3 6 7 6 7 7 6 5

2

5

( )( ( ) ( )) ( )

( )

Da n n

n

         

 

= − + + + + −

+ −
 

( )

(

)

(

)
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−

= + + + + +
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+ − + + + + +

+ + + + + −

+ − + + + 7 6

2 2

5 6 6

)

2 ( 2 )

n

n n n + + −

 

1 3, 0a a   and 1 2 3a a a  if 6n  , 6 5n   and 

2 2

5 6 62n n n+  . Hence, by applying Routh-Hurwitz 

criteria we can say all real roots of ( )Ch x are negative 

under these conditions. 

Theorem 4. The endemic equilibrium point *E  is 

locally asymptotically stable if it satisfy following two 

conditions.  

I. 1 3 2

2 7 4 5

4

( )
n k

k
n


    + +  +  

II. 6n  , 6 5n   and 2 2

5 6 62n n n+   

Proof. Jacobian matrix of the model around point *E  

is 
*( ) [ ]ijJ E x= . 

Where,
*

* 2
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D
x M

D


 


= − − −

+
, *
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*

2
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S
x
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−
=

+
, 14 7x = , *
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22 4 1 5x D S   = − + − − , *

23 4x M= − , 24 0x = , 

*

2
31 *

3 1

D
x

D




=

+
, *

32 4x D= , 34 0x = , 41 0x = , 42 5x =  

*
*2

33 4 6* 2

3( 1)
D

S
x M

D


   


= + − − −

+
, 43 6x = , 

44 7x  = − −  

The characteristic equation of matrix *( )J E is
* 4 3 2

1 2 3 4( ) 0Ch x x b x b x b x b= + + + + = . 

Where, 1 44 33 22 11b x x x x= − − − − ,  

2 11 22 11 33 11 44 12 21 13 31 22 33

22 44 32 23 33 44

b x x x x x x x x x x x x

x x x x x x

= + + − − +

+ − +
, 

3 11 22 33 11 22 44 11 23 32 11 33 44

12 21 33 12 21 44 23 31 21 13 32 14 42

31 13 22 31 14 43 13 44 22 33 44 23 32 44

( ) ( )

( )

b x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x x

= − − + −

+ + − − −

+ − − − +

4 11 44 22 33 23 32 13 44 12 23 13 22

21 32 13 44 14 43 21 33 14 42 12 44

14 31 22 43 23 42

( ) ( )

( ) ( )

( ).

b x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x

= − + −

+ − + −

+ −

 

2 0b   when 22x , 33x are negative.  

22 0x   * *

1 5 4S D    + +  and  

33 0x  
*

*2
4 6* 2

3( 1)
D

S
M

D


   


+  + +

+
. 

3 0b  when 
* *

* 4 2
1 7 *

3

( )
1

D M
M

D

 
  


− 

+
,  

* *

2 4
7 5* 2

3( 1)

S D

D

 
 




+
 and 

*

2 7

7 6* 2

3

( )

( 1)

S

D

  
 



+


+
. 

4 11 44 22 33 23 32 13 44 12 23 13 22

21 32 13 44 14 43 21 33 14 42 12 44

14 31 22 43 23 42

( ) ( )

( ) ( )

( )

b x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x

= − + −

+ − + −

+ −

 

and 4 0b  when,  

( )
*

* * * *2
1 4 4 1 5* 2

3( 1)

S
S M D S

D


     


 − + +

+
, 

*

2 7

7 6* 2

3

( )

( 1)

S

D

  
 



+


+
, *

7 5 1 7( )S     + ,  

( )* * *

4 5 4 1 5 6M D S       − + + . 

4.2. Global stability 

To perform the global stability analysis of the disease 

free equilibrium we use the method developed by [5]. 

4.2.1. Global stability of disease-free equilibrium 

point ( 0E ) 

The model system can be written as follows: 

(0)

0 (0) (0)

(0)

0 (0) (0) 0 (0)

( , )

( , ), ( ,0) 0

dX
F X Z

dt

dZ
G X Z G X

dt

=

= =

   (4) 

Here 
0

(0) (0) 1( )X X X=   represents the number of 

uninfected individuals and   
0 0 0 3

(0) 0 1 2 3( , , )Z Z Y Y Y= 

denotes the number of infected individuals. According 

to this notation the disease-free equilibrium point is 

denoted by 0 0( ,0)E S= . 

Now as per the method given in [5], following two 

conditions will ensure global stability of the disease-

free equilibrium point. 

[H1] 
(0)

0 (0)( ,0)
dX

F X
dt

= , 0 0( ,0)E X= is globally 

asymptotically stable. 

[H2] 
0

2 3

0 (0) (0) 1 2 3 0 (0) (0)

3

ˆ( , ) ( , )
1

DS
G X Z B M B D B R G X Z

D

 



 
= + − + − 

+ 

, where 0 (0) (0)
ˆ ( , ) 0G X Z  for (0) (0)( , )X Z  . 

Here, ( )1 0 0 ,0MB D G X= , ( )2 0 0 ,0DB D G X=  and

( )3 0 0 ,0RB D G X= are matrix with non-negative off 

diagonal entries. 

Lemma 1. The fixed point 0 0( ,0)E S= is a globally 
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asymptotically stable equilibrium of the system, 

provided 0 1R  and assumptions [H1] and [H2] are 

satisfied. 

Theorem 5. For 0 1R  , the disease free equilibrium 

point is globally asymptotically stable. 

Proof. we begin by showing [H1] as 

0 (0)( ,0) [ ]F X B S= −  and
(0) ( ) ( ) 0Ch   = + = is the 

characteristic polynomial of its Jacobian matrix. Since 

the polynomial have a negative root, 0 0( ,0)E S= is 

globally asymptotically stable. 

Now, we have 

( ) ( )2 0

0 (0) (0) 1 0 7

3

2
1 0 0

3

( , ) ( )
1

( ) ( )
1

D

S
G X Z S M D R

D

D
M S S S S

D


     








 
= − + − + − + 

+ 

 
− − + − − 

+ 

 

2 3 0

1 2 3 0 (0) (0)

3

ˆ ( , )
1

DS
B M B D B R G X Z

D

 



 
= + − + − 

+ 

 

Here, 0
ˆ ( , ) 0G X Z   hence, the conditions (H1) and 

(H2) stated above are satisfied. 

4.2.2. Global stability of dengue-free equilibrium 

point ( 1E ) 

The model system can be written as 

(1)

1 (1) (1)

(1)

1 (1) (1) 1 (1)

( , )

( , ), ( ,0) 0

dX
F X Z

dt

dZ
G X Z G X

dt

=

= =

             (5) 

Here 
1 1 1 3

(1) (1) 1 2 3( , , )X X X X X=  represents the 

number of uninfected individuals and 
1

(1) 1 1( )Z Z Y=  denotes the number of infected 

individuals. According to this notation the Dengue free 

equilibrium point is denoted by 
1

1 (1)( ,0)E X= , where 

1

(1) 1 1 1( , , )X S M R= . 

The following two conditions will ensure global 

stability of the dengue-free equilibrium point: 

[H3] 
(1)

1 (1)( ,0)
dX

F X
dt

= , 
1

1 (1)( ,0)E X= is globally 

asymptotically stable. 

[H4] 2 3 1

1 (1) (1) 4 1 (1) (1)

3

ˆ( , ) ( , )
1

DS
G X Z B D G X Z

D

 


= − −

+
, 

where 
1 (1) (1)
ˆ ( , ) 0G X Z  for 

(1) (1)( , )X Z  . 

Here ( )1

4 1 (1) ,0DB D G X= is a M-matrix. 

Lemma 2. The fixed point 
1

1 (1)( ,0)E X= is a globally 

asymptotically stable equilibrium of the system, 

provided 0 1R  and assumptions [H3] and [H4] are 

satisfied. 

Theorem 6. For 0 1R  , the disease-free equilibrium 

point is globally asymptotically stable when 

4 1D S  . 

Proof. we begin by showing [H3] as 

7 1

1 (1) 1 5

5 7

( ,0)

B R SM S

F X SM M M

M R R

  

  

  

+ − − 
 

= − −
 
 − − 

 and 

3 2

(1) 1 2 3( ) ( ) 0Ch c c c   = + + + = is the  

characteristic polynomial of its Jacobian matrix.  

Where, 1 4 1 1 5 7( ) 3c D S M     = − + + + + , 

2 4 1 7 1 7 4 5

2

1 5 7

( )( 2 ) ( )( )

2 ( ) 2 ( )

c D S M D

M

       

      

= − + + + +

+ + + + +

( )3 7 4 1 1 4 5

2 3

1 5 7 1 7

( ) ( )

( ) ( ) .

c D S MD

M M

        

       

= + − + +

+ + + + +
 

(

) (

)

1 2 3 4 1

7 4 1 5 7

1 4 5 7 1 5 1

2

7 1 5 7 5

2 2 2 2

1 4 5 1 7

1 5 5 4 1 4

( )

( ) ( 2 2 4 )

( ) ( 2 ) (3 )

( 4 )( ) 2 ( 2 )

( ) ( )

( ) 2

c c c D S

D M

M D M M

M

M D S

M D DM

 

      

       

       

     

      

− = −

+ + + + +

+ + + + +

+ + + + + +

+ + + +

+ + +

1 2, 0c c  and 1 2 3 0c c c−  if 4 1D S  . 

With the help of Routh-Hurwitz criteria it is clear that 

all the roots of the characteristic polynomial have 

negative real part when 4 1D S  , hence

1

1 (1)( ,0)E X= is globally asymptotically stable under 

this condition. 

Now, 

2 1
1 (1) (1) 4 1 6

3

2
1 4 1

3

2 3 1

5 1 (1) (1)

3

( , ) ( )
1

( ) ( )
1

ˆ ( , )
1

D

S
G X Z M D

D

D
S S D M M

D

DS
B D G X Z

D


   








 



 
= + − − + 

+ 

 
− − + − 

+ 

 
= − − 

+ 

 

Here, 1
ˆ ( , ) 0G X Z   hence, the conditions (H3) and 

(H4) stated above are satisfied. 

4.2.3. Global stability of malaria-free equilibrium 

point ( 2E ) 

The model system can be written as: 

(2)

2 (2) (2)

(2)

2 (2) (2) 2 (2)

( , )

( , ), ( ,0) 0

dX
F X Z

dt

dZ
G X Z G X

dt

=

= =

             (6) 

Here 
2 2 2 3

(2) (2) 1 2 3( , , )X X X X X=  represents the 

number of uninfected individuals and 
2

(2) 2 1( )Z Z Y=  denotes the number of infected 

individuals. According to this notation the Dengue free 

equilibrium point is denoted by 
1

2 (2)( ,0)E X= , where 
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1

(2) 2 2 2( , , )X S D R= . 

The following two conditions will ensure global 

stability of the malaria-free equilibrium point: 

[H5] 
(2)

2 (2)( ,0)
dX

F X
dt

= , 
1

2 (2)( ,0)E X= is globally 

asymptotically stable. 

[H6] 
2 (2) (2) 5 2 (2) (2)

ˆ( , ) ( , )G X Z B M G X Z= − , where 

2 (2) (2)
ˆ ( , ) 0G X Z  for (2) (2)( , )X Z  . 

Here ( )1

5 2 (2) ,0MB D G X= is a M-matrix. 

Lemma 3. The fixed point 
1

2 (2)( ,0)E X= is a globally 

asymptotically stable equilibrium of the system, 

provided
0 1R  and assumptions [H5] and [H6] are 

satisfied. 

Theorem 7. For
0 1R  , the disease-free equilibrium 

point is globally asymptotically stable if

2
62

3(1 )
D

S

D


  


 + +

+
. 

Proof. we begin by showing [H5] as: 

2
7

3

2
2 (2) 6

3

6 7

1

( ,0) ( )
1

D

SD
B R S

D

SD
F X D D

D

D R R


 




  



  

 
+ − − +

 
 

= − − + 
+ 

 − −
 
 

 and 

3 2

(2) 1 2 3( ) ( ) 0Ch d d d   = + + + = is the 

characteristic polynomial of its Jacobian matrix.  

Where, 
1 7 8 9d n n n= + + , 

2 9 7 8 7 6 6( )( ) ( ) ( )D Dd n n n n      = + + + + − + +  

and
3 7 9 9 6 8 9( )( )Dd n n n n n     = − + + +  

where, 2
7

31

D
n

D





= +

+
, 

 2
8 62

3(1 )
D

S
n

D


  



−
= + + +

+
 and

9 7n  = + . 

( )
1 2 3 7

7 8 6 6 9

7 8 9 8 9 7 8

2

7 9 7 9 8 8 9

( )

( )( ) ( )

( ) ( )

( ) ( )

D

d d d n

n n n

n n n n n n n

n n n n n n n



    





− = −

+ + + + +

+ + + +

+ + + +

 

Clearly, 
7n   hence

3 0d  and
1 2 3 0d d d−  . 

1 0d 

if 2
62

3(1 )
D

S

D


  


 + +

+
. 

With the help of Routh-Hurwitz criteria it is clear that 

all the roots of the characteristic polynomial have 

negative real part, hence
1

2 (2)( ,0)E X= is globally 

asymptotically stable. 

Now, 

( )

( )

2 (2) (2) 1 2 4 2 5

1 2 4 2

( , )

( ) ( )

G X Z S D M

S S D D M

   

 

= − − −

− − + −
 

5 2 (2) (2)
ˆ ( , )B M G X Z= −  

Here, 2
ˆ ( , ) 0G X Z   hence, the conditions (H5) and 

(H6) stated above are satisfied. 

4.2.4. Global stability of endemic equilibrium 

point (
*

E ) 

We analyze global stability of an endemic equilibrium 

point through a geometric approach described in [16], 

[27] and [15]. To use this method let we modify our 

system (1) as follow: 

7 6 5 2
1

7 3

1 54

2
4 6

3

( )

( ) 1

( )
1

D

D M SDdS
B SM S

dt D

dM
SM M MMD

dt

SDdD
MD D D

dt D

   
 

  

  


   



+
= + − − −

+ +

= − −−

= + − − +
+

(7) 

Let 
3K  be a simply connected open set and

1( )f C K . Further suppose that ( )t  be a solution to 

the following system, 

( )x f x =                                                                        

(7)Suppose ( )P x  be a matrix valued function on K

and let
1 [2] 1

fQ P P PM P− −= + . 

Here, the matrix fP is: 

( )
( )

( ) . ( ) . ( )
ij

ij ijf

P x
P x f x P f x

x

 
= =  

 
. 

Jacobian matrix of an arbitrary point is [ ]ijM c= : 

Where, 2
11 1

31

D
c M

D


 


= − − −

+
, 7 5

12 1

7

c S
 


 

= −
+

,  

( )
7 6 2

13 2

7 31

S
c

D

  

  
= −

+ +
, 

21 1c M= ,
23 4c M= − , 

22 1 4 5c S D   = − − − , 2
31

31

D
c

D




=

+
, 

32 4c = , 

( )
2

33 4 62

3

( )
1

D

S
c M

D


   


= + − − +

+
. 

The second additive compound matrix obtain from the 

Jacobian matrix M is
[2]M , 

( )
7 62

10 4 2

73

[2] 7 5

4 11 1

7

2
1 12

3

1

1

S
n M

D

M n S

D
M n

D

 


 

 
 

 






 
− − ++ 

 
= − 

+ 
 
 −

+  

 

Where 2
10 1 4 5 1

3

2
1

D
n S D M

D


    


= − − − − −

+
,  
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( )
2 2

11 4 6 12

33

2
11

D

S D
n M M

DD

 
    


= + − − − − −

++

, and 

( )
2

12 1 4 5 4 62

3

2
1

D

S
n S D M

D


      


= − − + + − − −

+

Next, consider the following system: 

( )( )
dz

t z
dt

=   (8) 

And if (8) is stable then also the second compound 

equation ( )[2] ( )
dz

M t z
dt

= is stable, moreover

belong to a set in which 
1P−

 is bounded. A set K is 

absorbing with respect to (7) if solution exist for all 

0t   and 1( , )x t K K  for all t , where 
1K  is any 

bounded subset of K . 

To prove global stability through this approach we use 

techniques developed in [19]. 

Let, 3

1
P I

D
= , where 

3I is an identity matrix of order 

3. Hence, 
1

3f

D
P P I

D

− 
= − . 

Next, 
1 [2] 1

fQ P P PM P− −= +  

( )
7 62

10 4 2

73

7 5

4 11 1

7

2
1 12

3

1

1

SD
n M

D D

D
n S

D

D D
M n

D D

 


 

 
 

 






 
− − − ++ 

 
= − − 

+ 
 
 − −

+  

 

Where, 

( ) 2
10 1 4 5 1 4 6

3

( )

1
D

S DD
n S D M

D D


       



 +
− = − − − − + − − −

+
 

( )
3 2 2

11 12

33
11

SD DD
n S

D DD

  
 




− = − − −

++
 and  

( )
3 2

12 1 4 52

31

SDD
n S D

D D

 
   



 −
− = + − − −

+
. 

Let we define the following norm function as described 

in [2] for some ( )1 2 3, ,z z z z= . 

 

 
1 3 2 3 2 3

1 3 2 2 3

max , 0

max , 0

z z z z if z z
z

z z z if z z

 + + 
= 

+ 

 

Now we explore the existence of some 0  , so that

D z z+  − . In this situation we have to analyses 

all eight possible cases. 

 

Case 1 If 
1 2 30 , ,z z z and 1 3 2 3z z z z+  + then

1 3z z z= + and ( )1 3 1 3D z D z z z z+ +
 = + = +  

 ( )

 

( )

 

( )

1 4 5 1 4

2
6 1 4 2

3

7 62 2
3 12

7 33

1 2

2 3

1 4 5 32

3

( )

1

11

1

D

D z S D M

S D
z M z

D

S D
z z

DD

M z

SD
S D z

D

     


  



  

  



 
   



+ = − − − − +

+
− − − + −

+ 

   
+ − + −   

+ ++    

+

 −
+ + − − − 

+  

 

( )

  

( )



2
1 4 5 1 4

3

6 1 1 4 2

2 3 7 6

1 42

73

5 3

( )

1

(1 )

1

D

S D
S D M

D

z M M z

S D
S D

D

z


     



   

   
 

 

 

 +
 − − − − + −

+

− − + −

 −
+ − + −

++

− −

 

Since 1 2z z , we get 


( )



2
1 4 5 4

3

2 3 7 6

6 1 2

73

1 4 5 3

( )

1

(1 )

1
D

S D
S D M

D

S D
z

D

S D z


    



   
 

 

   

 +
 − − − − −

+

 −
− − + −

++

+ − − −

 

( )



2
1 4 5 4

3

2 3 7 6

6 1 42

73

5

( )
max

1

(1 )

1
D

S D
D z S D M

D

S D
S D

D

z


    



   
   

 

 

+

 +
 − − − − −

+

−
− − − + −

++

− −

 

Case 2 If 
1 2 30 , ,z z z and 1 3 2 3z z z z+  + then

2 3z z z= + and 2 3D z z z+
 = +  

 

 

( )

2 3 2
4 1 1 2

3 3

7 5 2

1 3 1 1 2

7 3

2 3

1 4 5 32

3

1 1

1

1

SD D
D z z M z

D D

D
S z z M z

D

SD
S D z

D

  
  

 

  
 

  

 
   



+

 
= + − − − − 

+ + 

   
+ − + − +   

+ +   

 −
+ + − − − 

+  

 

( )

2 32 2
4 1 2

3 3 3

7 5 2 3

4 5 32

7 3

1 1 1

1

SDD D
z z

D D D

SD
D z

D

  
 

  

   
  

  

   
 − + − − −   

+ + +   

 
+ − − − − 

+ +  
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Since 1 2z z , we get 

( )

2 32
4 2

3 3

7 5 2 3

4 5 32

7 3

1 1

1

SDD
D z z

D D

SD
D z

D

 
 

 

   
  

  

+

 
 − − − 

+ + 

 
+ − − − − 

+ +  

 

( )

2 3 7 52
4

3 3 7

2 3

4 52

3

max ,
1 1

1

SDD
D z

D D

SD
D z

D

   
 

   

 
  



+


 − − −

+ + +


− − − − 

+ 

 

Case 3 If 
1 2 30 ,z z z  and 1 3 2 3z z z z+  + then

1 3z z z= + and 1 3D z z z+
 = − +  

 ( )

 

( )

  ( )

1 4 5 1 4

2
6 1 4 2

3

7 62 2
3 12

7 33

2 3

1 42

1 2 3 3

5

( )

1

11

1

D

D z S D M

S D
z M z

D

S D
z z

DD

SD
S D

M z D z

     


  



  

  

 
 

 

 

+ = − + + + + +

+
+ + + +

+ 

   
+ − + + −   

+ ++    

− 
+ − 

+ + + 
 − − 

 

 ( )

 

( )

1 4 5 1 4

2
6 1 1 4 2

3

7 6 2 3

1 42

7 3 3

5

1

(1 )

1

D

S D M

S
z M M z

D

S D
S D

D z

     


   



   
 

  

 

 − + + + + +


+ + + + +

+ 

+ 
− + − ++ + 

 − − 

 

Since 1 2z z , we get 

( )

( )

1 4 5 1 4

12
4 6

3

7 6 2 3

12

7 3 3

4 5

2

1

(1 )

1

D

S D M

zS
M

D

S D
S

D z

D

     


  



   


  

  

− + + + + + 
 

  + + + +
 + 

+ 
− + ++ + 

 − − − 

 

 ( )

( )

1 4 1 45

2
4 6

3

7 6 2 3

1 4 52

7 3

max 2

,
1

(1 )

1

D

D z z S D M

S
M

D

S D
S D z

D

     


  



   
   

  

+  − + + + + +

+ + + +
+

+ 
− + − − − 

+ + 

 

Case 4 If 
1 2 30 ,z z z  and 1 3 2 3z z z z+  + then

2 3z z z= + and 2 3D z z z+
 = +  

  2 3 2
4 1 1 2

3 31 1

SD D
D z z M z

D D

  
  

 
+

 
= + − − − − 

+ + 
 

 

( )

7 5 2
1 3 1 1 2

7 3

2 3

1 4 5 32

3

1

1

D
S z z M z

D

SD
S D z

D

  
 

  

 
   



   
+ − + − +   

+ +   

 −
+ + − − − 

+  

 

( )

2
4 1

3

2 3 2

2

3 3

7 5 2 3

4 5 32

7 3

1

1 1

1

D
z

D

SD D
z

D D

SD
D z

D






  


 

   
  

  

 
 − 

+ 

 
+ − − − 

+ + 

 
+ − − − − 

+ +  

 

Since 1 2z z , we get 

( )

2 32
4 2

3 3

7 5 2 3
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Case 5 If 
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Since 1 3 2z z z+  , we get 
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Case 6 If 
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then 2z z= and 
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Case 8 If 
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Combining all the eight cases, we got four independent 

inequality which are used in following theorem that 

proves the global stability of endemic eqilibrium point. 

Theorem 8. For
0 1R  , the endemic equilibrium point

*E is globally asymptotically stable if the following 

inequality holds 
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And  is a positive number. 
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5. Optimal control 

Mosquitoes are the most prolific killers of humans in 

the animal kingdom. One of the most ancient and 

deadly diseases that mosquitoes transmit are malaria 

and dengue. It has been hypothesized due to influences 

on immune responses that infection with malaria can 

alter to the course of infection of the dengue. An 

effective way to protect the people from dengue who 

are already affected by malaria is to control vector. 

Also medication pays a major role to control spread of 

vector borne diseases. 
In present dynamical model, two bounded Lebesgue 

integrable controls are introduced say
1u and

2u . 
1u  

control is to minimize concurrent infection cases by 

vector control and 
2u  is a treatment control which helps 

to improve recovery rate. After applying control system 

(1) will take form as follow: 
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The objective function ( , )iJ u  for the mathematical 

model along with the optimal control is given by: 

2 2 2 2 2 2

1 2 3 4 1 1 2 2
0

( )
T

J A S A M A D A R w u w u dt= + + + + +  

Here, denotes set of all compartmental variables.
iA

are small positive constants to keep a balance in the size 

of the respective compartments.
1w and

2w are positive 

weight parameter which is associated with the control

1u and
2u . The objective of our work is to maximize the 

total number of recovered individual by optimizing 

control variables
1u and

2u .  

As, the weight parameters 
1w and 

2w  are constant of 

the control rates applied as vector control and treatment 

control, from which the optimal control condition is 

normalized. Now, we will calculate the values of 

control variables from 0t =  to t T=  such that 

( )  1 2 1 2( ), ( ) ( , ) / ( , )iJ u t u t optimum J u u u =    

Where   is a smooth function on the interval [0,1] . The 

optimal controls denoted by *

1u and *

2u  are founded by 

accumulating all the integrands of equation (4) using 

the lower bounds and upper bounds respectively with 

the results of Fleming and Rishel [11].  

 

 

 

 

 

 

 

 

To optimize controls using the Pontryagin’s principle 

we construct a Lagrangian function consisting of state 

equations and adjoint variables 
1 2 3 4, , ,     as follows: 
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The partially differentiation of the Lagrangian function 

with respect to each compartmental variable gives the 

adjoint equation variables 
1 2 3 4( , , , )iA    =  

corresponding to the system: 
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The necessary conditions for Lagrangian function L  to 

be optimal are, 
1 0u =  and 

2 0u = . Hence we get, 

( )1 2 3

1

1

2
u M

w
 = − , ( )2 3 4

2

1

2
u D

w
 = −  

Formulated required optimal controls are: 

( )2 3*

1 1 1
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2

M
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( )3 4*

2 2 2
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D
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  −  
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Thus, analytical results for optimized controls have 

been visualised in simulation part. 
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6. Numerical simulation 

Bifurcation analysis helps to demonstrate the 

qualitative information about the equilibrium point. 

Figure 2 shows backward bifurcation diagram where 

0.12CR =  is a critical point from which system’s 

stability switches from unstable to stable state. If 

0CR R , then for the point of 
0R  backward bifurcation 

exists, moreover equilibrium coexist when 
0 1CR R   

[14], [29]. 

 

Figure 2. Bifurcation diagram for dengue infected 

individuals with 
0R  

 

Figure 3. Time series of solution of malaria-dengue model 

Figure 3 shows the flow of malaria-dengue model with 

time. It is observed that human immunity is more 

sensitive towards dengue compare to malaria infection 

moreover compare to dengue, recovery rate of malaria 

is higher. Hence we can say that medication is more 

effective on malaria infected compare to dengue 

infected. Compare to dengue, spread of malaria is easy 

to control by improving medication. Under proper 

medication both the diseases can be controlled in 7-8 

weeks. 

 

Figure 4. Variation in control variables with time 

Figure 4 shows change in both the control variables 

needs to be done to stabilize the model. It is observed 

that initially 35% and 13%,
1u and

2u  controls are 

needed to be applied respectively. 

 

Figure 5. Change in objective function with time 

Figure 5 gives change in objective function under 

influence of both the controls combine and individually 

which gives combine and individual effect of both the 

controls on malaria-dengue model. It is clearly visible 

that combine effect of controls gives more fruitful 

effect on the model compare to an individual effect. 

 

Figure 6. Impact of  
1u  control on class of malaria infected 

individuals 

The simulation in figure 6 interprets that that chances 

to get infected by malaria decreases by 50% after 

applying control
1u . 

 

(a) Impact of 
1u control 
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(b) Impact of 
2u control  

 

(c) Impact of both the controls 

Figure 7. Impact of controls on class of dengue infected 

individuals 

From figure 7(a) and 7(b), it is clear that for class of 

dengue infected individuals
2u control is more effective 

compare to
1u control moreover it is visualised in figure 

7(c) that combine effect of both the control is even 

more effective which shoews only medication is not 

enough to minimize dengue infaction case, different 

acts which minimize concurrent infaction case also 

have a significant effect. 

 

(b) Impact of 
1u control 

Figure 8 shows separate and combine effect of both the 

controls on class of recovered individuals. From figure 

8(c) we can observe better improvement in recovered 

class after applying both the controls at the same time. 

About 61% improvement is observed in recovery rate 

white applying both the control together. 

 
(b) Impact of 

2u control  

 

(c) Impact of both the controls 

Figure 8. Impact of controls on class of recovered 

individuals 

Also figure 8(a) and 8(b) deplicate that compare to 
1u  

control, 
2u control gives better result which suggest 

that madication plays a major contribution to control 

the concurrent infection. Hence better medication 

facility and avaibility is good approach to control 

outbreak of malaria-dengue infections in endemic 

areas. 

7. Conclusion 

The fight against most deadly mosquito-borne diseases 

malaria and dengue is a challenge to the world. In the 

present study, the system of dynamical model for two 

different mosquito borne diseases is studied through the 

use of mathematical modeling. Moreover, Optimal 

control theory is also applied on the model to visualise 

the effect of controles on it. The model have four 

equilibrium points for four different possible cases 

including disease free society, case when only one 

individual infection is present  and the case when both 

the diseases are present concurrently in society. It is 

proved that all four equilibrium points are local and 

globally asymptotically stable under some parametric 

conditions. The formula of basic reproduction number

0( )R  used to calculate threshold value of the model. In 

this article, the basic reproduction number is 

formulated for malaria and dengue combinely, hence it 
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is unaffected by parameter 4 . Threshold value 

increases as value of parameters 1 and 2 is increases, 

and it decreases as 5 and 6 increases. Which simply 

means threshold value can be controled by improving 

recovery rates of both the diseases. Bifurcation analysis 

indicates that minimum rate of diseases spread is 12%. 

Threshold value signifies that there is 14.9% chance to 

get infected by malaria and dengue concurrently. In 

numerical simulation we have observed the effect of 

optimal controls individually as well as concurrently 

and more stability is observed when we apply both the 

controls at same time. Also it is analysed that 61% 

improvement in recovery rate is observed under the 

effect of both optimal controls, which suggest that 

vector control by using insecticide, treated mosquito 

nets and indoor residual spraying and medication to 

improve recovery are the main way to prevent and 

reduce malaria and dengue transmission. 
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 In the last few decades, stiff differential equations have attracted a great deal of 

interest from academic society, because much of the real life is covered by stiff 

behavior. In addition to importance of producing model equations, capturing an 

exact behavior of the problem by dealing with a solution method is also handling 

issue. Although there are many explicit and implicit numerical methods for solving 

them, those methods cannot be properly applied due to their computational time, 

computational error or effort spent for construction of a structure. Therefore, 

simulation techniques can be taken into account in capturing the stiff behavior. In 

this respect, this study aims at analyzing stiff processes through stochastic 

approaches. Thus, a Monte Carlo based algorithm has been presented for solving 

some stiff ordinary differential equations and system of stiff linear ordinary 

differential equations. The produced results have been qualitatively and 

quantitatively discussed. 
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1. Introduction 

Differential equations are used to model real-life 

systems by conserving their physical structures. There 

are different types of differential equations which have 

been named by according to their characteristics. Stiff 

differential equations are one of those. While 

developing a model of a system, it is necessary to 

consider suddenly occurred reactions with small time 

steps without neglecting that the system continue to 

behave over the whole-time interval. Stiff equations 

represent unstable behaviors for very small values. In 

other words, a model contains a point which decays or 

grows very rapidly than others. Despite natural 

restrictions of physical systems represented by stiff 

Ordinary Differential Equations (ODEs), they are 

commonly used in modelling various problems, 

through chemical reactions, while creating electrical 

circuits or studying in control theory etc. Not only 

modelling a stiff behavior but also solving the model 

accurately play a key role for capturing real-life 

behavior. 

Stiffness was firstly named by Curtiss and Hirschfelder 

[1] in 1952. Although this explanation leads to be 

realized that almost all real-life problems include stiff 

property, the first efficient algorithm for solving the 

model equations was suggested relatively late, in 1976 

by Shampine and Gear [2]. Finding exact solution for 

stiff problems is generally limited to simple cases and 

conventional numerical methods have to be 

reconstructed with small time steps for these types of 

problems. However, the increased number of steps 

might possibly cause an accumulation of error. This 

fact gives rise to a necessity of alternative approaches 

for stiff equations. In the last few decades, various 

implicit and explicit methods related to stiffness have 

been developed. 

The explicit methods find a solution by using the 

current time information to produce later time 

information. However, implicit ones use the current 

and later time information at the same time. While 

analyzing stiff behavior, it should be taken into 

consideration how much small changes in the current 

time information affects the later time. Explicit 

methods generally do not work efficiently for catching 

the changing behavior in small step sizes or if they do, 

it converges very slowly than expected [3]. If the initial 

conditions cause a divergence in the solution, an 

explicit method requires impractically small step sizes 

to control the convergence. Although the implicit ones 

need more computation and requires sensitive 

implementations, they are properly applied to many 

stiff problems.  

http://www.ams.org/msc/msc2010.html
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Even though an application area of numerical methods 

has a broad range, they are occasionally suffering from 

their restrictions. They may be seen to be efficient for 

the aim of the solving the problems iteratively, but 

these methods cannot be a first choice considering their 

computational time, computational error or effort spent 

for construction of a stiff structure. At this point, new 

approaches such that simulation techniques emerge by 

paying attention to these corresponding issues [4-5]. 

The Monte Carlo Method (MCM) is one of the basic 

simulation techniques [6-8]. It has been generally 

defined as a random sampling method for solving any 

model. Since this method uses basically random 

variables to represent the behavior of physical 

processes, it is classified as a stochastic approach.  

The MCMs can be applied to a wide range of problems 

in three different ways; sampling, estimation and 

optimization [9-10]. This classification depends on aim 

and a way of building algorithm. If a researcher wants 

to use simulation to mimic the nature of the system by 

creating objects or unreal systems, sampling methods 

are more useful than the rest. Therefore, random 

sampling and estimation techniques are used in this 

study to observe the behavior of the stiff differential 

equations. 

2. Implementation of the method 

The main intention of this study is to capture the exact 

behavior of stiff differential equations by using 

simulation techniques. To achieve this, differential 

equations are described by using integrals since the 

Monte Carlo integration is based on random sampling 

[11-13]. This randomness comes from uniformly 

distributed pseudorandom numbers selected by a 

sample space. The method is named by rejection 

sampling which is used for generating random 

variables 𝑋 with density function 𝜌. The main 

advantage of using rejection sampling is that sampling 

can be used even if the density function cannot be 

integrated analytically. 

Let us then consider any first order differential equation 

in an implicit form: 

𝑑𝑦

𝑑𝑥
= 𝐹(𝑥, 𝑦) (1) 

where function 𝐹 represent an arbitrary function with 

variables. After modifying the equation in this form, the 

algorithm needs a reference number which is chosen to 

do comparison in the related steps of the algorithm. The 

first reference number is generated by using initial 

conditions 𝑋0 and 𝑌0 and this number should be revised 

for each iteration. The step size is determined by 

dividing uniformly the interval to 𝑚 points. Let us call 

this reference number as Classification Number (CN) 

defined as follows 

𝐶𝑁 ∶=  
𝑑𝑌

𝑑𝑋
= 𝐹(𝑋𝑛 , 𝑌𝑛) (2) 

where 𝑛 = 0,1, … , 𝑚. 

Next step, determination of upper and lower bounds for 

generating random numbers is expected to lead to more 

accurate estimation. The estimation can be made under 

the consideration of the physical realities of the 

problem. These bounds are determined by initial 

conditions. After determining an upper and a lower 

bound, random numbers can be created according to 

these bounds for making a comparison with the CN. To 

create random numbers, rand function of MATLAB 

can be used. This function generates different 

pseudorandom numbers between 0 and 1. They are 

known as pseudorandom since even if they act as a 

random number they are generated according to some 

artificial algorithm by the function. These random 

numbers between 0 and 1 are extended to the interval 

which determined by upper and lower bounds. 

Then the comparison starts with created N positive 

random variables and N negative random variables by 

using rand function with respect to the CN of the 

algorithm. The way of implementation is given in the 

following pseudocode. 

 

Pseudocode: Monte Carlo Based Algorithm for ODEs 

1. Consider the differential equation 
𝒅𝒀

𝒅𝑿
 as a function 𝑭(𝑿, 𝒀) and 

initial conditions as 𝑿𝟎 and 𝒀𝟎. 

2. Define ∶=  
𝒅𝒀

𝒅𝑿
= 𝑭(𝑿𝒏, 𝒀𝒏) . 

3. Find the upper and lower boundaries, U and L, for the 
classifying random numbers.  

4. Create N random numbers. 

5. Initialize 𝑿 = 𝑿𝟎 and 𝒀 = 𝒀𝟎 

6. while (𝑿 < 𝑿𝒇) 

7.      𝐶𝑁 = 𝐹(𝑋, 𝑌) 

8. if 𝑪𝑵 ≥ 0 then 

    S ← the value of the random numbers ≤ 𝑪𝑵 

          𝒀𝒌+𝟏 ← 𝒀𝒌 + 𝑼
𝑺

𝑵
∆𝑿 

9. Else 

    S ← the value of the random numbers ≥ 𝑪𝑵 

         𝒀𝒌+𝟏 ← 𝒀𝒌 − 𝑳
𝑺

𝑵
∆𝑿 

10. end if 

11. end while 

3. Illustrative examples 

In this section, the predicted results of various 

differential equations by applying the current algorithm 

have been illustrated. In the examples, 100000 random 

samples are chosen for each iteration in the algorithm 

and the increment of time is taken to be 0.001. To 

justify the predicted results, comparison is made with 

both the ode23s based on a modified Rosenbrock 

formula of order 2 and the fourth order Runge-Kutta 

Method (RK4) as well as available analytical solutions. 

The two results are compared with each other by using 

the absolute error. Qualitative and quantitative 

behaviors have been exhibited by comparing with 

computational costs in detail. To compute the results, 

the codes have been produced in MATLAB 2018a 
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installed on a computer which has the properties of 2.3 

GHz intel core i5 and 16 GB ram. 

3.1. Example 1 

Let us consider a first order stiff ODE with an initial 

condition, 

𝑑𝑦

𝑑𝑡
= −1000𝑦 + 3000 − 2000𝑒−𝑡 , 𝑦(0) = 0. (3) 

The exact solution of the differential equation is: 

𝑦(𝑡) = 3 − 0.998𝑒−1000𝑡 − 2.002𝑒−𝑡. (4) 

The Monte Carlo based algorithm is applied to 

Equation (3) by dividing the time axis uniformly. 

Qualitative results including the solution produced by 

the proposed algorithm, the exact solution and the 

absolute errors have been illustrated in Figure 1. The 

corresponding numerical results can be seen in Table 1.  

It can be easily observed in Figure 2 that the stiffness 

occurs between the points 0 and 0.006, near to initial 

value. The initial deviation dampens fast due to the 

large value of coefficients. Despite the fact that each 

trial uses different set of random numbers to predict the 

results, each trial indicates the common feature at this 

stiff point. So the quantitative results are also close to 

each other. Even though quantitative results have 

slightly little deflections, qualitative results can be seen 

in good agreement with the exact results. 

 
Figure 1. Comparison of the MC prediction and the exact 

solution of equation (3) 

Computational time of the proposed algorithm is 

0.5548 s for this set of trial. Moreover, the accuracy is 

expected to be improved by reasonably decreasing the 

step size of the interval. However, the small step size 

leads a large number of comparisons in the algorithm, 

so that increasing the computational cost. Even if there 

are higher computational costs for some complex 

problems, it is seen that the proposed algorithm is the 

accurate solver as one of the simulation techniques. 

 

 

Table 1. Numerical results of Equation (3) 

Time t 
Predicted 

Results 

Exact 

Results 

Absolute 

Errors 

0.0005 0.49991771 0.39368315 0.10623456 

0.0010 0.75242301 0.63285732 0.11956569 

0.0015 0.87872659 0.77831685 0.10040974 

0.0020 0.94166335 0.86693539 0.07472796 

0.0025 0.97329583 0.92107792 0.05221791 

0.0030 0.98957043 0.95430951 0.03526092 

0.0035 0.99823965 0.97485776 0.02338189 

0.0040 1.00283457 0.98771300 0.01512157 

0.0045 1.00556209 0.99590198 0.00966011 

0.0050 1.00740685 1.00126055 0.00614630 

0.0100 1.01789819 1.01787492 0.00002327 

0.0150 1.02777839 1.02780559 0.00002720 

0.0200 1.03761332 1.03764225 0.00002893 

0.0250 1.04739166 1.04742956 0.00003789 

0.0500 1.09561564 1.09563869 0.00002305 

0.2500 1.44096991 1.44084083 0.00012908 

1.0000 2.26347104 2.26350536 0.00003432 

 

 

 

Figure 2. A closer view of Figure 1 

3.2. Example 2 

Let us now take a first order stiff ODE with an initial 

condition, 

𝑑𝑦

𝑑𝑡
= −1000𝑦 + sin 𝑡 , 𝑦(0) = 1/1000001. (5) 

Exact solution of the differential equation is then 

𝑦(𝑡) =
1000 sin 𝑡+cos 𝑡

1000001
. (6) 

The proposed algorithm is applied to Equation (5) by 

dividing the time axis uniformly. The comparison of 

predicted results with the analytical solution of 

Equation (5) is given Figure 3 and the corresponding 

absolute errors are shown in Figure 4. Quantitative 

results of Equation (5) are exhibited in Table 2.  
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Unlike Example 1, from Figure 3 it can be seen that the 

solutions already computed are much closer to the exact 

solution for all points in the range. It can be seen from 

the absolute errors that the results are very accurately 

predicted by the current algorithm. Computational cost 

of the present algorithm is 0.2913 s for this set of trial. 

Even if the computational time of the algorithm seems 

to be higher than its rivals depending on random 

numbers, its accuracy level is relatively in good 

agreement with available analytical solution.  

 

Figure 3. Comparison of the MC Prediction and the exact 

solution of equation (3)  

 
Table 2. Numerical results of the first order stiff differential 

equation (5) 

Time t 
Predicted 

Results 

Exact 

Results 

Absolute 

Errors 

0.0100 0.00000922 0.00001100 0.00000178 

0.0500 0.00004920 0.00005098 0.00000178 

0.1000 0.00009904 0.00010083 0.00000178 

0.2000 0.00019788 0.00019965 0.00000177 

0.3000 0.00029473 0.00029648 0.00000174 

0.4000 0.00038866 0.00039034 0.00000168 

0.5000 0.00047870 0.00048030 0.00000161 

0.6000 0.00056397 0.00056547 0.00000150 

0.7000 0.00064363 0.00064498 0.00000135 

0.8000 0.00071679 0.00071805 0.00000126 

0.9000 0.00078283 0.00078395 0.00000111 

1.0000 0.00084103 0.00084201 0.00000098 

3.3. Example 3 

Now take a first order stiff differential equation system 

with initial conditions 

 

𝑑𝑥

𝑑𝑡
= −80.6𝑥 + 119.4𝑦,            𝑥(0) = 1 

𝑑𝑦

𝑑𝑡
= 79.6𝑥 − 120.4𝑦,                𝑦(0) = 2 

(7) 

 

 

 

Figure 4. Absolute Errors of Equation (5) 

The Monte Carlo based algorithm is applied to 

Equation (7) by dividing the time axis uniformly. The 

comparison of the results of the current algorithm with 

the ode23s results and a closer view can be seen in 

Figures 5 and 6, respectively. The corresponding 

differences are illustrated in Figure 7. Quantitative 

results of Equation (7) are exhibited in Table 3. 

As seen in the corresponding figures, the deviations 

originating near to the initial conditions have arisen 

rapidly. Two different equations behave separately; one 

is increasing while the other one is decreasing. Though 

the solution remains close to the referenced solution 

curves in a large scale of vertical axis, the deviations 

may occur. However, the qualitative and quantitative 

results can be seen in good agreement with the ode23s 

results. 

Even though ode23s is commonly accepted as one of 

the most suitable methods for properly capturing stiff 

behavior, the current method is seen to be as suitable as 

the ode23s. To support this, another suitable method, 

RK4 can be applied to this example. The difference 

between results of the simulation technique and the 

RK4 results are seen to be relatively small. Therefore, 

it has been claimed that the approach has ability to 

capture the stiff behavior. The predicted results have 

reasonable agreement with the results of ode23s and 

RK4 according to the Figure 8 and Table 3 and the 

differences between the predicted and ode23s 

solutions. 

The computational costs of the current algorithm, 

ode23s and RK4 are 0.4214, 0.0180 and 0.1835 s, 

respectively. Despite the relatively higher 

computational cost of the proposed algorithm, the rest 

of its advantages is taken us to see attractiveness of the 

approach. In this respect, the computational cost can be 

sacrificed in simulation techniques in case of especially 

discrete and continuous methods have serious lack of 

accuracy or not existing solution for intricate problems. 
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Figure 5. Comparison of the MC prediction results and the 

ode23s results of the first order stiff differential equation 

system (7) 

 

Figure 6. A closer view of Figure 5 

 
Figure 7. Differences between the MC prediction results 

and the ode23s results of Equation (7) 

 
Figure 8. Comparison of the MC results with the ode23s 

and RK4 results for the system of differential equations (7) 

 

Table 3. Comparison of the predicted results with the ode23s and RK4 results 

Time 𝒕 

Predicted 

results for 

𝒙(𝒕) 

ode23s 

solutions for 

𝒙(𝒕) 

RK4 

solutions for 

𝒙(𝒕) 

Predicted 

results for 

𝒚(𝒕) 

ode23s 

solutions for 

𝒚(𝒕) 

RK4 

solutions for 

y(𝒕) 

0.0010 1.15799020 1.14321714 1.15199238 1.83863000 1.85378436 1.82952707 

0.0050 1.52630360 1.49780400 1.50433322 1.45274000 1.48723344 1.42945587 

0.0100 1.69183400 1.67488571 1.66003934 1.26965000 1.29526379 1.24329043 

0.0500 1.70742880 1.71222798 1.67279687 1.13853200 1.14145986 1.11337548 

0.1000 1.62454282 1.62871297 1.59577436 1.08315800 1.08581070 1.06410479 

0.2000 1.46892028 1.47366156 1.45219073 0.97910000 0.98244072 0.96835941 

0.3000 1.32774952 1.33336946 1.32152638 0.88512200 0.88891302 0.88122894 

0.4000 1.20073072 1.20643333 1.20261887 0.80063000 0.80428888 0.80193825 

0.5000 1.08589966 1.09158143 1.09441035 0.72404000 0.72772096 0.72978193 

0.6000 0.98283910 0.98766339 0.99593815 0.65544800 0.65844226 0.66411805 

0.7000 0.88987552 0.89363829 0.90632622 0.59349800 0.59575886 0.60436243 

0.8000 0.80615050 0.80856434 0.82477734 0.53775800 0.53904289 0.54998347 

0.9000 0.73031200 0.73158939 0.75056602 0.48726200 0.48772626 0.50049739 

1.0000 0.66218674 0.66193829 0.68303204 0.44193800 0.44129220 0.45546393 
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4. Conclusions and recommendations 

In this study, a Monte Carlo based stochastic algorithm 

has been developed to discover the behavior of real-

world processes governed by stiff differential 

equations. All qualitative and quantitative results 

produced by the present algorithm have been seen to be 

in good agreement with the real environment. Despite 

the effect of randomness to error, the current procedure 

has been seen to produce highly acceptable results. 

Even if reconstructing the conventional methods with 

small time steps for stiff problems is affordable, 

simulation techniques can be better choices for 

challenging problems. In real-life problems, when there 

are sudden deviations in the consequences of random 

movements, it is necessary to consider the current 

stochastic approach that can handle the rapidly 

changing behavior. 
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 The Weapon-Target Assignment (WTA) problem is one of the most important 

optimization problems in military operation research. In the WTA problem, assets 

of defense aim the best assignment of each weapon to target for decreasing 
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1. Introduction 

Weapon-Target Assignment (WTA) problem is one of 

the most important optimization problems in military 

operation research. The WTA problem has two 

versions as the static weapon-target assignment 

problem (SWTA) and the dynamic weapon-target 

assignment problem (DWTA). The main difference 

between the SWTA and the DWTA is the timing of 

launching weapons to targets. In the DWTA, the 

launching of weapons is performed asynchronously, 

however in the SWTA, all weapons are launching at the 

same time and only once [1]. In the WTA problem, the 

aim is to minimize the damage caused by attacks of the 

targets. Hence, assets of the defense aim the best 

assignments for minimal damage after the engagement. 

Several exact and approximation algorithms [2–4] have 

recently involved in solving the WTA problem. Since 

the WTA is an NP-complete problem [5], exact 

algorithms can not solve large-scale WTA problems in 

polynomial time. To overcome this problem, 

metaheuristic algorithms are presented to solve the 

WTA problem. Metaheuristic algorithms provide a 

valid solution in a reasonable time [6]. 

In recent years, metaheuristic algorithms for solving 

optimization and engineering problems have attracted 

much attention in the literature. The development of 

nature-inspired metaheuristic algorithms has increased 

rapidly in the last decades [7]. These algorithms have 

good ability to solve global optimization problems even 

it is complex or high dimensional. The strategy of 

metaheuristic algorithms is to obtain a solution in a 

reasonable time for optimization problems which are 

naturally intricate and very hard to solve. This strategy 

is built on two main features: exploration and 

exploitation. In the exploration stage, the algorithm 

attempts to find a new solution in the search space. In 

the exploitation stage, the algorithm searches for the 

neighborhood of the highest quality solution so far to 

get better solutions. The balance of these two stages is 

highly important for the algorithm to be successful. The 

Crow Search Algorithm (CSA) [8] is a population-

based metaheuristic algorithm inspired by the behavior 

of crows, has a good exploration and exploitation for 

optimization problems.  

Many metaheuristic algorithms have been proposed for 

the WTA problem. Şahin and Leblebicioğlu [9] 

presented a Hierarchical Fuzzy Decision Maker method 

to achieve the best assignment for improving 

performance on the battlefield. The proposed method 

increased the approximation performance in 

comparison to exact and optimal methods. Wang et al. 

[10] developed a Grey Wolf Optimizer which is the 

http://www.3mrullah.com/MCSA.html
http://www.ams.org/msc/msc2010.html


A modified crow search algorithm for the weapon-target assignment problem                        189 

popular population-based algorithm in recent years, to 

solve the WTA problem. The problem was addressed 

as a binary problem and the algorithm was modified to 

a discrete method. According to results, Grey Wolf 

Optimizer resulted in good quality solutions for small-

scale problems and proved that it is competitive for 

large-scale problems. Li et al. [11] have presented an 

Ant Colony Optimization for bi-objective the WTA 

problem. In their study, an optimization model for the 

WTA is designed which maximizes the expected 

damage of the enemy (first objective) and minimizes 

the cost of missiles (second objective). Due to the bi-

objective model of the WTA, Ant Colony Optimization 

is modified to get a set of Pareto solutions. According 

to simulation results, the modified algorithm improved 

the performance of the pure one and produced better 

solutions. Sonuc et al. [12] have worked on a Simulated 

Annealing algorithm to solve the SWTA problem on 

GPU. The aim of the study was to obtain better 

solutions with less computational time compared to the 

solution of the serial algorithm. Computational results 

on problem instances have shown that the parallel 

algorithm was 250 times faster than a single-core CPU 

and improved the quality of solutions. Zhang et al. [13] 

have developed a hybrid method using Ant Colony 

Optimization and Genetic Algorithm to obtain fast 

convergence speed for the WTA problems. 

Implementation of Artificial Bee Colony algorithm 

which is inspired by intelligent behavior of honey bees, 

was proposed for solving the SWTA problem by 

Durgut et al. [14]. In the study, three local search 

operators were discussed and according to the results, 

the swap operator emerged as more effective than 

insertion and inversion operators. Kutucu et al. [15] 

presented a hybrid method with Artificial Bee Colony 

and Simulated Annealing for the SWTA. According to 

results on benchmark problems, the proposed algorithm 

was competitive and satisfactory compared to other 

metaheuristic algorithms for the WTA. To improve the 

ability of Ant Colony Optimization, an immune system 

based algorithm was developed to solve the WTA by 

Lee et al. [16]. According to the comparison results, the 

proposed algorithm has improved searching 

performance. Hu et al. [17] improved Ant Colony 

Optimization in the viewpoints of selection, updating 

and concentration interval and applied it to the WTA 

problem. The advantages of the proposed algorithm 

were faster convergence and better avoidance from 

local optima. Tokgöz et al. [18] presented 

combinatorial optimization techniques for WTA 

problems. Several heuristic algorithms were selected 

and applied to the WTA and the results proved that 

Variable Neighborhood Search and Simulated 

Annealing obtained better solutions than other 

algorithms. Li et al. [19] developed a decomposition-

based evolutionary algorithm for multiobjective 

SWTA. According to experiments, the proposed 

method was effective and promising on generated 

scenarios. Also, real-time heuristics using Construction 

Heuristic, Quiz Problem Search Heuristic and Greedy 

Branch and Bound Heuristic, was presented by Kline et 

al. [20]. All three heuristics were used for comparison 

with existing heuristics in literature and the results 

outlined that the computational costs of the proposed 

methods are less expensive than the existing ones. 

Hocaoglu [21] aims to generate a model for air defense. 

The model answers to the question that is how many 

missiles are necessary to eliminate attacking from the 

offense. The model gives a better and faster than the 

Simulated Annealing algorithm.  

This paper aims to improve the quality of solutions for 

the SWTA problem using a modified crow search 

algorithm (MCSA). MCSA is a population-based 

algorithm and obtained better solutions in less time 

compared to Simulated Annealing [1] which is an 

iterative heuristic algorithm. Besides, one agent 

searches a new solution in the search space for each 

iteration hence Simulated Annealing has a poor 

exploration compared to population-based 

metaheuristics. Also, MCSA was compared with the 

state-of-the-art algorithms and the experimental results 

were revealed that MCSA was improved quality of 

results in 6 of 12 problems. The rest of this paper is 

organized as follows. In Section 2, the model of the 

SWTA problem is illustrated and the formulation of the 

problem is presented. In Section 3, nature-inspired 

CSA is introduced. In Section 4,  MCSA based on a 

trial mechanism is proposed. Experimental results on 

the WTA problems are presented to demonstrate the 

performance of improved CSA in Section 5. Finally, 

conclusion and future works are described in Section 6. 

2. Problem formulation 

According to the WTA model, which is a minimization 

optimization problem, assets of defense aim the best 

assignment of each weapon to target for decreasing 

expected damage directed by the offense. Each weapon 

has a destroying probability for each target and the 

expected damage for assets of defense is evaluated after 

engagement in the battlefield. An illustration of the 

WTA problem is presented in Figure 1. 

 
 

Figure 1. Illustration of the WTA problem. 
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Table 1 shows the explanation of each symbol for the 

WTA model. In general, a WTA problem for a 

defensive mission can be formulated as follows: 

( )
1 1

( ) min 1
ij

mn
x

i ij

i j

f v p
= =

= −              (1) 

1

. . 1,    1,2,..., .
n

ij

i

s t x j m
=

= =                (2) 

Table 1. Definition of symbols for the WTA model. 

Symbol Explanation 

n the number of targets 

m the number of weapons 

vi the value of the target i 
pij the probability of destroying by assigning the 

weapon j to the target i, 

x = [xij] the decision variable that is nxm matrix, where 

1 if weapon   is assigned to target  ,

0 otherwise

j i
x
ij


= 


 

3. The crow search algorithm (CSA) 

Crows live in flocks and can follow the other birds and 

steal the food they have stored in their nests. As a result 

of this follow-up, they can remember the location of 

other birds' hiding-place and find it whenever they 

want. The pseudocode of the CSA, which is inspired by 

the behavior of crows, is shown in Figure 2. CSA has 

an easy to implement structure and only needs two 

parameters. Implementation of CSA for optimization 

problems is an easy process since it has only two 

parameters: Awareness Probability (AP) and Flight 

Length (FL). 

According to the strategy of CSA, the crow updates its 

position in two states. In the first state, each crow (crow 

i) selects a random crow (crow j) to steal food from its 

hiding place without being noticed. The decision to 

follow the selected crow is determined by the parameter 

AP. If the follow-up is carried out, the new position of 

the crow is determined according to Eq. (3) using the 

memory of crow j (mj). 

, 1 , , , ,  .  . ( )i iter i iter i iter j iter i iter

ix x r fl m x+ = + −    (3) 

The second state is that crow j recognizes that is being 

followed by crow i. In this state, the crow moves to a 

new position in the search space. For the second state, 

the new position of the crow is defined as follows: 

 
, 1 , , , , ,

, 1

 

  .  . ( )          
 

i iter i iter i iter j iter i iter j iter

i ji iter

a random position otherwise

x x r fl m x r AP
x

+

+




= + −
=




                        (4) 

Initialize the crows population Xi (i = 1, 2, ..., N) 

Evaluate the position of each crow in the search space 

Initialize the memory of each crow 

while (iter < itermax) 

for i = 1 : N (all N crows in the population) 

 Randomly select one crow to follow (e.g. crow j) 

Set an awareness probability  

if rj ≥ AP j,iter 

Update the position of the current crow by the Eq. (3) 

else 

Generate a new position in the search space for the current crow 

 end if 

end for 

Check if any crow goes beyond the search space and amend it 

Evaluate the new position of each crow 

Update the memory of each crow 

end while 
Figure 2. Pseudocode of the CSA. 

 

4. The WTA problem using MCSA 

The WTA problem is a combinatorial optimization 

problem and each weapon must be assigned to a target. 

This assignment is represented as a permutation in the 

problem. Also, this permutation represents a position in 

the search space for a crow. The aim is finding the best 

position (permutation) in the search space to minimize 

the objective function (Eq. (1)). CSA is modified to 

improve the quality of solutions using a new parameter 

called LIMIT. If a solution that represents a position in 

the search space, is not improved by a predetermined 

number of trials, then a new position is generated. This 

method is proposed by Karaboga et al. [22,23] for 

Artificial Bee Colony Algorithm to solve optimization 

problems. The implementation of MCSA for the 

SWTA problem is carried out through the following 

steps: 

Step 1. Initialization of MCSA parameters. 

Initialize the parameters: N, itermax, FL, AP and number 

of non-improved trials LIMIT. 

Step 2. Initialize permutation and memory of crows. 

Randomly generate a permutation for each crow and 

memorize the initial permutations. 
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Step 3. Evaluate the objective function. 

Compute objective function using its permutation for 

each crow. 

Step 4. Generate a new permutation. 

Generate a new permutation  for crow i as follows:  

Randomly select one other crow (crow j) to use its 

permutation. Generate a new position using the swap 

operator (see Figure 3.) for permutation of crow j. Thus, 

a new permutation of crow i is determined if ,j iter

jr AP

. This procedure is repeated for all crows. Otherwise, it 

keeps its current permutation. This procedure is defined 

as follows:  

, 1
   

,
i iter

j

w

iter
r APjnew permutation with swapping

keep the current permutation other ise

x +


=




(5) 

 

 

Figure 3. Illustration of swap operator for neighborhood 

solution. 

 

Step 5. Evaluate the objective function of new 

permutations. 

Compute the objective function of the new permutation 

for each crow. 

Step 6. Update memory. 

If the new objective function value of each crow is less 

than the memorized one, then update the memory of 

each crow using: 

, 1 , 1 , 1

, 1

, 1

( )  ( )
 

i iter i iter i iter

i iter

i iter
otherwise

x f x f
m

m

m

+ + +

+

+

 



=     (6) 

Step 7. Check if the trial value is reached to LIMIT 

or not. 

After a predetermined number of trials, if there is no 

improvement on the solutions for the population, 

generate a new permutation for each crow using the 

equation is as follows: 

, 1

, ,
.          

 i iter

keep the current permutation otherwi

i iter i iter
generate a random permutation r AP fli

se
x + 

=




(7) 

For each crow, the objective function value of the new 

permutation is computed. 

Step 8. Evaluate the objective function and update 

memory. 

Computation of objective function for each crow using 

its permutation. After computation, update the memory 

of crows. 

Step 9. Check stop criterion. 

Repeat Steps 4–8 until itermax is reached.  

The flowchart of MCSA is presented in Figure 4. 

Start

Set parameters of 

MCSA

Initialize permutations and 

memories for N crows

Generate a new permutation 

for each crow using Eq. (5)

Compute the objective 

function value for the new 

permutation for each crow

Update the memory using 

Eq. (6)

Number of non-

improvement trials 

reach to LIMIT?

Generate a new permutation 

for the crow using Eq (7)

Yes

Compute the objective function 

value of the new permutation for 

each crow and update its memory

iter < max_iter

End

No

Yes

No

 
Figure 4. Flowchart of the modified CSA for solving the 

WTA problem. 
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5. Experimental results 

MCSA is tested on 12 problem instances (available at 

https://doi.org/10.17632/jt2ppwr62p.1) presented in 

[12]. Dimensions of problem instances are in the range 

5 – 200 and listed in Table 2. The numerical 

experiments were performed on a PC with Intel(R) 

Core(TM) i7-5600U CPU @ 2.60 GHz, with 8.00 GB 

of RAM, running Windows 8 64-bit operating system. 

The codes of MCSA and CSA have been written in C 

under CodeBlocks IDE v17.12. 

5.1. Comparison MCSA and CSA 

Firstly, robustness of MCSA is tested in comparison 

with the pure CSA by using parameters which are AP = 

0.2, FL = 2, N= 20, ITERATION = 1000 and LIMIT = 

10 x size of problem (for MCSA only). Figure 5 shows 

the box plot of 10 independent runs for the problem 

instances from WTA1 to WTA12 with the aim of 

comparison between MCSA and CSA. The results 

show that MCSA outperforms CSA in all problem 

instances. Also, the box plots show that MCSA 

converges quickly to the optimal solutions as it has 

better values and fewer heights compared to CSA. 

Table 2. The WTA problem instances. 

Instance No  Number of Weapons Number of Targets 

#1 5 5 

#2 10 10 

#3 20 20 

#4 30 30 

#5 40 40 

#6 50 50 

#7 60 60 

#8 70 70 

#9 80 80 

#10 90 90 

#11 100 100 

#12 200 200 

 
(a) Box plot for WTA1.    (b) Box plot for WTA2. 

 
(c) Box plot for WTA3.    (d) Box plot for WTA4. 

 
(e) Box plot for WTA5.    (f) Box plot for WTA6. 

Figure 5. Box plots for comparing 10-runs results of MCSA and CSA on problem instances. 

https://doi.org/10.17632/jt2ppwr62p.1


A modified crow search algorithm for the weapon-target assignment problem                        193 

 
(g) Box plot for WTA7.    (h) Box plot for WTA8. 

 
(i) Box plot for WTA9.    (j) Box plot for WTA10. 

 
(k) Box plot for WTA11.    (l) Box plot for WTA12. 

 

Figure 5 (cont). Box plots for comparing 10-runs results of MCSA and CSA on problem instances. 

5.2. Comparison of MCSA with the state-of-the-art 

algorithms 

MCSA was compared with four other metaheuristic 

algorithms for solving the WTA, which are ABC [14], 

ABC-SA [15], SA [12] and pure CSA. All parameters 

for the algorithms are given in Table 3. LIMIT 

parameter for MCSA is selected depending on problem 

size (see in Table 3) as suggested in [24]. With this 

tuning, LIMIT increases when the size of the WTA 

problem is increased. 

The results of all metaheuristic algorithms are 

compared in terms of the best, mean, worst, median, 

standard deviation (SD) and time (seconds) in Table 4. 

However, median and SD values are not available for 

ABC and ABC-SA. The best results for each problem 

are shown in bold. Overall, MCSA obtained better 

results compared to other methods for 11 out of 12 

problem instances. All algorithms can achieve the same 

best results for WTA1 and WTA2. The best result is the 

same on WTA3 and WTA4 for all algorithms except 

for CSA. Comparing the results obtained by all 

metaheuristic algorithms it can be inferred that all 

algorithms except CSA are successful in reaching the 

optimum of small size problems. 
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Table 3. Parameter settings for all algorithms. 

ABC [13]  ABC-SA [14]  CSA  MCSA  SA [11] 

Parameter Value  Parameter Value  Parameter Value  Parameter Value  Parameter Value 

Iteration 200000  Iteration 200000  Iteration 200000  Iteration 200000  Initial Temperature 1000 

Population Size 50  Population Size 50  Population Size 40  Population Size 40  Final Temperature 0.1 

LIMIT 1000  LIMIT 1000  AP 0.2  AP 0.2  Cooling factor 0.99999 

   Initial Temperature N/A  FL 2  FL 2  
  

  
 Final Temperature N/A  

  
 LIMIT 10 x Problem Size  

  

  
 Cooling factor N/A  

  
    

  

Table 4 also shows that the worst value achieved by 

MCSA is better than the best values achieved by ABC, 

ABC-SA and CSA for WTA5 to WTA11, which means 

MCSA provides not only a good exploration but also a 

good exploitation. According to the results, pure CSA 

is not efficient yet to solve the WTA problem even if 

the problem size is small. SD of MCSA is lower than 

the pure CSA, which indicates that MCSA is a robust 

algorithm to solve the WTA. For WTA12, ABC-SA 

achieved the best result comparing to the other 

algorithms. MCSA is 0.25% worse than ABC-SA for 

WTA12 according to the best results.  

Table 4. Comparison with the state-of-the-art algorithms on the problem instances. 

Instance Weapon Target Algorithm Best Mean Worst Median SD Time(sec) 

WTA1 5 5 ABC [14] 48.3640 48.3640 48.3640 - - 390.00 

   
ABC-SA [15] 48.3640 48.3640 48.3640 - - 18.00 

   
CSA 48.3640 48.3640 48.3640 48.3640 0.00 5.20 

   
MCSA 48.3640 48.3640 48.3640 48.3640 0.00 4.42 

   
SA [12] 48.3640 48.3640 48.3640 48.3640 0.00 2985.92 

          
WTA2 10 10 ABC [14] 96.3123 96.3123 96.3123 - - 417.00 

   
ABC-SA [15] 96.3123 96.3123 96.3123 - - 21.00 

   
CSA 96.3123 96.3123 96.3123 96.3123 0.00 7.10 

   
MCSA 96.3123 96.3123 96.3123 96.3123 0.00 5.39 

   
SA [12] 96.3123 96.3123 96.3123 96.3123 0.00 2841.04 

          
WTA3 20 20 ABC [14] 142.1070 142.2480 142.8119 - - 473.00 

   
ABC-SA [15] 142.1070 142.1070 142.1070 - - 25.00 

   
CSA 142.1070 143.2052 145.9337 142.7028 1.15 10.92 

   
MCSA 142.1070 142.1070 142.1070 142.1070 0.00 7.56 

   
SA [12] 142.1070 142.1070 142.1070 142.1070 0.00 2752.49 

          
WTA4 30 30 ABC [14] 248.0285 248.6854 249.2224 - - 532.00 

   
ABC-SA [15] 248.0285 248.1678 248.4222 - - 32.00 

   
CSA 249.5552 251.8021 254.8158 251.1550 1.79 14.35 

   
MCSA 248.0285 248.0781 248.3312 248.0285 0.10 9.86 

   
SA [12] 248.0285 248.0285 248.0285 248.0285 0.00 2754.31 

          
WTA5 40 40 ABC [14] 305.8729 306.8570 307.4944 - - 585.00 

   
ABC-SA [15] 305.5016 306.2735 307.1293 - - 36.00 

   
CSA 307.7296 312.7559 317.2676 312.7247 2.79 18.78 

   
MCSA 305.5016 305.6046 305.9203 305.5016 0.15 12.70 

   
SA [12] 305.5016 305.5016 305.5016 305.5016 0.00 2760.78 

          
WTA6 50 50 ABC [14] 353.3794 355.1488 356.8539 - - 654.00 

   
ABC-SA [15] 353.0149 354.6901 357.2952 - - 42.00 

   
CSA 356.7682 361.8349 367.1764 362.0425 3.05 22.60 

   
MCSA 353.0102 353.4104 353.6899 353.4893 0.26 14.86 

   
SA [12] 353.0767 353.3112 353.5702 353.2610 0.14 2790.03 

          
WTA7 60 60 ABC [14] 414.4555 417.0145 420.1622 - - 712.00 

   
ABC-SA [15] 414.7521 417.3107 420.6054 - - 46.00 

   
CSA 421.2284 425.7957 429.5839 425.6336 2.09 26.38 

   
MCSA 414.2222 415.4017 416.8135 415.3838 0.82 17.48 

   
SA [12] 415.0528 415.4068 415.7079 415.4371 0.21 2787.45 
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Instance Weapon Target Algorithm Best Mean Worst Median SD Time(sec) 

WTA8 70 70 ABC [14] 498.0948 500.5102 504.3466 - - 786.00 

   
ABC-SA [15] 496.9645 498.3417 500.6414 - - 52.00 

   
CSA 508.5992 514.6464 519.7359 515.6737 3.67 30.24 

   
MCSA 496.3095 497.1012 498.1227 497.1297 0.55 19.84 

   
SA [12] 498.1049 498.5918 499.0167 498.5860 0.30 2841.02 

          
WTA9 80 80 ABC [14] 534.4742 536.8911 541.8093 - - 831.00 

   
ABC-SA [15] 531.4078 534.4042 536.5087 - - 60.00 

   
CSA 544.3289 548.6797 554.1954 548.7232 2.88 33.99 

   
MCSA 531.1592 533.2647 536.3640 532.9782 1.46 22.26 

   
SA [12] 534.4408 535.4559 536.2618 535.5937 0.57 2868.79 

          
WTA10 90 90 ABC [14] 592.9167 594.9403 598.3802 - - 889.00 

   
ABC-SA [15] 590.4780 592.4761 595.1910 - - 71.00 

   
CSA 597.3041 606.4188 617.2749 606.7811 5.52 37.88 

   
MCSA 589.3209 592.5042 594.5376 592.3725 1.52 24.37 

   
SA [12] 594.0639 595.3277 596.1228 595.6466 0.72 2812.57 

          
WTA11 100 100 ABC [14] 698.4465 701.4467 707.7392 - - 954.00 

   
ABC-SA [15] 694.8067 696.3017 700.4310 - - 79.00 

   
CSA 708.1073 714.8838 722.6326 715.8635 4.41 41.60 

   
MCSA 694.5009 696.7299 698.3746 696.7235 1.34 29.08 

   
SA [12] 699.8357 701.0054 702.1189 701.2495 0.75 2805.83 

          
WTA12 200 200 ABC [14] 1295.3142 1299.2044 1303.1223 - - 1624.00 

   
ABC-SA [15] 1287.0240 1289.1600 1291.2790 - - 124.00 

   
CSA 1311.5617 1314.9700 1320.8271 1314.8187 2.74 83.11 

   
MCSA 1290.2712 1294.4943 1296.3025 1294.8583 1.66 55.72 

      SA [12] 1306.9126 1308.3382 1309.4616 1308.5187 0.86 2902.15 

 

A comparison between MCSA and ABC-SA based on 

time is presented in Figure 6. Although it is not fair to 

compare MCSA and ABC-SA as we don’t know some 

parameters and number of function evaluations, the 

capabilities of the used devices for running these two 

algorithms are approximately similar. It can be shown 

that the average run time for MCSA is better than ABC-

SA. 

 
Figure 6. Time comparison between MCSA and ABC-SA 

for the WTA problem instances. 

 

6. Conclusion and future works 

This paper proposed a Modified Crow Search 

Algorithm (MCSA) for solving the static WTA 

problem. In MCSA, a trial mechanism that starts with a 

new position in the search space after a predetermined 

number of trials, has been adapted to the exploration 

phase. The number of trials defines as a parameter 

called LIMIT, is adjusted to the size of the problem. 

With this update, the exploitation stage of CSA is 

strengthened for combinatorial problems like the WTA. 

Experimental results of MCSA have been compared 

with four state-of-the-art algorithms on the WTA 

problem instances with different dimensions. In each 

problem, the numbers of the weapons and targets are 

equal and limited and this limitation occurs the size of 

the problem. According to the experimental results, 

MCSA achieved the best results on all problem 

instances except for only one and outperformed the 

state-of-the-art algorithms. In future works, MCSA can 

be combined with single solution based algorithms 

(hill-climbing, tabu search, simulated annealing, etc.), 

especially for the second state of CSA. Also, MCSA 

can be applied to solve dynamic WTA problem or other 

discrete optimization problems. 
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1. Introduction 

The spectral CG methods are among the most efficient 

variant of CG methods designed to solve large-scale 

problems. The methods possess the global convergent 

properties in addition to the sufficient descent 

condition.  Moreso, the spectral CG methods are less 

expensive and  requires less storage location. Some 

outstanding features of the spectral CG method are their 

simplicity in algebraic processes and development of 

computer codes [1]. Spectral CG method is formulated 

by combining the CG search direction and a scalar 

spectral parameter to form a new search direction. 

Birgin and Martinez [2], introduced a spectral CG 

method using standard secant equation [3].   

 

Consider the following minimization problem. 

 

𝑚𝑖𝑛 𝑓(𝑥), 𝑥 ∈ 𝑅𝑛                                 (1) 

 

where 𝑓: 𝑅𝑛  → 𝑅 is continuous and differentiable, g𝑘 

is the gradient of 𝑓(𝑥) and the vector 𝑥0 ∈ 𝑅𝑛 is known 

as the initial point. The CG method are iterative scheme 

of the form 

 

  𝑥𝑘+1 = 𝑥𝑘 + 𝛾𝑘𝑑𝑘  ,       𝑘 = 0,1,2,3,4, …           (2) 

where the vector 𝑥𝑘 is the current iterate,  𝑥𝑘+1 is the 

new iteration point, and 𝛾𝑘 > 0 is the step-dimension 

obtained by the line search method defined as 

 

𝛾𝑘 =  𝑎𝑟𝑔 min
𝛾>0

𝑓(𝑥𝑘 + 𝛾𝑑𝑘)                                (3) 

 

also, 𝑑𝑘 is the classical search direction given as  

 

𝑑𝑘 =  {
−g𝑘 ,                          𝑖𝑓 𝑘 = 0
−g𝑘 + 𝛽𝑘𝑑𝑘−1,       𝑖𝑓 𝑘 ≥ 1

                 (4) 

 

g𝑘 = ∇𝑓(𝑥), is the gradient and the parameter 𝛽𝑘 ∈ 𝑅 

is the CG coefficient that characterizes different CG 

methods. Some known CG coefficients are the Polak-

Ribiére-Polyak (PRP) and Wei-Yao-Liu (WYL) 

methods with formulas as follows.  

 

𝛽𝑘
𝑃𝑅𝑃 =  

g𝑘
𝑇(g𝑘 − g𝑘−1)

‖g𝑘−1‖2
                                      (5) 

 

𝛽𝑘
𝑊𝑌𝐿 =  

g𝑘
𝑇 (g𝑘 −

‖g𝑘‖
‖g𝑘−1‖

g𝑘−1)

‖g𝑘−1‖2
≤  

2‖g𝑘‖2

‖g𝑘−1‖2
          (6) 

 

where g𝑘 and g𝑘−1 are gradient vectors at points  𝑥𝑘 , 

𝑥𝑘−1 respectively, and ‖. ‖ represent the Euclidian 

norm. The PRP method is regarded as the best CG 

method due to its rapid convergence. However, its 

convergence analysis for nonlinear function is 
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uncertain [12]. For further references on the CG and 

spectral CG methods, please refer to [4-14, 20, 26].  

 

In this paper, the spectral PRP and spectral WYL CG 

methods are presented without the secant equation. 

Their performance is verified using the least square and 

trend line methods in regression analysis. The 

regression analysis is an important tool for the analysis 

of statistical data utilized in the field of economics, 

engineering, sciences and many more [15]. The 

analysis is use for forecasting and to comprehend the 

relation between dependent and independent variables 

in real life applications. The dependent variable is 

denoted by 𝑦 and independent is denoted by 𝑥𝑗 for 𝑗 =

1,2,3 … … . , 𝑛, 𝑛 > 0, and 𝑒 is an integer constant in the 

error term. The model is defined by 

 

𝑦 = 𝑙(𝑥𝑗 + 𝑒), 𝑓𝑜𝑟 𝑥𝑗 = 𝑥1, 𝑥2 … . 𝑥𝑛         (7) 

 

and generalized as follows 

 

𝑦 = 𝑢0 + 𝑢1𝑥1 + 𝑢2𝑥2+. . . … . 𝑢𝑛𝑥𝑛 + 𝑒           (8) 

 

where 𝑢0, 𝑢1, 𝑢2, … … . . , 𝑢𝑛 are the parameters for the 

regression analysis. The values of the parameters are 

estimate by using the nonlinear least square method 

defined by  

 

min 𝐸(𝑢) = ∑(𝑦𝑖 − 𝑢0 + 𝑦1𝑥𝑗1 + 𝑦2𝑥𝑗2+. . 𝑦𝑛𝑥𝑗𝑛)2

𝑛

𝑗=1

     (9) 

 

where 𝑦𝑖 is the estimated data of  𝑗𝑡ℎ response and 

𝑥𝑗1, 𝑥𝑗2, . . . … , 𝑥𝑗𝑛  are 𝑛 data evaluation of the response 

variables [16]. The formula for predicting data in 

regression analysis is derive from calculating the 

relative error. However, the error is obtained by 

comparing the approximate value and actual value as 

described below  

 

Relative error = |
Exact Value−Approximate Value

Exact Value
|     (10)             

 

The least square determines the best approximation 

models by comparing the total least square errors. The 

error is defined as 

 

𝐸𝑗 = (𝑢0 + 𝑢1𝑥) − 𝑦𝑗  

 

The strategy of fitting the best line through the data 

would minimize the sum of the residual error squares 

for the data available. This problem is similar to the 

minimization problem in unconstrained optimization 

[17]. Thus, we employ the spectral PRP and WYL CG 

parameter to obtain the solution of the given 

unconstrained optimization problem. 

2. Derivation of spectral CG methods 

Spectral CG method was introduce by [2] with 

direction defined as  𝑑𝑘 = −𝜑𝑘 g𝑘 + 𝛽𝑘𝑠𝑘−1, where 

𝑠𝑘−1 = 𝛾𝑘−1𝑑𝑘−1  and 𝜑𝑘 is a spectral scalar parameter. 

Motivated by the procedure of [5], we proposed the 

following search direction  

 

𝑑𝑘 =  {
 −g𝑘 ,                                      𝑖𝑓 𝑘 = 0

−𝜑𝑘g𝑘 + 𝛽𝑘
𝑃𝑅𝑃𝑑𝑘−1,          𝑖𝑓 𝑘 ≥ 1

      (11) 

 

𝑑𝑘 =  {
−g𝑘 ,                                      𝑖𝑓 𝑘 = 0

−
1

∅𝑘
g𝑘 + 𝛽𝑘

𝑊𝑌𝐿𝑑𝑘−1,         𝑖𝑓 𝑘 ≥ 1
      (12)  

 

From(11), 𝑑𝑘 = −𝜑𝑘g𝑘 + 𝛽𝑘
𝑃𝑅𝑃𝑑𝑘−1    →                 

𝑑𝑘 − 𝛽𝑘
𝑃𝑅𝑃𝑑𝑘−1  = −𝜑𝑘g𝑘. Also,  𝑑𝑘 = −g𝑘,  then 

substituting equation (5) we have,   

 

𝜑𝑘 = 1 − 
g𝑘

𝑇𝑑𝑘−1

g𝑘−1
𝑇 𝑑𝑘−1

                                   (13) 

 

From equation (12),  𝑑𝑘 = −
1

∅𝑘
g𝑘 + 𝛽𝑘

𝑊𝑌𝐿𝑑𝑘−1 which 

is rewritten as 𝑑𝑘 − 𝛽𝑘
𝑊𝑌𝐿𝑑𝑘−1 = −

1

∅𝑘
g𝑘. This 

implies  
1

∅𝑘
=

𝑑𝑘

−g𝑘
+

𝛽𝑘
𝑊𝑌𝐿𝑑𝑘−1

g𝑘
. Substituting (6) in the 

equation, we have 

 

∅𝑘 = (1 −  
2g𝑘

𝑇𝑑𝑘−1

g𝑘−1
𝑇 𝑑𝑘−1

)
−1

                             (14)  

    

Recall that the orthogonality of gradients  g𝑘
𝑇g𝑘−1 = 0 

and thus, 𝜑𝑘 and ∅𝑘 are the new spectral parameters 

computed by exact line search procedure. 

 

Algorithm 1.1 (Spectral CG method) 

 

Step 1: Given a starting point 𝑥0 ∈ 𝑅𝑛 set 𝑘 = 0 

Step 2: Compute 𝛽𝑘 
by (5) and (6) 

Step 3: Compute 𝑑𝑘 by (11) and (12). If ‖g𝑘‖ = 0,  

then stop. 

Step 4: Compute 𝛾𝑘 by (3). 

Step 5: Update the new point by the recurrence  

expression (2). 

Step 6: If 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘) and ‖g𝑘‖ < 𝜀 then 

        stop, otherwise go to step 1 with 𝑘 = 𝑘 + 1. 

 

3. The global convergence analysis of spectral CG 

methods 

The Sufficient descent condition ensures that global 

convergence of iterative procedures or algorithm is 

achieved. Therefore, all CG methods must satisfy the 

following. 

 

g𝑘
𝑇𝑑𝑘 ≤ −𝐶‖g𝑘‖2     𝑓𝑜𝑟 𝑘 ≥ 0 𝑎𝑛𝑑 𝐶 > 0       (15) 

 

 
Theorem 1.1 Suppose a CG method with search 

direction (11) , (12) and  𝛽𝑘
𝑃𝑅𝑃, 𝛽𝑘

𝑊𝑌𝐿given by 

equation (5), (6), then condition (15) holds for 
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all 𝑘 ≥ 0. 

 

Proof. With 𝛽𝑘
𝑃𝑅𝑃 , we proceed by induction, 

since  g0
𝑇𝑑0 = −‖g0‖2, the condition (15) satisfied 

as 𝑘 = 0. Now we assume it is true for 𝑘 ≥ 0. Also, the 

inequality (15) as well hold.  

 

From the search direction (11) multiply both sides by 

g𝑘+1
𝑇  and substitute parameter (13) gives 

 

g𝑘+1
𝑇 𝑑𝑘+1 = − (1 − 

g𝑘
𝑇𝑑𝑘−1

g𝑘−1
𝑇 𝑑𝑘−1

) ‖g𝑘+1‖2

+ 𝛽𝑘
𝑃𝑅𝑃g𝑘+1

𝑇 𝑑𝑘 

 

It is known from the conjugacy conditions g𝑘+1
𝑇 𝑑𝑘 = 0. 

Hence for constant 𝐶 = 1 condition (15) is true for 

 𝑘 + 1. ∎  
 

Proof. With 𝛽𝑘
𝑊𝑌𝐿 , also by induction, since  g0

𝑇𝑑0 =
−‖g0‖2, the condition (15) satisfied as 𝑘 = 0. Now we 

assume it is true for 𝑘 ≥ 0.  

Also, the inequality (15)  hold true, from the search 

direction (12) multiply both sides of the equation by 

g𝑘+1
𝑇  and substitute (14) gives 

 

g𝑘+1
𝑇 𝑑𝑘+1 = − (1 − 

g𝑘
𝑇𝑑𝑘−1

g𝑘−1
𝑇 𝑑𝑘−1

) ‖g𝑘+1‖2

+ 𝛽𝑘
𝑊𝑌𝐿g𝑘+1

𝑇 𝑑𝑘 

 

Therefore, from the conjugacy conditions  g𝑘+1
𝑇 𝑑𝑘 = 0. 

Hence for constant 𝐶 = 1 condition (15) hold for 

 𝑘 + 1. ∎  

 

The following assumptions are needed for the 

convergence analysis of the CG method.  

 

Assumptions 1.1 (i) A level set Ω = {𝑥 ∈ 𝑅𝑛 ∣ 𝑓(𝑥) ≤
𝑓(𝑥0)} is bounded, the function 𝑓 is continuously 

differentiable in a neighborhood 𝑁 of the level set Ω 

and 𝑥0 is a starting point. 

(ii) 𝑔(𝑥) is Lipschitz continuous in 𝑁 that is ∃ a 

constant 𝐿 > 0, such that  ‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ 

for any 𝑥, 𝑦 ∈ 𝑁. 

  

Lemma 1.1 Suppose Assumption 1.1 hold and consider 

any recurrence expression (2) with search direction 

(11) and  (12), 𝛾𝑘 computed using (3). Then 

Zoutendijk condition (16) holds. 

 

∑
(g𝐾

𝑇 𝑑𝑘)2

‖𝑑𝑘‖2

∞

𝑘=0

< ∞                                                 (16) 

 

 

Proof: The proof of this Lemma is given in [18]. 

 

Theorem 1.2 Suppose Assumptions 1.1 hold, for any 

CG sequence  {𝑥𝑘}, {𝑑𝑘} be given as spectral PRP, 

spectral WYL CG methods, 𝛾𝑘 determined by equation 

(3) and 𝛽𝑘 in equation (5) and  (6). Then  

 

lim
𝑘→∞

‖g𝑘‖ = 0                              (17) 

 

Proof. With 𝛽𝑘
𝑃𝑅𝑃 , from the search direction 

(11), square both sides of equation, 

 

(𝑑𝑘+1 + 𝜑𝑘g𝑘+1)2 = (𝛽𝑘
𝑃𝑅𝑃𝑑𝑘)2  

      ‖𝑑𝑘+1‖2 = (𝛽𝑘
𝑃𝑅𝑃)2‖𝑑𝑘‖2 − 2𝜑𝑘g𝑘+1

𝑇 𝑑𝑘+1

− 𝜑𝑘
2‖g𝑘+1‖2                               (18) 

 

Substituting (5) into (18) and recall that 

g𝑘+1
𝑇 𝑑𝑘+1 = −𝐶‖g𝑘+1‖2, rewrite equation (18) 

as 

 ‖𝑑𝑘+1‖2 =
‖g𝑘+1‖4

‖g𝑘‖4
‖𝑑𝑘‖2     

                           −‖g𝑘+1‖2(𝜑𝑘
2 − 2𝐶𝜑𝑘)               (19) 

 

Multiply both sides of equation (19) by  
‖g𝑘+1‖2

‖𝑑𝑘+1‖2 , 

we get 

‖𝑑𝑘+1‖2‖g𝑘+1‖2

‖𝑑𝑘+1‖2
=

‖g𝑘+1‖4

‖𝑑𝑘+1‖2
((2𝐶𝜑𝑘 − 𝜑𝑘

2)

+
‖g𝑘‖4

‖g𝑘−1‖4
‖𝑑𝑘‖2)         (20) 

 

From the theorem 1.1 the value of the constant 

𝐶 = 1 therefore, substituting equation (13) in 

(20) and note that from the conjugacy 

conditions  g𝑘+1
𝑇 𝑑𝑘 = 0 we have, 

 
‖𝑑𝑘+1‖2‖g𝑘+1‖2

‖𝑑𝑘+1‖2
≤

‖g𝑘+1‖4

‖𝑑𝑘+1‖2
                             (21) 

 

Thus, from the Lemma 1.1 above. It implies that 

Theorem 1.2 does not hold true, then lim
𝑘→∞

(g𝑘+1
𝑇 𝑑𝑘+1)

2

‖𝑑𝑘+1‖2 =

∞ and from equation (21) this is true ∞ ≤
‖g𝑘+1‖4

‖𝑑𝑘+1‖2. So 

Theorem 1.2 is true for a sufficient large 𝑘. ∎ 

 
Proof. With 𝛽𝑘

𝑊𝑌𝐿 , from the search direction 

equation (12), square both sides we have, 

(𝑑𝑘+1 +
1

∅𝑘

g𝑘+1)
2

= (𝛽𝑘
𝑊𝑌𝐿𝑑𝑘)2  

       ‖𝑑𝑘+1‖2 = (𝛽𝑘
𝑊𝑌𝐿)2‖𝑑𝑘‖2 −

2

∅𝑘

g𝑘+1
𝑇 𝑑𝑘+1

−
1

∅2
‖g𝑘+1‖2                               (22) 

 

Substituting equation (6) into (22) and recall that 

g𝑘+1
𝑇 𝑑𝑘+1 = −𝐶‖g𝑘+1‖2, rewrite (22) as 

 

‖𝑑𝑘+1‖2 =
4‖g𝑘+1‖4

‖g𝑘‖4
‖𝑑𝑘‖2 +

2𝐶

∅𝑘

‖g𝑘+1‖2

−
1

∅𝑘
2

‖g𝑘+1‖2                           (23) 
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Multiply both sides of  (23) by  
‖g𝑘+1‖2

‖𝑑𝑘+1‖2 , we get 

 

‖𝑑𝑘+1‖2‖g𝑘+1‖2

‖𝑑𝑘+1‖2
=

‖g𝑘+1‖4

‖𝑑𝑘+1‖2
((

2𝐶

∅𝑘

−
1

∅𝑘
2)

+
4‖g𝑘+1‖2

‖g𝑘‖4
‖𝑑𝑘‖2)                  (24) 

From the theorem 1.1 the value of the constant 𝐶 = 1 

therefore, substituting (14) in (24) and note that from 

the conjugacy conditions  g𝑘+1
𝑇 𝑑𝑘 = 0 we equally 

have, 

‖𝑑𝑘+1‖2‖g𝑘+1‖2

‖𝑑𝑘+1‖2
=

‖g𝑘+1‖4

‖𝑑𝑘+1‖2
(1 +

4‖g𝑘+1‖2

‖g𝑘‖4
‖𝑑𝑘‖2) 

‖𝑑𝑘+1‖2‖g𝑘+1‖2

‖𝑑𝑘+1‖2
≤

‖g𝑘+1‖4

‖𝑑𝑘+1‖2
                                  (25) 

 

Thus, from the Lemma 1.1 above. It implies that 

Theorem 1.2 does not hold true, then lim
𝑘→∞

(g𝑘+1
𝑇 𝑑𝑘+1)

2

‖𝑑𝑘+1‖2 =

∞ and from equation (25) this is true ∞ ≤
‖g𝑘+1‖4

‖𝑑𝑘+1‖2. So, 

Theorem 1.2 is true for a sufficient large 𝑘. ∎ 

 

4. Description of the real life application 

In this section, the detailed description of the real-life 

problem considered are in Table 1. These problems 

were obtained from [19]. The approximate function for 

the nonlinear least square method is formed as follows 

 

𝑓(𝑥) = −0.05690476𝑥2  +  0.68404762𝑥 
+  0.13285714 

 

Thus, the function 𝑓(𝑥) is use to approximate the value 

of 𝑦 based on value of 𝑥, that is, the rate of drug abuse 

within the city from year 2009 to 2016. The least square 

method can easily be transformed into unconstrained 

minimization problems as follows  

 

min
𝑥∈𝑅𝑛

𝑓(𝑥) = ∑((𝑢0 + 𝑢1𝑥𝑗 + 𝑢2𝑥𝑗
2) − 𝑦𝑗)2

𝑛

𝑗=1

      (26) 

 

The data set in Table 1 shows the rate of drug abuse 

among the youth with aged 18 to 25 in Kano city, 

Nigeria for the years 2009-2017. The statistical data 

was obtained yearly by the National Drug Law 

enforcement agency (NDLEA), Kano. From the Table 

1, the 𝑥-variable represent the year of the operation 

while the 𝑦-variable represent the rate of drug abuse 

among the youth in the city. For the data fitting, only 

the data from 2009 to 2016 is been considered. The data 

for the year 2017 is reserved for the error analysis.  

Table 1. Rate of Drug Abuse in Kano City for the Year 

2009 to 2017 in Percentage 

 

Number of 

Data (𝑥) Years 

Rate of Drug Abuse 
(𝑦)% 

1 2009 0.78 

2 2010 1.35 

3 2011 1.59 

4 2012 1.88 

5 2013 1.95 

6 2014 2.46 

7 2015 2.26 

8 2016 1.81 

9 2017 1.83 

 

Let the number of data 𝑥𝑗 be the number of years and 

the value 𝑦𝑗 be the rate of drug abuse in percentages. 

Then, the data from 2009 to 2016 are utilized to 

formulate the nonlinear quadratic model for the least 

square method and the corresponding test function of 

unconstrained optimization problem. From the above 

problem, observation reveals that the data 𝑥𝑗  and the 

value of 𝑦𝑗 have parabolic relations with the regression 

function defined by (26) and the regression parameters 

𝑢0, 𝑢1and 𝑢2.  

 

min
𝑥∈𝑅2

∑ 𝐸𝑗
2

𝑛

𝑗=1

= ∑((𝑢0 + 𝑢1𝑥 + 𝑢2𝑥2) − 𝑦𝑗)2

𝑛

𝑗=1

   (27) 

 

Similar transformation of the above least squares 

problem using the data from Table 1 for nonlinear 

quadratic unconstrained minimization model is  

 
𝑓(𝑢0, 𝑢1, 𝑢2) = (8𝑢0 + 36𝑢1 + 204𝑢2 − 14.08)2          (28) 

 

Equation (28) is similar to equation (27). Therefore, 

expanding (28) we have 

 

𝑓(𝑢0, 𝑢1, 𝑢2) = 64𝑢0
2 +  1296𝑢1

2 + 41616𝑢2
2 

+576𝑢0𝑢1 + 3264𝑢0𝑢2 + 14688𝑢1𝑢2 − 225.28𝑢0

− 1013.76𝑢1 − 5744.64𝑢2

+ 198.2464                                    (29) 

 

However, the data for 2017 is excluded from the 

unconstrained optimization function so that it could be 

used to compute the relative errors of the predicted 

data. Therefore, the proposed spectral PRP and WYL 

CG methods are applied to solve the test function using 

exact line search technique. Table 2 and Table 3 shows 

the test results for the spectral PRP, spectral HS, 

spectral WYL and MSCG methods for some selected 

initial point. 
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Table 2. Numerical Results for SPRP, SWYL, MSCG and 

SHS Methods based on CPU Time. 

 

 

Initial value 

           CPU Time 

SPRP SWYL MSCG SHS 

 

 

(-5,-5,-5) 41.3119 49.5704 14.6685 0.00063 

(-1,0,-1) 41.3443 44.2581 4.19763 0 

(11,11,11) 

(-2,-2,-2) 

97.317 

41.3556 

103.905 

50.5668 

5.58880 

4.55623 

0 

0 

Table 3. Numerical Results for SPRP, SWYL, MSCG and 

SHS Methods based on Number of Iterations. 

 

To avoid computing the values of 𝑢0, 𝑢1, 𝑢2 using 

matrix inverse, we employ the Spectral PRP, Spectral 

WYL, SHS and MSCG using four initial points as 

presented in the Table 2 and Table 3. The iteration is 

terminated if the number of iterations exceed 10000 or 

if the method fails to solve a test problem and denoted 

the point of failure as ‘NaN’. The approximation 

functions of the spectral CG methods is given in Table 

4. 

 

Table 4. Approximation Functions for Different Initial Point 

Initial values Methods Approximate Function 

 
SPRP 𝑦 = 0.5243𝑥2 + 31.9303𝑥 − 5 

(-5, -5, -5) SWYL 𝑦 = 0.5243𝑥2 + 31.9303𝑥 − 5 

 
MSCG NaN 

 
SHS NaN 

 
SPRP 𝑦 = 0.2142975𝑥2 + 6.6407718𝑥 − 1 

(-1, 0,-1) SWYL 𝑦 = 0.2142975𝑥2 + 6.6407718𝑥 − 1 

 
MSCG NaN 

 
SHS NaN 

 
SPRP 𝑦 = −0.7754𝑥2 − 69.2073𝑥 + 11 

(11, 11,11) SWYL 𝑦 = −0.7754𝑥2 − 69.2073𝑥 + 11 

 
MSCG NaN 

 
SHS NaN 

 
SPRP 𝑦 = 0.27574716𝑥2 + 12.96824𝑥 − 2 

(-2, -2,-2) SWYL 𝑦 = 0.27574716𝑥2 + 12.96824𝑥 − 2 

 
MSCG NaN 

 
SHS NaN 

4.1. Trend line method  

The rate of drug abuse in Kano city, Nigeria is 

estimated using the least square method and the 

proposed spectral CG methods. The tread line is plotted 

based on the original data from Table 1 using Microsoft 

Excel software. The equation for the trend line is in the 

form of nonlinear quadratic equation. Based on the 

actual data, the index of drug abuse denoted by 𝑦 is 

represented in the 𝑦-axis. The 𝑥-axis represent the year 

and denoted by 𝑥.  

 
Figure 1. Nonlinear Quadratic Trend Line for Rate of  

Drug Abuse in Kano City 

The functions of trend line and least square methods are 

compared with approximation functions obtained from 

the Spectral CG methods presented in Table 4.  

5. Numerical result 

Algorithm 1.1 have been tested on some benchmark 

problems and its performance are compared with 

RSPRP method [10], Wei-Yao-Liu (WYL) method 

[23], and Polak-Ribierre-Polyak (PRP) method [24] 

respectively. The comparisons are based on CPU time 

and number of iterations. The stopping criteria used is  

‖g𝑘‖ < 𝜀 where 𝜀 = 10−6  as suggested by Hillstrom 

[21].  

The set of standard test functions are considered from 

[1] and utilised with four different initial values. The 

codes are written on MatlabR2015 subroutine 

programming and run on an Intel® Core™ i5-3317U 

(1.7GHz with 4 GB (RAM)).  

Table 5 and 6 presents the list of standard test problems 

with dimensions and initial points used to test the 

efficiency of the proposed spectral CG methods. The 

numerical performance of the proposed algorithms is 

presented in Figures 1.2 - 1.5 based on a number of 

iterations and CPU time. The maximum value of the 

percentage of probability 𝑃𝑠(𝑡) and the solver that 

reached the solution point foremost are regarded as the 

best performing CG methods for unconstrained 

optimization problems [25, 27]. 

 

 

 

y = -0.05690476x2 + 0.68404762x + 
0.13285714

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10
R

at
e

Year

Rate of Drug Abuse 

 

            Initial value 

             Number of Iteration 

SPRP SWYL MSCG SHS 

 

 

(-5,-5,-5) 10000 10000 2 0 

(-1,0,-1) 10000 1000 3 NaN 

(11,11,11) 

(-2,-2,-2) 

1000 

1000 

1000 

1000 

2 

2 

NaN 

NaN 
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Table 5. Standard Test Problems functions for Figure 2 and 

Figure 3 

Functions Dimensions Initial Points 

Trecanni 2 (3,3), (7,7), (11,11),  

(15,15) 
Zettl 2 (10,10), (25,25), (100,100),  

(-100,-100) 
Leon 2 (4,4), (-4,-4), (10,10), (-

10,-10) 
Quartic 4 (-3,-3), (5,-5), (15,15), (-

20,-20) 
Wood 4 (3,3), (-3,-3),(14,14),(-14,-

14) 
Hager 4 (2, 2), (10,10), (-10,-

10),(15,15) 
Fletcher  100 (13,13), 

(25,25),(40,40),(49,49) 
Raydan 100 (2,2), (6,6), (8,8), (10,10) 

Gen. Quartic 1000,10000, 

50000,100000 

(3,3), (5,5), (15,15), (-20,-

20) 

Freud. & Roth 4,10,100,500, 

1000,10000, 

50000,100000 

10000,100000 

(2,2), (5,5), (7,7), (-21,-21) 

White and Holst 10,100,1000 
 

(4,4), (-4,-4), (9,9), (-9,-9) 

Shallow 100,1000, 

10000 

(100,100), (200,200), 

 (300,300), (400,400) 

Rosenbrock 2,4,10,100,1000, 

10000,50000, 

100000 

(13,13), (25,25), 

(40,40), (49,49) 

 

Figure 2. Performance outline based on the number of 

iterations 

 

 

From the results obtained, the SPRP and SWYL CG 

methods are able to solve the standard benchmark 

problems as compared to the existing methods used in 

the analysis. Similarly, the data for 2017 are estimated 

using the nonlinear unconstrained optimization model 

in Table 4. and the relative error for each model using 

equation (10) is presented in Table 7. 
 

 

 

 

Table 6. Standard Test Problems functions for Figure 4 and 

Figure 5 
Functions Dimensions Initial Points 

Trecanni 2 (5,5), (8,8), (-11,-11),  (-15,-15) 

Leon 2 (4,4), (-4,-4), (6,6), (-10,-10) 

Extended Penalty 2,4,10,50 (2,2), (-2,-2), (5,5), (-5,-5) 

Power 2,4,50,100 (5,5), (-5,-5), (100,100),(-100,-100) 

Quadratic QF1 10,100,1000, 

10000 

(5,5), (-5,-5), (100,100),(-100,-100) 

Ext. Quadratic 

Penalty QP1 

10,100 (5,5), (-5,-5),  (8,8), (-8,-8) 

Ext. Quadratic 

Penalty QP2 

10,100 (2,2), (6,6), (8,8), (10,10) 

Himmelblau 10000 (2,2), (-2,-2), (25,25), (-25,-25) 

Freud. & Roth 2,4,10,100,1000, 

10000 

(7,7), (11,11), (13,13), (25,25) 

White and Holst 2,4,10,100,1000, 

10000 

(2,2), (5,5), (9,9), (-9,-9) 

Shallow 2,4,10,100,1000, 

10000 

(100,100), (200,200), 

 (400,400), (500,500) 

Rosenbrock 2,4,10,100,1000, 

10000 

(5,5), (13,13),  

(20,20), (40,40) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 3. Performance outline based on CPU 

time 
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Figure 5. Performance outline based on CPU time 

 

 
Table 7. Estimation Point and Relative Errors for 2017 Data 

Models Estimation Point Relative Error 

SPRP 1.130602014195 0.3821846916967 

SWYL 1.130602014195 0.3821846916967 

MSCG NaN NaN 

SHS NaN NaN 

Least Square 0.1686095216 0.907863649398907 

Trend line 0.1686095216 0.907863649398907 

 

The efficiency of each method is measure by equation 

(9). All the computations are carried out using 

Microsoft Excel 2016 and MATLAB 2015a subroutine 

programme. The model with the smallest relative error 

is considered the best model that estimate the rate of 

drug abuse in Kano city for the year 2017. 

6. Conclusion 

This paper focuses on the application of the spectral CG 

methods for unconstrained optimization. The proposed 

methods are compared with the classical WYL, PRP, 

least square and Trend line methods. The sum of 

relative error for the proposed spectral CG methods are 

computed based on four categories of initial values and 

three set of real numbers for nonlinear quadratic model. 

From the Table 7, the average relative error for the 

predicted data against the actual data 1.83 are 

calculated. The relative error for the data generated 

from nonlinear quadratic models of spectral PRP and 

spectral WYL methods are smaller compared to the 

least square and trend line models, which is around 

0.3821846916967. The smallest relative error signifies 

the success of the spectral CG methods.  
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 One of the major challenges in inductive wireless power transfer (WPT) systems 

is that the optimal frequency of operation may shift predominantly due to coupling 

variation as a result of  so-called frequency splitting phenomenon. When frequency 

splitting occurs, two additional resonance frequencies split from the coupler’s 

resonance frequency. Maximum power levels are observed at these split resonance 

frequencies; however, these frequencies are strongly-dependent on the coupling 

coefficient, hence the distance and alignment between the couplers. In addition to 

that, peak power values at these frequencies can be different from each other due 

to small impedance differences between the primary and secondary side resonant 

couplers, forming a local and a global maximum. Therefore, the WPT system 

should adaptively operate at the correct frequency for achieving maximum power 

transfer. In this paper, a metaheuristic Particle Swarm Optimization (PSO) based 

frequency tracking algorithm is proposed for use in WPT systems. The WPT 

system employs multi sub-coil flux pipe couplers, a full-bridge inverter which is 

driven by TMS320F28069 controller card and is suitable for high power charging 

applications. The control algorithm can accurately find the global maximum power 

point in case of frequency splitting with asymmetric peaks.   The proposed 

frequency tracking algorithm operates only at the primary side based on 

measurement of the input power level. Therefore, no additional communication 

link is needed between the primary and the secondary side. Effectiveness of the 

proposed control method is validated by performing experiments under three 

different misalignment scenarios and compared to the traditional Perturb and 

Observe algorithm. 
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1. Introduction 

Magnetic coupling based wireless power transfer 

(WPT) systems have been comprehensively 

investigated in recent years. The WPT finds its use in 

various applications such as mobile electronic devices 

[1], electric vehicles (EVs) [2, 3], robots [4, 5] and 

medical devices [6, 7]. Magnetically coupled coils, or 

so called couplers, are the major components in these 

systems determining the efficiency and power level 

delivered to the load. The WPT systems need to operate 

at one of the system’s resonance frequencies for 

transferring the power in an efficient manner. However, 

temperature dependent variations in component values 

and load variations shift the resonance frequencies of 

the system. In this case, for guaranteeing maximum 

power delivery or maximum efficiency, a frequency 

tracking mechanism should be incorporated into the 

system. 

Another important issue in WPT systems is so called 

frequency splitting phenomenon. Frequency splitting 

occurs when system operates at strongly coupled 

regime. In this regime, two more resonance frequencies 

emerge at lower and upper side of the isolated couplers’ 

resonance frequency, making total of three resonance 

frequencies for the coupled system. The power values 

are maximum, same and independent of the coupling 

coefficient at these emerging split resonance 

frequencies; however, these frequencies are strongly-

http://www.ams.org/msc/msc2010.html


A misalignment-adaptive wireless power transfer system using PSO-based frequency tracking          207 

dependent on the coupling variations. Furthermore, any 

small difference between the isolated resonance 

frequencies of the primary and secondary coils results 

in different peak power and efficiency values at these 

frequencies. Hence, a local and a global maximum for 

the delivered power levels are observed. Operating the 

system at a global maximum is important for reducing 

charging time, utilizing electrical power efficiently, 

reducing the losses in power electronic components and 

reactive power. Therefore, the WPT system should 

adopt itself to achieve maximum power delivery when 

resonance frequencies shift due to coupling coefficient 

variations. 

Numerous works have been reported on realizing 

adaptive WPT systems. In [8], an impedance matching 

network is utilized to maximize power transfer by 

compensating the efficiency reduction due to coupling 

variations. This method necessitates changing the 

position of coils, making the system less practical for 

the implementation. In [9,10], authors again utilize 

matching circuits at both primary and secondary side; 

however, large number of passive elements increases 

the loss and the complexity of the system. In another 

work, zero crossing detector based phase angle is 

obtained by reading the voltage and current at the 

primary side to maximize the power transfer [11]. 

However, this method may become unstable if there is 

no resonance in the system. In another work [12], which 

is published by the authors of this manuscript, a flux-

pipe coupler structure with three movable sub-coils is 

exploited for realizing an adaptive WPT system. The 

inductance value of the coupler is tuned by moving the 

position of the sub-coils to get back the system’s 

resonance frequency shifted by the coupling variations. 

This solution, however, requires a complex mechanical 

mover and a dual side control [12]. 

In [13], authors propose a frequency tracking method 

based on simulated annealing algorithm for achieving 

maximum power transfer, but this algorithm is time 

inefficient and computationally dense [14]. Impedance 

matching and Perturb and Observe (PO) algorithm are 

implemented together in [15] for maximum power 

delivery to the load. In [16], power reduction due to 

resonance frequency shift caused by misalignment 

between primary and secondary coils is compensated 

by tracking the system’s resonance frequency using 

again a PO algorithm. A drawback in PO algorithm, 

however, is that the algorithm may stuck at a local 

maximum rather than converging to the global 

maximum point. Ant Colony algorithm is also utilized 

for achieving maximum power transfer in [17].  Low 

converging speed and possibility of convergence to 

local maximum in large searching space are the main 

disadvantages in this algorithm [18]. In [19], derivation 

of power response is calculated and then the direction 

of frequency search is determined based on the sign of 

the derivation. As in PO algorithm, derivation method 

based algorithm may also stick to a local maximum 

rather than converging to the global maximum power 

point.  

Particle Swarm Optimization (PSO) algorithm is 

another technique used in several adaptive WPT 

systems [20,21]. In [20], a software-defined, near-field 

WPT system is proposed where a particle swarm 

optimizer (PSO) is used to optimize the power transfer 

efficiency of the system. Matching network of the 

transmit and receive chain is controlled through the 

PSO algorithm to compensate for the efficiency 

reductions due to coupling variations [20]. However, 

the tuning range of the tunable components in matching 

circuits is limited and these components increase loss 

and complexity of the system. In [21], PSO algorithm 

is utilized in a frequency tracking controller to improve 

the power transfer efficiency of the WPT system.  PSO 

algorithm’s iterations are seems to be offline and does 

not consider the effect of dynamic variations on the 

system. In both [20] and [21], WPT systems operate in 

MHz range with a sinusoidal RF signal source and a 

power amplifier. MHz range WPT systems are not 

suitable for high power applications such as electric 

vehicle (EV) chargers. 

In this paper, the Particle Swarm Optimization 

algorithm is implemented in a frequency tracking 

controller for use in misalignment adaptive WPT 

systems suitable for high power applications. The 

implemented frequency tracking system accurately 

finds the global maximum point without sticking to a 

local maximum under varying conditions. Therefore, 

the WPT system becomes insensitive to frequency 

splitting phenomenon caused by coupling variations. 

The algorithm needs only voltage and current 

measurement data at the resonant primary side coupler, 

making the proposed tracking system a simple primary 

side controller. The algorithm iteratively changes the 

switching frequency of the inverter. At each iteration, 

the controller calculates the power level at the input of 

the primary side resonant coupler. Iterations are online 

so that the algorithm does not stop and track the right 

frequency as long as the system is powered. 

The paper is organized as follows: section 2 presents 

the frequency splitting phenomenon by analyzing a 

circuit model for a series-series (SS) compensated 

WPT system. Subsequently, PSO based frequency 

tracking algorithm is described in section 3. Finally, 

experimental setup and measurement results are 

presented in detail in section 4. Measurements are 

performed under three different scenarios with different 

misalignments and resonance conditions. For each 

scenario, a power vs frequency graph as an oscilloscope 

screenshot is obtained experimentally to show the 

frequency splitting phenomenon. Finally, accuracy of 

the PSO algorithm is proven by comparing the tracked 

frequency with the maximum power points shown in 

these graphs.  

2. WPT system and mathematical model for 

maximum power delivery 

In quite a few modern WPT applications (e.g electric 

vehicle chargers), separation between these primary 
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and secondary side couplers needs to be large enough 

(loosely coupled) and the system should be suitable for 

lateral and vertical misalignments between the couplers 

to some extent. One needs to compensate for this loose 

coupling by connecting compensation capacitors to 

both primary and secondary side couplers. Except 

recently introduced hybrid compensation schemes, 

there are four basic compensation topologies: series-

series (SS), series-parallel (SP), parallel-series (PS) and 

parallel-parallel (PP). In this work, voltage-source 

inverter is utilized as a high power source hence series 

compensation is chosen for the primary side. Parallel 

compensation at the secondary side results in a k-

dependent compensation capacitor at the primary side 

[24]. Therefore, series compensation scheme is chosen 

at the secondary side as well. Figure 1 shows a circuit 

model for a WPT system with an SS compensation 

topology. The components, L1,2 and R1,2 represent the 

self-inductances and loss resistances of the primary and 

secondary side couplers, respectively. C1 and C2   are 

the series connected compensation capacitors at 

primary and secondary sides, respectively. Vs and M are 

the RMS voltage level of the inverter and the mutual 

inductance between the couplers, respectively. 

M

RL

C1

L1

R1 C2R2

L2Ip IsVs

 
Figure 1.  Circuit model for a WPT system with an SS 

compensation topology. 

 

Analyzing the model in Figure 1 yields the following 

Eq. (1) for the power delivered to the load resistance, 

RL, as function of source voltage (Vs) and lumped 

components as follows [25]: 
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The input impedance of the coupled system seen 

towards the resonant primary coupler (Figure 1) is as 

follows: 
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Usually, WPT systems are realized with identical 

primary and secondary side couplers. In this case, one 

can simplify the model by assuming as L1=L2=L, 

C1=C2=C and R1=R2 = R. The resonance in a coupled 

system occurs at frequencies where imaginary part of 

Zin becomes zero as given Eq. (3).  
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Solving Eq. (3) results in only one or three roots for ω 

for given conditions as shown in (4). As seen in (4), 

when the first condition (ωM ≤ R + RL) is satisfied, 

then the coupled system only exhibits a single 

resonance frequency of ω0, which is equal to the 

isolated resonance frequency of the couplers, and the 

system is said to be operating at the weakly-coupled 

regime. When the second condition (ωM > R + RL) is 

satisfied, then two more resonance frequencies ω1, ω2 

emerge along with the ω0. This phenomenon is called 

as frequency splitting, and the system is said to be 

operating at strongly-coupled regime. Maximum power 

to the load is delivered at system’s resonance 

frequencies.  
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By plugging Eq. (4) into Eq. (1), the output power (PL) 

at ω0, ω1 and ω2 is simplified as follows: 
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As seen in Eq. (5), the output power at ω0 is quite 

dependent on the mutual inductance (M) between the 

couplers.  That is, when a misalignment occurs between 

the primary and secondary side couplers, or the distance 

between them changes, PL also changes. One needs to 

vary the inverter’s voltage level to stabilize output 

power against varying coupling level. However, if 

system operates at the other resonance frequencies, ω1 

or ω2, the output power is independent of M (as given 

in Eq. (6)), making the system insensitive to the 

coupling variations.  

 

a) Sub-figure 1. 

 

 
b) Sub-figure 2. 

 

Figure 2. Output power’s (PL’s) variation as a function of   

f –M (a) , and f –RL (b) 

 

It should be remembered that the ω1 or ω2 exist only at 

the strongly coupled regime and their values are 

dependent on M when the second condition in Eq. (4) 

is satisfied. Figure 2 shows simulated output power (PL) 

using Eq. (1) as a function of f and M. Frequency 

splitting phenomenon is clearly observed in Figure 2. 

As seen in these graphs, any variation of M and RL 

significantly changes the output power transferred to 

the load. Therefore, for a large power delivery to the 

load, system’s frequency should be tuned to either ω1 

or ω2 by applying a frequency tracking algorithm.  

 

3. PSO based frequency tracking algorithm 

3.1. Basics of PSO Algorithm 

Particle Swarm Optimization (PSO) algorithm is 

inspired from the behaviors of swarm animals such as 

birds and fishes. Each individual animal in the swarm 

is called as particle and have the potential of exhibiting 

a solution to the problem to be solved. The particle 

looks for the best location in a three dimensional (3D) 

space [26]. A major advantage of PSO is its easier 

applicability to various different applications such as 

power systems, thermodynamics, image processing, 

proportional–integral–derivative (PID) control and 

machine learning as compared to other algorithms [27, 

28].  PSO algorithm has several topologies and one of 

the most utilized topologies is a so called Von 

Neumann topology. In this topology, the particles are 

connected to one another in such a way that they 

communicate with each other from one point to the 

opposite point in a square pattern [29]. As in other 

topologies, Von Neumann topology based PSO 

algorithm is established on two principles; learning the 

previous knowledge and providing communication 

between the particles in the swarm. The Von Neumann 

topology consists of N element particles in a D 

dimensional space [30]. Each particle should achieve 

the best performance and all the particles should move 

towards the particle with the best performance [31]. 

Each particle has its own speed, and this speed is 

updated based on previous performance of the particle 

and the swarm. The algorithm initially produces 

random solutions and recursively update the locations 

of particles and search for the global maximum within 

the search space. By evaluating each individual 

particle, the best performance (Pbest) and the particle 

associated with the best performance are stored in the 

memory. The inputs of the algorithm are varied until 

some of the goals are satisfied. 

3.2. The application of PSO algorithm to frequency 

tracking in a WPT System 

Figure 3 shows the vectorial movement of frequency-

based particles in the PSO algorithm. The direction of 

particles depends on the best frequency per particle, the 

frequency at which maximum power is achieved in the 

whole swarm, previous frequency, current frequency 

and up-to-date frequency. Figure 4 shows algorithm’s 

flow chart for frequency tracking to maximum power. 

This flow chart is elaborated under four main steps as 

follows: 

Step I (Start): In this first step, optimization is 

launched by establishing an initial population. A 

frequency solution vector with Np elements is setup as 

given in Eq. (7). The initial vector is built on randomly 

chosen frequencies. The constants, γ1 and γ2, given in 

Eq. (8) and (9) are then determined based on c1 and c2 

which satisfy the conditions given in Eq. (10) and (11). 
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1 2 3[ , , ,..., ], 1, 2,3,...,r r r r rn pf f f f f n N= =  (7) 

 

1 1 1r c =                     (8) 

 2 2 2r c =                     (9) 

 1 2 4c c+                     (10) 

 1 20.5( ) 1c c  + −               (11) 

 

Ø is a random variable of which values is limited to the 

0-0.5 range. Similarly, r1 and r2 are also random 

variables limited to 0-1 range. The c1 and c2 are 

cognitive and social coefficients ranging between 0 and 

2. The values of the aforementioned constants are 

utilized to update the frequency and power values in the 

next step. 
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Figure 3.  The vectorial movement of frequency-based 

particles in the PSO algorithm 

 

The best individual particle frequency (fpbest,r) and the 

best global frequency (fGbest) value within  the whole 

swarm are randomly chosen as follows:  

, 1 2 3[ , , ... ],

1,2,3,...,

Pbest r Pbest Pbest Pbest PbestN
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f f f f f

n N

=
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 [0 1]Gbestf = −                         (13) 

 

The fwpt, fact, Pwpt, and Pact variables shown in the flow 

chart are the stored frequency, up-to-date frequency, 

calculated power and up-to-date power, respectively. 

Step II (Acquiring Measurement Data): Current and 

voltage values at the input of the WPT system are 

measured using hall effect based sensors as will be 

discussed in the next section. These measured data are 

acquired into the microcontroller and utilized as an 

input to the microcontroller. Subsequently, the power is 

calculated using measured voltage and current data. 

Once the condition in Eq. (14) is satisfied, the algorithm 

utilizes the best individual particle location to update 

the frequency as given in Eq. (15). 

 

 , _i j Pbest if f                   (14) 

 

 
_ ,iPbest i jf f=                    (15) 

 

From the start of the algorithm, the best frequency 

(fPbest) for jth iteration and ith particle is stored in the 

memory. The best global frequency is also stored in the 

memory as fGbest. 

Start

All particle 
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Figure 4.  The flow chart for PSO based frequency tracking 

algorithm 

 

Step III (Updating the Frequency Values): The 

stored fPbest and fGbest are plugged in to updated 

frequency expression as follows: 
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The i, t, fi,j, fi,j(t+1) and δi,j (t+1) are particle number, 

iteration number, current particle frequency, updated 

particle frequency and updated correction term.  

Step IV (Checking the Maximum and Minimum 

Boundary Values): The maximum and minimum 

boundary values of updated frequencies are checked. If 

the boundary values are exceeded, higher and lower 

values, respectively, are taken into the program. 

According to flow chart, once initial values are 
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assigned, initial frequency value is sent to pulse width 

modulation (PWM) unit and then time based period is 

formed. The full-bridge inverter is driven by 50 % duty 

cycled PWM signal at a given frequency.  The 

algorithm is run real-time and the frequency is 

recursively updated until it converges to the frequency 

at which power is maximized. The frequency range 

over which the algorithm make searching is from 10 

kHz to 40 kHz. 

4. Experimental setup and measurement results 

An experimental WPT system is setup using a DC to 

AC high frequency inverter, flux-pipe couplers, series-

connected capacitors and a heater load resistance (RL). 

Figure 5 (a) and (b) show the block diagram and photo 

of experimental setup of the implemented WPT system, 

respectively. The experimental setup employs a 

microcontroller, gate-drive circuit, protection circuit 

and IGBT switches.  The microcontroller is Texas 

Instruments’ TMS320F28069 card and can be 

programmed via Matlab/Simulink. HCPL-3120 opto-

coupler is utilized for driving the IGBTs with signals 

from microcontroller. Isolation between power and 

driver circuit is ensured by MURATA’s MGJ2 series 

DC/DC converter. The dead time between the two 

switching signals of IGBTs on the same branch is set as 

2 µs in the program. Currents are measured through 

hall-effect based LEM LA25-P and LEM LV25-P 

current and voltage sensors. The four IGBTs, in the 

inverter stage, are IXYS’s hyper fast 

IXGH40N60B2D1 transistors. 

L L

CC

 

 

S1
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S4

M

RL

S1 S2 S3 S4
 

 
 TMS320F28069
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VDC
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short circuit protection)

CSn

 
 

 

Current-Voltage Measurement 

Circuit

USBf

 

PSO Algorithm

VDC

a) Sub-figure 1. 

 

 
b) Sub-figure 2. 

Figure 5.  Block diagram (a) and photo of experimental 

WPT system (b) 

 

Two series connected 2200 µF/450V DC capacitors 

and a 1µF/1200V snubber capacitor, which is parallel 

to these two 2200 µF capacitors, are utilized at the DC 

bus node. The flux-pipe coupler utilized in this 

experiment is basically a helical structure with three 

sub-coils wound around a common ferrite core (Figure 

5 (b)). The detailed simulation and measurement results 

of this coupler structure are out of scope of this paper 

and are reported elsewhere [12]. The list of component 

values and other details for the experimental setup are 

shown Table 1. 

The proposed frequency tracking method is 

experimentally verified under three scenarios. In the 

first scenario, the couplers are perfectly aligned and 

separated with 100 mm vertical gap (dz = 100 mm). In 

the second scenario, the coupling coefficient between 

couplers is reduced by applying a 150 mm lateral 

misalignment along the coupler’s longer side (dy = 150 

mm). In the third scenario, the sub-coil separation 

(dsub), which is originally 60 mm for each coupler, is 

changed in secondary side coupler until the self-

inductance of the secondary side coupler increases to 

185 µH from its original value of 170 µH. This final 

scenario results in moving the maximum power point 

from lower resonance frequency to the higher one. The 

difference between the power levels becomes also 

larger in this last scenario. A PO algorithm is also run 

in the last scenario and compared to the PSO algorithm. 

All three scenarios are sketched in Figure 6 and are 

summarized in Table 2.  

 
a) Scenario 1 

 

 
b) Scenario 2 

 

 
c) Scenario 3 

Figure 6.  Three expermental scenarios with various coil 

and sub-coil orientations. 
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circuits 

IGBT Driver 
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Table 1: Component values and other details of 

experimental setup 

Symbol Parameter Value 

VDC DC rail voltage 50 V 

CDC DC rail capacitors 

magnetic induction 
2x2200 F 

CSn DC rail snubber 

capacitors 
2x1 F 

RL Load resistance 5 

L1=L2 Coupler 

inductances 
170 H 

M Mutual inductance 64,75 H 

C1=C2 Compensation 

capacitors 

175 nF 

R1=R2 Loss resistances 10 m 
 

 

Table 2: Details of experimental scenarios  

State 
Scenario 

1 

Scenario  

2 

Scenario 

3 

Vertical 

separation (dz) 

100mm 100mm 100mm 

Lateral 

misalignment (dy) 

0mm 150mm 0mm 

Separation 

between sub-coils 

(dsub) 

P.S.=60  

S.S.=60 

mm  

P.S.=60 

S.S.=60 

mm 

P.S.=60  

S.S.=50 

mm  

Primary coupler 

self-inductance 

(L1) 

170 µH 170 µH 170 µH 

Secondary 

coupler self-

inductance (L2) 

170 µH 170 µH 185 µH 

Mutual-

inductance (M) 

65 µH 50 µH 64 µH 

(P.S.=Primary Side, S.S.=Secondary Side) 

4.1. Scenario I 

In scenario I, the couplers are perfectly aligned and 

separated with 100 mm vertical gap (dz = 100 mm).  

Before running PSO based frequency tracking 

algorithm, input power to the primary side resonant 

coupler and the inverter’s switching frequency are 

scanned simultaneously in time to make sure that the 

system exhibits frequency splitting phenomenon. The 

switching frequency of the inverter is linearly increased 

from 10 kHz to 40 kHz with approximately 100 Hz 

increase at each time step. Figure 7 (a) shows 

oscilloscope screenshot of this scan. The data shown 

with cyan-colored line is the scanned input power and 

exhibits two peaks at approximately 24 kHz and 33 

kHz, respectively. The data with maize-colored line is 

the scanned frequency. The PSO based frequency 

tracking algorithm is then utilized in microcontroller to 

drive the gates of IGBTs. Figure 7 (b) shows the 

oscilloscope screenshot of the PSO algorithm’s 

performance for tracking the frequency of maximum 

power. In this graph (Figure 7 (b)), the instantaneous 

frequency searched by the PSO algorithm and the 

corresponding input current are shown with maize and 

cyan colored lines, respectively. 

 

 
a) Sub-figure 1. 

 
b) Sub-figure 2. 

Figure 7.  Oscilloscope screenshot for Scenario I for (a) 

scanning for input power to the primary side resonant 

coupler and the inverter’s switching frequency and (b) 

performance of PSO algorithm 

 

 
a) Sub-figure 1. 

 
b) Sub-figure 2. 

Figure 8.  For 50 V DC bus voltage and 24 kHz switching 

frequency voltage (blue) and current (purple) at the (a) input 

and (b) load resistance (RL ). 

33kHz 
24kHz 

Power 75W/div 

Frequency 10 kHz/div 

Current 3,5A/div 

Frequency 10 kHz/div 

Current 10 A/div 
Voltage 20V/div 

  

Current 10 A/div 
Voltage 20V/div 
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One  can read the searched frequency and input current 

level as well as the time using given kHz/div, A/div and  

s/div (on the top left of the graph) scales on the graphs. 

As seen in Figure 7 (b), the PSO algorithm finds the 

resonance frequency for maximum power as 24 kHz in 

approximately 25 seconds. The tracked 24 kHz agrees 

with the initial scanning results shown in Figure 7 (a), 

verifying the accuracy of PSO algorithm. The measured 

voltage and currents at the input and at the load 

resistance (RL), when inverter operates at tracked 24 

kHz, are shown as oscilloscope screenshots in Figure 8. 

4.2. Scenario II 

In this scenario, the coupling coefficient between 

couplers is reduced by applying a 150 mm lateral 

misalignment along the coupler’s longer side (dy = 150 

mm). As in scenario 1, first, input power to the primary 

side resonant coupler and the inverter’s switching 

frequency are scanned simultaneously in time. Figure 9 

(a) shows oscilloscope screenshot of this scan. The data 

shown with cyan-colored line is the scanned input 

power and exhibits two peaks at approximately 25.5 

kHz and 31.5 kHz, respectively. The data with maize-

colored line is the scanned frequency. 

 

 
a) Sub-figure 1. 

 

 

b) Sub-figure 2. 

 

Figure 9.  Oscilloscope screenshot for Scenario II for 

scanning for input power to the primary side resonant 

coupler (a) and the inverter’s switching frequency and 

performance of PSO algorithm (b). 

 

 
a) Sub-figure 1. 

 
b) Sub-figure 2. 

 

Figure 10.  For 50 V DC bus voltage and 25.5 kHz 

switching frequency voltage (blue) and current (purple) at 

the input (a) and load resistance (RL ) (b).  

 

As seen in Figure 9 (a), the resonance frequencies 

approach to one another when 150 mm misalignment is 

applied along the longer side of the couplers. This 

change in the resonance frequencies can be attributed 

to the decrease in the mutual inductance between the 

couplers. Figure 9 (b) shows the oscilloscope 

screenshot of the PSO algorithm’s performance for 

tracking the frequency of maximum power. In this 

graph, the instantaneous frequency searched by the 

PSO algorithm and the corresponding input current are 

shown with maize and cyan colored lines, respectively. 

The PSO algorithm finds the resonance frequency for 

maximum power as 25.5 kHz in approximately 15 

seconds. The tracked 25.5 kHz agrees with the 

frequency of global maximum power shown in Figure 

9 (a)), verifying the accuracy of PSO algorithm. The 

measured voltage and currents at the input and at the 

load resistance (RL), when inverter operates at tracked 

25.5 kHz, are shown as oscilloscope screenshots in 

Figure 10. 

4.3. Scenario III 

In the third scenario, the sub-coil separation (dsub), 

which is originally 60 mm for each coupler, is changed 

in secondary side coupler until the self-inductance of 

the secondary side coupler increases to 185 µH. Such a 

change results in switching the global power maximum 

from lower resonance frequency to the higher one as 

shown in Figure 11 (a).   

~ 25.5 kHz ~ 31.5 kHz 

Frequency 10 kHz/div 

Power 75 W/div 

Current 3,5 A/div 

Frequency 9 kHz/div 

Current 10 A/div 
Voltage 20V/div 

  

Current 10 A/div 
Voltage 20V/div 
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a) Sub-figure 1. 

 

 
b) Sub-figure 2. 

Figure 11.  Oscilloscope screenshot for Scenario III for 

scanning for input power to the primary side resonant 

coupler and the inverter’s switching frequency (a) and 

performance of PSO algorithm (b). 

 

The data shown in Figure 11 (a) with cyan-colored line 

is the scanned input power and exhibits two peaks at 

approximately 24 kHz and 33 kHz, respectively. The 

data with maize-colored line is the scanned frequency. 

As seen in Figure 11 (b), algorithm converges in less 

than 20 seconds and finds the 33 kHz resonance 

frequency as the global maximum power point which 

agrees with Figure 11 (a). A major advantage of PSO 

algorithm is that it always converges to the global 

maximum and never stuck in a local maximum. To 

make a comparison, a PO algorithm is also run in the 

last scenario (scenario III). Figure 12 shows the 

oscilloscope screenshot of the PO algorithm’s 

performance for tracking the frequency of maximum 

power.  

 
Figure 12.  Performance of PO algorithm for scenario III 

 

 
a) Sub-figure 1. 

 

 
b) Sub-figure 2. 

Figure 13.  Voltage and current waveforms at load 

resistance (RL ) for scenario III (a) performance of PSO 

algorithm (b) performance of PO algorithm. 

 

In Figure 12, within approximately ten seconds, the PO 

algorithm stucks in 24 kHz which is not the maximum 

power point. Although the PO algorithm converges 

faster than the PSO algorithm, the converged frequency 

does not guarantee the maximum power point. Figure 

13 shows the oscilloscope screenshots of measured 

voltage and current waveforms on the load resistance 

(RL) for both PSO and PO algorithms. 

Performance data obtained for 3 different scenarios 

discussed in this article are summarized in Table 3. 

Comparison between PO and PSO algorithm has also 

been made for Scenario 3 to show incapability of PO 

algorithm tracking global maximum power point 

frequency . Although the PO algorithm converges 

faster than PSO algorihm, it stuck with the local 

maximum where input power (300 W) is much less than 

the global maximum (500 W) tracked by the PSO 

algorithm.  

 

Table 3: Performance evaluation of algorithms 

Scenario 
Frequency (kHz) Input 

Power 

(W) 

Conv. 

Time (s) 
Local/Global 

maximum 

Tracked  

by algo. 

Scenario 1 33 24 PSO:23,9 PSO:405 PSO:15 

Scenario 2 31,5 25,5 PSO:25,5 PSO:472 PSO:10 

Scenario 3 24 33 
PSO:33,1 

PO:24,3 

PSO:525 

PO:300 

PSO:15 

PO:5 

 

~ 24 kHz 

Frequency 10 kHz/div 

Power 75 W/div 

Frequency 11 kHz/div 

Current 7A/div 

Frequency 15 kHz/div 

 

 

 
Current 7 A/div 
  

Current 10 A/div 

 Voltage 20V/div 

Current 10 A/div 
Voltage 20V/div 

  

~33 kHz 
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5. Conclusion 

In this paper, a frequency tracking WPT system based 

on a PSO algorithm is presented. With the use of a PSO 

algorithm, inverter’s frequency is tuned to a resonance 

frequency where maximum power is delivered to the 

load without sticking to a local maximum. An 

experimental WPT system is implemented under three 

different scenarios covering various misalignment and 

resonance conditions and compared with PO algorithm 

in misalignment scenario 3.  The proposed PSO 

algorithm always converges to the resonance frequency 

of global maximum power in case frequency splitting. 

Furthermore, the proposed frequency tracking control 

method utilizes the current and voltage data at the 

primary side of the WPT system, making it a less 

complex single-sided controller. Therefore, no 

additional communication link between primary and 

secondary side is needed for maximizing the delivered 

power level. A potential future direction would be 

incorporating missing secondary side electronics such 

as a rectifier, a DC-DC converter, a battery 

management circuit and a battery to realize a complete 

WPT charger targeting a certain application such as an 

electric vehicle charger. 
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1. Introduction

Nonlinear differential equations and the related
initial and boundary value problems play an im-
portant role in astrophysics, physics and engineer-
ing. In recent years, to solve these problems both
analytically and numerically which have applica-
tions in various branches of pure and applied sci-
ences, several numerical and analytical methods
have been given. But it may not be possible to
find the analytical solutions of such problems for
all coefficient functions.

These type of mathematical models can be de-
scribed by particular names such as Riccati equa-
tion, nonlinear equations of motion, Duffing’s
equation, Van Der Pol’s equation, the equation of
motion with quadratic damping, Emden’s equa-
tion, Liouville’s equation [1–5].

In this study, we consider the second-order nonlin-
ear ordinary differential equations with quadratic
and cubic terms:

2∑

k=0

Pk(x)y
(k)(x) +

2∑

p=0

p∑

q=0

Qpq(x)y
(p)(x)y(q)(x)

+
2∑

p=0

p∑

q=0

q∑

r=0

Qpqr(x)y
(p)(x)y(q)(x)y(r)(x)

=g(x), 0 ≤ x ≤ b < ∞,

(1)

with the mixed conditions

1∑

k=0

(akjy
(k)(0) + bkjy

(k)(b)) = λj , j = 0, 1, (2)

where Pk(x), Qpq(x), Qpqr(x) and g(x) are func-
tions defined on the interval 0 ≤ x ≤ b < ∞;
akj , bkj and λj are appropriate and real constants;
y(x) is an unknown function to be determined [6].
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In this study, we develop a new numerical meth-
ods to find the approximate solutions of Eq. (1)
in the truncated Laguerre series form

y(x) ∼= yN (x) =

N∑

n=0

anLn(x), 0 ≤ x ≤ b < ∞,

(3)

where an, n = 0, 1, ..., N,N ≥ 2 are the unknown
Laguerre coefficients and Ln(x), n = 0, 1, ..., N are
the Laguerre functions of first kind defined by

Ln(x) =
n∑

k=0

(−1)k

k!

(
n

k

)
xk, 0 ≤ x ≤ b < ∞. (4)

2. Operational matrix relations

Firstly, let us write Eq. (1) in the form

L[y(x)] +N2[y(x)] +N3[y(x)] = g(x), (5)

where the linear ordinary differential part

L[y(x)] =
2∑

k=0

Pk(x)y
(k)(x), (6)

the nonlinear quadratic part

N2[y(x)] =
2∑

p=0

p∑

q=0

Qpq(x)y
(p)(x)y(q)(x), (7)

and the nonlinear cubic part

N3[y(x)] =
2∑

p=0

p∑

q=0

q∑

r=0

Qpqr(x)y
(p)(x)y(q)(x)y(r)(x).

(8)

2.1. Matrix representation of linear

ordinary differential part

Now, we consider Eq.(1) and find the matrix
forms of each term in the equation. So, we con-
vert Laguerre polynomial solution (3) to the ma-
trix form as

y(x) = y(0)(x) ∼= L(x)A,

y(1)(x) = L(x)CA,

y(2)(x) = L(x)C2A,

(9)

where

L(x) =
[
L0(x) L1(x) · · · LN (x)

]
,

C =




0 −1 −1 · · · −1
0 0 −1 · · · −1
...

...
...

. . .
...

0 0 0 · · · −1
0 0 0 · · · 0



,

A =
[
a0 a1 · · · aN

]T
.

2.2. Matrix representation of nonlinear

quadratic part

Now, we consider matrix representation of non-
linear quadratic part. So, we define the matrices
with related to (7) and (9)

(y(0)(x))2 = L(x)L(x)A,

y(1)(x)y(0)(x) = L(x)CL(x)A,

(y(1)(x))2 = L(x)CL(x)CA,

y(2)(x)y(1)(x) = L(x)C2L(x)CA,

y(2)(x)y(0)(x) = L(x)C2L(x)A,

(y(2)(x))2 = L(x)C2L(x)C2A,

(10)

where

L(x) = diag
[
L(x) L(x) · · · L(x)

]
,

C = diag
[
C C · · · C

]
,

A =
[
a0A a1A · · · aNA

]T
.

2.3. Matrix representation of nonlinear

cubic part

Let us consider (8) as

N3[y(x)] =
2∑

p=0

p∑

q=0

q∑

r=0

Qpqr(x)y
(p)(x)y(q)(x)y(r)(x)

+Q000(x)y
(0)(x)y(0)(x)y(0)(x)

+Q100(x)y
(1)(x)y(0)(x)y(0)(x)

+Q110(x)y
(1)(x)y(1)(x)y(0)(x)

+Q111(x)y
(1)(x)y(1)(x)y(1)(x)

+Q200(x)y
(2)(x)y(0)(x)y(0)(x)

+Q210(x)y
(2)(x)y(1)(x)y(0)(x)

+Q211(x)y
(2)(x)y(1)(x)y(1)(x)

+Q220(x)y
(2)(x)y(2)(x)y(0)(x)

+Q221(x)y
(2)(x)y(2)(x)y(1)(x)

+Q222(x)y
(2)(x)y(2)(x)y(2)(x).
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So, we define the matrices as

(y(0)(x))3 = L(x)L(x)L(x)A,

y(1)(x)(y(0)(x))2 = L(x)CL(x)L(x)A,

(y(1)(x))2y(0)(x) = L(x)CL(x)CL(x)A,

(y(1)(x))3 = L(x)CL(x)CL(x)CA,

y(2)(x)(y(0)(x))2 = L(x)C2L(x)L(x)A,

y(2)(x)y(1)(x)y(0)(x) = L(x)C2L(x)CL(x)A,

(11)

y(2)(x)(y(1)(x))2 = L(x)C2L(x)CL(x)CA,

(y(2)(x))2y(0)(x) = L(x)C2L(x)C2L(x)A,

(y(2)(x))2y(1)(x) = L(x)C2L(x)C2L(x)CA,

(y(2)(x))3 = L(x)C2L(x)C2L(x)C2A,

where

L(x) = diag
[
L(x) L(x) · · · L(x)

]
,

C = diag
[
C C · · · C

]
,

A =
[
a0A a1A · · · aNA

]T
.

3. Method of solution

Now, we define the collocation points as

xi =
b

N
i, i = 0, 1, N ; 0 ≤ x0 < x1 < ... < xN = b.

(12)

We substitute the collocation points (12) into Eq.
(1), we have the system of matrix equations for
i = 0, 1, ..., N ,

2∑

k=0

Pk(xi)y
(k)(xi) +

2∑

p=0

p∑

q=0

Qpq(xi)y
(p)(xi)y

(q)(xi)

+
2∑

p=0

p∑

q=0

q∑

r=0

Qpqr(xi)y
(p)(xi)y

(q)(xi)y
(r)(xi)

=g(xi), 0 ≤ x ≤ b < ∞,

or briefly,

2∑

k=0

PkY
(k) +

2∑

p=0

p∑

q=0

QpqY
(p,q)

+
2∑

p=0

p∑

q=0

q∑

r=0

QpqrY
(p,q,r)

= G, 0 ≤ x ≤ b < ∞,

(13)

where

Pk = diag
[
Pk(x0) Pk(x1) · · · Pk(xN )

]
,

Qpq = diag
[
Qpq(x0) Qpq(x1) · · · Qpq(xN )

]
,

Qpqr = diag
[
Qpqr(x0) Qpqr(x1) · · · Qpqr(xN )

]
,

and

Y(k) =




y(k)(x0)

y(k)(x1)
...

y(k)(xN )


 , G =




g(x0)
g(x1)

...
g(xN )


 ,

Y(p,q,r) =




y(p)(x0)y
(q)(x0)y

(r)(x0)

y(p)(x1)y
(q)(x1)y

(r)(x1)
...

y(p)(xN )y(q)(xN )y(r)(xN )


 ,

Y(p,q) =




y(p)(x0)y
(q)(x0)

y(p)(x1)y
(q)(x1)

...

y(p)(xN )y(q)(xN )


 .

By the other hand, we can write following matrix
forms of the nonlinear quadratic and nonlinear
cubic parts from (8) and (9) for p, q, r = 0, 1, 2

Y(0,0) = L∗

(0,0)A, Y(1,0) = L∗

(1,0)A,

Y(1,1) = L∗

(1,1)A, Y(2,0) = L∗

(2,0)A,

Y(2,1) = L∗

(2,1)A, Y(2,2) = L∗

(2,2)A,

and

Y(0,0,0) = L∗

(0,0,0)A, Y(1,0,0) = L∗

(1,0,0)A,

Y(1,1,0) = L∗

(1,1,0)A, Y(1,1,1) = L∗

(1,1,1)A,

Y(2,0,0) = L∗

(2,0,0)A, Y(2,1,0) = L∗

(2,1,0)A,

Y(2,1,1) = L∗

(2,1,1)A, Y(2,2,0) = L∗

(2,2,0)A,

Y(2,2,1) = L∗

(2,2,1)A, Y(2,2,2) = L∗

(2,2,2)A,

where
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L∗

(0,0) =




L(x0)L(x0)
L(x1)L(x1)

...
L(xN )L(xN )


 ,

L∗

(1,0) =




L(x0)CL(x0)
L(x1)CL(x1)

...
L(xN )CL(xN )


 ,

L∗

(1,1) =




L(x0)CL(x0)C
L(x1)CL(x1)C

...
L(xN )CL(xN )C


 ,

L∗

(2,0) =




L(x0)C
2L(x0)

L(x1)C
2L(x1)
...

L(xN )C2L(xN )


 ,

L∗

(2,1) =




L(x0)C
2L(x0)C

L(x1)C
2L(x1)C
...

L(xN )C2L(xN )C


 ,

L∗

(2,2) =




L(x0)C
2L(x0)C2

L(x1)C
2L(x1)C2

...

L(xN )C2L(xN )C2


 ;

L∗

(0,0,0) =




L(x0)L(x0)L(x0)

L(x1)L(x1)L(x1)
...

L(xN )L(xN )L(xN )



,

L∗

(1,0,0) =




L(x0)CL(x0)L(x0)

L(x1)CL(x1)L(x1)
...

L(xN )CL(xN )L(xN )



,

L∗

(1,1,0) =




L(x0)CL(x0)CL(x0)

L(x1)CL(x1)CL(x1)
...

L(xN )CL(xN )CL(xN )



,

L∗

(1,1,1) =




L(x0)CL(x0)CL(x0)C

L(x1)CL(x1)CL(x1)C
...

L(xN )CL(xN )CL(xN )C



,

L∗

(2,0,0) =




L(x0)C
2L(x0)L(x0)

L(x1)C
2L(x1)L(x1)
...

L(xN )C2L(xN )L(xN )



,

L∗

(2,1,0) =




L(x0)C
2L(x0)CL(x0)

L(x1)C
2L(x1)CL(x1)

...

L(xN )C2L(xN )CL(xN )



,

L∗

(2,1,1) =




L(x0)C
2L(x0)CL(x0)C

L(x1)C
2L(x1)CL(x1)C

...

L(xN )C2L(xN )CL(xN )C



,

L∗

(2,2,0) =




L(x0)C
2L(x0)C2L(x0)

L(x1)C
2L(x1)C2L(x1)

...

L(xN )C2L(xN )C2L(xN )



,

L∗

(2,2,1) =




L(x0)C
2L(x0)C2L(x0)C

L(x1)C
2L(x1)C2L(x1)C

...

L(xN )C2L(xN )C2L(xN )C



,

L∗

(2,2,2) =




L(x0)C
2L(x0)C2L(x0)C2

L(x1)C
2L(x1)C2L(x1)C2

...

L(xN )C2L(xN )C2L(xN )C2



.

Then the fundamental matrix equation is gained
from (5)-(13)

2∑

k=0

PkLA+
2∑

p=0

p∑

q=0

QpqL
∗

(p,q)A

+
2∑

p=0

p∑

q=0

q∑

r=0

QpqrL
∗

(p,q,r)A

= G, 0 ≤ x ≤ b < ∞,

(14)

Briefly, we can write Eq.(14) as

WA+VA+ ZA = G, (15)

where
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W =

2∑

k=0

PkL = [wi,j ]; i, j = 0, 1, ..., N,

V =
2∑

p=0

p∑

q=0

QpqL
∗

(p,q) = [vi,j ](N+1)×(N+1)2 ,

Z =
2∑

p=0

p∑

q=0

q∑

r=0

QpqrL
∗

(p,q,r) = [zi,j ](N+1)×(N+1)3 ,

Moreover, fundamental matrix equation (15) can
be written in the augmented matrix form

[W;V;Z : G]. (16)

3.1. Matrix representation of the

conditions

Let us define the matrix form of the conditions
given by (2) can be written as

for j = 0, U0 = [y(0)(0)] = L(0),

for j = 1, U1 = [y(1)(0)] = L(0)C.

Then, we have

U =

[
U0

U1

]

2×(N+1)

,

O2 =

[
0 0 · · · 0
0 0 · · · 0

]

2×(N+1)2
,

O3 =

[
0 0 · · · 0
0 0 · · · 0

]

2×(N+1)3
,

or briefly,

[U;O2;O3 : λj ]. (17)

Consequently, in order to find the Laguerre coef-
ficients an, (n = 0, 1, ..., N) related with the ap-
proximate solution (3) of the problem (1)-(2), by
replacing the 2 row matrices (17) by the last 2
rows (or any 2 rows) of the augmented matrix
(16), we obtain new augmented matrix

[W̃; Ṽ; Z̃ : G̃]. (18)

Thence the unknown Laguerre coefficients are cal-
culated by solving (18) [7]- [8]. Therefore, the
Laguerre polynomial solution can be acquired as

yN (x) =
N∑

n=0

anLn(x).

4. Error analysis

Definition 1 (Residual function). We define the
residual function RN (xα) for x = xα ∈ [0, b]

RN (xα) =
2∑

k=0

Pk(xα)y
(k)(xα)

+
2∑

p=0

p∑

q=0

Qpq(xα)y
(p)(xα)y

(q)(xα)

+
2∑

p=0

p∑

q=0

q∑

r=0

Qpqr(xα)y
(p)(xα)y

(q)(xα)y
(r)(xα)

−g(xα) ∼= 0

or

RN (xα) ≤ 10−kα , for kα ∈ Z
+.

Then |RN (xα)| is called as the residual function
on the interval [0, b].

Theorem 1. |RN (xα)| is the residual function on
the interval [0, b]. Then

∣∣∣∣
∫ b

0
RN (x)dx

∣∣∣∣ ≤
∫ b

0
|RN (x)| dx

So, that the upper bound of the mean error Rn is

|RN (x)| ≤

∫ b

0 |RN | (x)dx

b
= Rn.

Proof. In order to see the proof briefly, we con-
sider the Mean Value Theorem and the definition
below. Then

∣∣∣∣
∫ b

0
RN (x)dx

∣∣∣∣ ≤
∫ b

0
|RN (x)| dx

∣∣∣∣
∫ b

0
RN (x)dx

∣∣∣∣ ≤ b |RN (c)| , 0 ≤ c ≤ b

∣∣∣∣
∫ b

0
RN (x)dx

∣∣∣∣ ≤ b |RN (c)| ≤

∫ b

a

|RN (x)| dx

|RN (x)| ≤

∫ b

0 |RN | (x)dx

b
= Rn

�
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4.1. Algorithm

• Step 0. Input initial data:
Pk(x), Qpq(x), Qpqr(x) and g(x). Deter-
mine the mixed conditions.

• Step 1. Set N where N ∈ N.

• Step 2. Construct the matrices

L(x),C,L(x),C,L(x),C and G then
W,V,Z.

• Step 3. Define the collocation points
xi =

b
N
i, i = 0, 1, ..., N .

• Step 4. Compute [W;V;Z : G].

• Step 5. Compute [U;O2;O3 : λj ].

• Step 6. Construct the augmented matrix
[W̃; Ṽ; Z̃ : G̃].

• Step 7. Input: the augmented matrix ar-
guments, forward elimination, back sub-
stitution. Output: A (Solve the system
by Gaussian elimination method).

• Step 8. Put arguments an in the trun-
cated Laguerre series form.

• Step 9. Output data: the approximate
solution yN (x).

• Step 10. Construct y(x) is the exact so-
lution of (1).

• Step 11. Stop when RN (x) ≤ 10−k

where k ∈ Z
+. Otherwise, increase N and

return to Step 1.

5. Illustrative examples

In this section, some examples will be given to
show applicability of our method. All the prob-
lems have been calculated and plotted by using
Maple18 and MatlabR2014b.

Example 1. First, we consider the second-order
nonlinear ordinary differential equation with qua-
dratic terms

y′′(x) + 2y′(x) + y(x) + y2(x)− y′′(x)y′(x) = 12 exp(x) + 2

(19)

with the initial conditions

y(0) = 3, y′(0) = 2. (20)

The exact solution of (19)-(20) is y(x) = 1 +
2 exp(x).

Table 1. |RN | comparison of Exam-
ple 1. for different N values.

x |R2| |R4| |R5|
(0.0) 0.000000 0.000000 0.000000
(0.1) 0.341836E-4 0.530766E-5 0.450128E-6
(0.2) 0.280551E-3 0.281048E-4 0.194988E-5
(0.3) 0.971761E-3 0.563571E-4 0.318105E-5
(0.4) 0.236493E-3 0.671672E-4 0.339969E-5
(0.5) 0.474425E-2 0.525094E-4 0.365512E-5
(0.6) 0.842376E-2 0.476701E-4 0.530256E-5
(0.7) 0.137505E-2 0.162679E-3 0.552450E-5
(0.8) 0.211081E-1 0.617047E-3 0.104534E-4
(0.9) 0.309206E-1 0.177815E-2 0.808003E-4
(1.0) 0.436563E-1 0.420369E-2 0.282554E-3

Example 2. Now, we consider the second-order
nonlinear ordinary differential equation with cu-
bic terms,

y′′(x)− y′(x)(1− y2(x)) + y(x) = (2 + sin(x)) cos(x) sin(x) + 1

(21)

with the initial conditions

y(0) = y′(0) = 1. (22)

The exact solution of (21)-(22) is y(x) = 1 +
sin(x).

Table 2. |RN | comparison of Exam-
ple 2. for different N values.

x |R2| |R4| |R6|
(0.0) 0.000000 0.000000 0.000000
(0.1) 0.516658E-7 0.554530E-9 0.551083E-12
(0.2) 0.213306E-8 0.243668E-10 0.241721E-11
(0.3) 0.494797E-8 0.597486E-10 0.593143E-11
(0.4) 0.905816E-8 0.114974E-10 0.114344E-11
(0.5) 0.145574E-8 0.193316E-10 0.192602E-11
(0.6) 0.215357E-8 0.298030E-9 0.297203E-11
(0.7) 0.300782E-7 0.432339E-9 0.430863E-10
(0.8) 0.402643E-7 0.599433E-9 0.595716E-10
(0.9) 0.521673E-7 0.802455E-9 0.793115E-10
(1.0) 0.658529E-7 0.444952E-8 0.234134E-9

6. Conclusion

In this study, we introduce a matrix method de-
pending on Laguerre polynomials in order to solve
a class of second-order nonlinear ordinary differ-
ential equations having quadratic and cubic terms
numerically. Furthermore, the error analysis is
given to show the accuracy of the method. The
present method and its error analysis are applied
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on some illustrative examples which have been
shown by the tables.

The method has some significant advantages such
as;

• The present method has short and con-
cise computing procedure by writing the
algorithm in Maple18.

• The technique gives an alternative way of
solution to the second-order nonlinear or-
dinary differential equations which varies
the other methods in literature.

• The present method has sufficient results
when N is chosen large enough.

The method also can be developed and applied to
differential functional integral equations, nonlin-
ear functional integral equations and functional
systems but some modifications are required [9]-
[10].
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1. Introduction

The following inequality, named Hermite–
Hadamard inequality, is one of the most famous
inequalities in the literature for convex functions.

Theorem 1. Let f : I ⊆ R −→ R be a convex
function and a1, a2 ∈ I with a1 < a2. Then the
following inequality holds:

f

(

a1 + a2

2

)

≤ 1

a2 − a1

∫ a2

a1

f(x)dx (1)

≤ f(a1) + f(a2)

2
.

This inequality (1) is also known as trapezium in-
equality.

The trapezium inequality has remained an area of
great interest due to its wide applications in the
field of mathematical analysis. Authors of recent
decades have studied (1) in the premises of newly
invented definitions due to motivation of convex
function. Interested readers see the references [1]–
[16], [19, 20, 22, 23].
The aim of this paper is to establish trapezoidal
type generalized integral inequalities for preinvex

functions. Interestingly, the special cases of pre-
sented results, are fractional integral inequalities.
Therefore, it is important to summarize the study
of fractional integrals. Let us recall some special
functions and evoke some basic definitions as fol-
lows:

Definition 1. [13] Let f ∈ L[a1, a2]. Then k–
fractional integrals of order α, k > 0 with a1 ≥ 0
are defined by

I
α,k

a+1
f(x) =

1

kΓk(α)

∫ x

a1

(x− t)
α
k
−1f(t)dt, x > a1

and

I
α,k

a−2
f(x) =

1

kΓk(α)

∫ a2

x

(t−x)
α
k
−1f(t)dt, a2 > x.

For k = 1, k–fractional integrals give Riemann–
Liouville integrals. For α = k = 1, k–fractional
integrals give classical integrals.

Definition 2. [21] A set S ⊆ R
n is said to be

invex set with respect to the mapping η : S×S −→
R
n, if x + tη(y, x) ∈ S for every x, y ∈ S and

t ∈ [0, 1].

The invex set also termed as, an η–connected set.
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Definition 3. Let S ⊆ R
n be an invex set

with respect to η : S × S −→ R
n. A function

f : S −→ [0,+∞) is said to be preinvex with re-
spect to η, if for every x, y ∈ S and t ∈ [0, 1],

f
(

x+ tη(y, x)
)

≤ (1− t)f(x) + tf(y). (2)

Also, let define a function ϕ : [0,+∞) −→
[0,+∞) satisfying the following conditions:

∫ 1

0

ϕ(t)

t
dt < +∞, (3)

1

A
≤ ϕ(s)

ϕ(r)
≤ A for

1

2
≤ s

r
≤ 2 (4)

ϕ(r)

r2
≤ B

ϕ(s)

s2
for s ≤ r (5)

∣

∣

∣

∣

∣

ϕ(r)

r2
−ϕ(s)

s2

∣

∣

∣

∣

∣

≤ C|r−s|ϕ(r)
r2

for
1

2
≤ s

r
≤ 2, (6)

where A,B,C > 0 are independent of r, s > 0. If

ϕ(r)rα is increasing for some α ≥ 0 and ϕ(r)
rβ

is de-
creasing for some β ≥ 0, then ϕ satisfies (3)–(6),
see [18]. Therefore, the left–sided and right–sided
generalized integral operators are defined as fol-
lows:

a+1
Iϕf(x) =

∫ x

a1

ϕ(x− t)

x− t
f(t)dt, x > a1,

a−2
Iϕf(x) =

∫ a2

x

ϕ(t− x)

t− x
f(t)dt, x < a2.

The most important feature of generalized in-
tegrals is that; they produce Riemann–Liouville
fractional integrals, k–Riemann–Liouville frac-
tional integrals, Katugampola fractional integrals,
conformable fractional integrals, Hadamard frac-
tional integrals, etc.

Motivated by the above literatures, the main ob-
jective of this paper is to discover in section 2, an
interesting identity in order to study some new
bounds regarding general trapezoidal type inte-
gral inequalities. By using the established iden-
tity as an auxiliary result, some new estimates
for trapezoidal type integral inequalities via gen-
eralized integrals are obtained. It is pointed out
that some new fractional integral inequalities have
been deduced from main results. In section 3,
some applications to special means are given. In
section 4, a briefly conclusion is provided as well.
The ideas and techniques of this paper may stim-
ulate further research in the field of integral in-
equalities.

2. Main results

Throughout this study, let P = [ma1, a2] with
a1 < a2, m ∈ (0, 1] be an invex subset with re-
spect to η : P × P −→ R. Also, for brevity, we

define

Λ(1)
m,n(t) =

∫ t

0
∆(1)

m,n(s)ds, (7)

∆(1)
m,n(s) =

∫ s

0

ϕ
(

η(x,ma1)
n+1 u

)

u
du < +∞, (8)

where η(x,ma1) > 0 and

Λ(2)
m,n(t) =

∫ t

0
∆(2)

m,n(s)ds, (9)

∆(2)
m,n(s) =

∫ s

0

ϕ
(

η(a2,mx)
n+1 u

)

u
du < +∞, (10)

where η(a2,mx) > 0.

For establishing some new results regarding gen-
eral fractional integrals we need to prove the fol-
lowing lemma.

Lemma 1. Let f : P −→ R be a twice differen-
tiable mapping on (ma1, a2). If f

′′ ∈ L(P ), then
the following identity for generalized fractional in-
tegrals hold:

η(x,ma1)Λ
(1)
m,n(1)

(n+ 1)∆
(1)
m,n(1)

×f ′(ma1) + f ′(ma1 + η(x,ma1))

2

−f(ma1) + f(ma1 + η(x,ma1))

2
− 1

2∆
(1)
m,n(1)

×
[

(ma1)
+Iϕf

(

ma1 +
η(x,ma1)

n+ 1

)

+ (ma1+η(x,ma1))−Iϕf

(

ma1 +
n

n+ 1
η(x,ma1)

)

]

+
η(a2,mx)Λ

(2)
m,n(1)

(n+ 1)∆
(2)
m,n(1)

×f ′(mx) + f ′(mx+ η(a2,mx))

2

−f(mx) + f(mx+ η(a2,mx))

2
− 1

2∆
(2)
m,n(1)

×
[

(mx)+Iϕf

(

mx+
η(a2,mx)

n+ 1

)

+ (mx+η(a2,mx))−Iϕf

(

mx+
n

n+ 1
η(a2,mx)

)

]

=
η2(x,ma1)

2(n+ 1)2∆
(1)
m,n(1)

(11)

×
∫ 1

0
Λ(1)
m,n(t)

[

f ′′
(

ma1 +
(n+ t)

n+ 1
η(x,ma1)

)

−f ′′
(

ma1 +
(1− t)

n+ 1
η(x,ma1)

)

]

dt
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+
η2(a2,mx)

2(n+ 1)2∆
(2)
m,n(1)

×
∫ 1

0
Λ(2)
m,n(t)

[

f ′′
(

mx+
(n+ t)

n+ 1
η(a2,mx)

)

−f ′′
(

mx+
(1− t)

n+ 1
η(a2,mx)

)

]

dt.

We denote

I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)

=
η2(x,ma1)

2(n+ 1)2∆
(1)
m,n(1)

(12)

×
∫ 1

0
Λ(1)
m,n(t)

[

f ′′
(

ma1 +
(n+ t)

n+ 1
η(x,ma1)

)

−f ′′
(

ma1 +
(1− t)

n+ 1
η(x,ma1)

)

]

dt

+
η2(a2,mx)

2(n+ 1)2∆
(2)
m,n(1)

×
∫ 1

0
Λ(2)
m,n(t)

[

f ′′
(

mx+
(n+ t)

n+ 1
η(a2,mx)

)

−f ′′
(

mx+
(1− t)

n+ 1
η(a2,mx)

)

]

dt.

Proof. Integrating by parts twice (12) and
changing the variables of integration, we have

I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)

=
η2(x,ma1)

2(n+ 1)2∆
(1)
m,n(1)

×
{

(n+ 1)Λ
(1)
m,n(t)f ′

(

ma1 +
(n+t)
n+1 η(x,ma1)

)

η(x,ma1)

∣

∣

∣

∣

∣

1

0

− (n+ 1)

η(x,ma1)

×
∫ 1

0
∆(1)

m,n(t)f
′
(

ma1 +
(n+ t)

n+ 1
η(x,ma1)

)

dt

+
(n+ 1)Λ

(1)
m,n(t)f ′

(

ma1 +
(1−t)
n+1 η(x,ma1)

)

η(x,ma1)

∣

∣

∣

∣

∣

1

0

− (n+ 1)

η(x,ma1)

×
∫ 1

0
∆(1)

m,n(t)f
′
(

ma1 +
(1− t)

n+ 1
η(x,ma1)

)

dt

}

+
η2(a2,mx)

2(n+ 1)2∆
(2)
m,n(1)

×
{

(n+ 1)Λ
(2)
m,n(t)f ′

(

mx+ (n+t)
n+1 η(a2,mx)

)

η(a2,mx)

∣

∣

∣

∣

∣

1

0

− (n+ 1)

η(a2,mx)

×
∫ 1

0
∆(2)

m,n(t)f
′
(

mx+
(n+ t)

n+ 1
η(a2,mx)

)

dt

+
(n+ 1)Λ

(2)
m,n(t)f ′

(

mx+ (1−t)
n+1 η(a2,mx)

)

η(a2,mx)

∣

∣

∣

∣

∣

1

0

− (n+ 1)

η(a2,mx)

×
∫ 1

0
∆(2)

m,n(t)f
′
(

mx+
(1− t)

n+ 1
η(a2,mx)

)

dt

}

=
η2(x,ma1)

2(n+ 1)2Λ
(1)
m,n(1)

×
{

(n+ 1)Λ
(1)
m,n(1)f ′ (ma1 + η(x,ma1))

η(x,ma1)

− (n+ 1)

η(x,ma1)

×
[

(n+ 1)∆
(1)
m,n(1)f (ma1 + η(x,ma1))

η(x,ma1)

− (n+ 1)

η(x,ma1)

× (ma1+η(x,ma1))
−Iϕf

(

ma1 +
n

n+ 1
η(x,ma1)

)

]

+
(n+ 1)Λ

(1)
m,n(1)f ′ (ma1)

η(x,ma1)

− (n+ 1)

η(x,ma1)
×
[

(n+ 1)∆
(1)
m,n(1)f (ma1)

η(x,ma1)

− (n+ 1)

η(x,ma1)
× (ma1)

+Iϕf

(

ma1 +
η(x,ma1)

n+ 1

)

}

+
η2(a2,mx)

2(n+ 1)2Λ
(2)
m,n(1)

×
{

(n+ 1)Λ
(2)
m,n(1)f ′ (mx+ η(a2,mx))

η(a2,mx)

− (n+ 1)

η(a2,mx)

×
[

(n+ 1)∆
(2)
m,n(1)f (mx+ η(a2,mx))

η(a2,mx)

− (n+ 1)

η(a2,mx)

× (mx+η(a2,mx))−Iϕf

(

mx+
n

n+ 1
η(a2,mx)

)

]

+
(n+ 1)Λ

(2)
m,n(1)f ′ (mx)

η(a2,mx)
− (n+ 1)

η(a2,mx)
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×
[

(n+ 1)∆
(2)
m,n(1)f (mx)

η(a2,mx)

− (n+ 1)

η(a2,mx)
× (mx)+Iϕf

(

mx+
η(a2,mx)

n+ 1

)

}

=
η(x,ma1)Λ

(1)
m,n(1)

(n+ 1)∆
(1)
m,n(1)

×f ′(ma1) + f ′(ma1 + η(x,ma1))

2

−f(ma1) + f(ma1 + η(x,ma1))

2
− 1

2∆
(1)
m,n(1)

×
[

(ma1)
+Iϕf

(

ma1 +
η(x,ma1)

n+ 1

)

+ (ma1+η(x,ma1))−Iϕf

(

ma1 +
n

n+ 1
η(x,ma1)

)

]

+
η(a2,mx)Λ

(2)
m,n(1)

(n+ 1)∆
(2)
m,n(1)

×f ′(mx) + f ′(mx+ η(a2,mx))

2

−f(mx) + f(mx+ η(a2,mx))

2
− 1

2∆
(2)
m,n(1)

×
[

(mx)+Iϕf

(

mx+
η(a2,mx)

n+ 1

)

+ (mx+η(a2,mx))−Iϕf

(

mx+
n

n+ 1
η(a2,mx)

)

]

.

The proof of Lemma 1 is completed. �

Remark 1. Taking m = 1, n = 0, x =
a1+a2

2 , η(x,ma1) = x−ma1, η(a2,mx) = a2−mx

and ϕ(t) = t in Lemma 1, we get

I
f,Λ

(1)
1,0,Λ

(2)
1,0,∆

(1)
1,0,∆

(2)
1,0

(

a1 + a2

2
, a1, a2

)

=

(

a2 − a1

2

)

(13)

×
[

f ′(a1) + 2f ′
(

a1+a2
2

)

+ f ′(a2)

2

]

−
[

f(a1) + 2f
(

a1+a2
2

)

+ f(a2)

2

]

− 2

(a2 − a1)

∫ a2

a1

f(t)dt.

Theorem 2. Let f : P −→ R be a twice differen-
tiable mapping on (ma1, a2). If |f ′′|q is preinvex
on P for q > 1 and p−1+q−1 = 1, then the follow-
ing inequality for generalized fractional integrals
hold:

∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤ η2(x,ma1)

2(n+ 1)2 q
√

2(n+ 1)∆
(1)
m,n(1)

(14)

× p

√

B
Λ
(1)
m,n

(p)

×
{

q
√

|f ′′(ma1)|q + (2n+ 1)|f ′′(x)|q

+ q
√

(2n+ 1)|f ′′(ma1)|q + |f ′′(x)|q
}

+
η2(a2,mx)

2(n+ 1)2 q
√

2(n+ 1)∆
(2)
m,n(1)

p

√

B
Λ
(2)
m,n

(p)

×
{

q
√

|f ′′(mx)|q + (2n+ 1)|f ′′(a2)|q

+ q
√

(2n+ 1)|f ′′(mx)|q + |f ′′(a2)|q
}

,

where

B
Λ
(i)
m,n

(p) =

∫ 1

0

[

Λ(i)
m,n(t)

]p

dt, ∀ i = 1, 2. (15)

Proof. From Lemma 1, preinvexity of |f ′′|q,
Hölder’s inequality and properties of the modu-
lus, we have

∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤ η2(x,ma1)

2(n+ 1)2∆
(1)
m,n(1)

×
{

∫ 1

0
Λ(1)
m,n(t)

[∣

∣

∣

∣

∣

f ′′
(

ma1 +
(n+ t)

n+ 1
η(x,ma1)

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f ′′
(

ma1 +
(1− t)

n+ 1
η(x,ma1)

)

∣

∣

∣

∣

∣

]

dt

}

+
η2(a2,mx)

2(n+ 1)2∆
(2)
m,n(1)

×
{

∫ 1

0
Λ(2)
m,n(t)

[∣

∣

∣

∣

∣

f ′′
(

mx+
(1− t)

n+ 1
η(a2,mx)

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f ′′
(

mx+
(n+ t)

n+ 1
η(a2,mx)

)

∣

∣

∣

∣

∣

]

dt

}

≤ η2(x,ma1)

2(n+ 1)2∆
(1)
m,n(1)

(∫ 1

0

[

Λ(1)
m,n(t)

]p

dt

)

1
p

×
{(

∫ 1

0

∣

∣

∣

∣

∣

f ′′
(

ma1 +
(n+ t)

n+ 1
η(x,ma1)

)

∣

∣

∣

∣

∣

q

dt

)
1
q

+

(

∫ 1

0

∣

∣

∣

∣

∣

f ′′
(

ma1 +
(1− t)

n+ 1
η(x,ma1)

)

∣

∣

∣

∣

∣

q

dt

)
1
q
}

+
η2(a2,mx)

2(n+ 1)2∆
(2)
m,n(1)

(∫ 1

0

[

Λ(2)
m,n(t)

]p

dt

)

1
p

×
{(

∫ 1

0

∣

∣

∣

∣

∣

f ′′
(

mx+
(1− t)

n+ 1
η(a2,mx)

)

∣

∣

∣

∣

∣

q

dt

)
1
q
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+

(

∫ 1

0

∣

∣

∣

∣

∣

f ′′
(

mx+
(n+ t)

n+ 1
η(a2,mx)

)

∣

∣

∣

∣

∣

q

dt

)
1
q
}

≤ η2(x,ma1)

2(n+ 1)2∆
(1)
m,n(1)

p

√

B
Λ
(1)
m,n

(p)

×
{[

∫ 1

0

[

(

1− n+ t

n+ 1

)

∣

∣f ′′(ma1)
∣

∣

q

+
(n+ t)

n+ 1

∣

∣f ′′(x)
∣

∣

q

]

dt

] 1
q

+

[

∫ 1

0

[

(

1− 1− t

n+ 1

)

∣

∣f ′′(ma1)
∣

∣

q

+
(1− t)

n+ 1

∣

∣f ′′(x)
∣

∣

q

]

dt

] 1
q
}

+
η2(a2,mx)

2(n+ 1)2∆
(2)
m,n(1)

p

√

B
Λ
(2)
m,n

(p)

×
{[

∫ 1

0

[

(

1− 1− t

n+ 1

)

∣

∣f ′′(mx)
∣

∣

q

+
(1− t)

n+ 1

∣

∣f ′′(a2)
∣

∣

q

]

dt

] 1
q

+

[

∫ 1

0

[

(

1− n+ t

n+ 1

)

∣

∣f ′′(mx)
∣

∣

q

+
(n+ t)

n+ 1

∣

∣f ′′(a2)
∣

∣

q

]

dt

] 1
q
}

=
η2(x,ma1)

2(n+ 1)2 q
√

2(n+ 1)∆
(1)
m,n(1)

p

√

B
Λ
(1)
m,n

(p)

×
{

q
√

|f ′′(ma1)|q + (2n+ 1)|f ′′(x)|q

+ q
√

(2n+ 1)|f ′′(ma1)|q + |f ′′(x)|q
}

+
η2(a2,mx)

2(n+ 1)2 q
√

2(n+ 1)∆
(2)
m,n(1)

p

√

B
Λ
(2)
m,n

(p)

×
{

q
√

|f ′′(mx)|q + (2n+ 1)|f ′′(a2)|q

+ q
√

(2n+ 1)|f ′′(mx)|q + |f ′′(a2)|q
}

.

The proof of Theorem 2 is completed. �

We point out some special cases of Theorem 2.

Corollary 1. Taking p = q = 2 in Theorem 2,
we have

∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤ η2(x,ma1)

2(n+ 1)2
√

2(n+ 1)∆
(1)
m,n(1)

(16)

×
√

B
Λ
(1)
m,n

(2)

×
{

√

|f ′′(ma1)|2 + (2n+ 1)|f ′′(x)|2

+
√

(2n+ 1)|f ′′(ma1)|2 + |f ′′(x)|2
}

+
η2(a2,mx)

2(n+ 1)2
√

2(n+ 1)∆
(2)
m,n(1)

√

B
Λ
(2)
m,n

(2)

×
{

√

|f ′′(mx)|2 + (2n+ 1)|f ′′(a2)|2

+
√

(2n+ 1)|f ′′(mx)|2 + |f ′′(a2)|2
}

.

Corollary 2. Taking ϕ(t) = t in Theorem 2, we
get

∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤ η2(x,ma1)

4(n+ 1)2 q
√

2(n+ 1) p
√
2p+ 1

(17)

×
{

q
√

|f ′′(ma1)|q + (2n+ 1)|f ′′(x)|q

+ q
√

(2n+ 1)|f ′′(ma1)|q + |f ′′(x)|q
}

+
η2(a2,mx)

4(n+ 1)2 q
√

2(n+ 1) p
√
2p+ 1

×
{

q
√

|f ′′(mx)|q + (2n+ 1)|f ′′(a2)|q

+ q
√

(2n+ 1)|f ′′(mx)|q + |f ′′(a2)|q
}

.

Corollary 3. Taking x = a1+a2
2 , m = 1, n =

0, η(x,ma1) = x−ma1 and η(a2,mx) = a2 −mx

in Corollary 2, we obtain
∣

∣

∣

∣

∣

I
f,Λ

(1)
1,0,Λ

(2)
1,0,∆

(1)
1,0,∆

(2)
1,0

(

a1 + a2

2
, a1, a2

)

∣

∣

∣

∣

∣

≤ (a2 − a1)
2

8 q
√
2 p
√
2p+ 1

(18)

×
{

q

√

√

√

√|f ′′(a1)|q +
∣

∣

∣

∣

∣

f ′′

(

a1 + a2

2

)

∣

∣

∣

∣

∣

q

+ q

√

√

√

√

∣

∣

∣

∣

∣

f ′′

(

a1 + a2

2

)

∣

∣

∣

∣

∣

q

+ |f ′′(a2)|q
}

.

Corollary 4. Taking ϕ(t) = tα

Γ(α) in Theorem 2,

we have
∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤ η2(x,ma1)

4(n+ 1)2 q
√

2(n+ 1) p
√
2pα+ 1

(19)

×
{

q
√

|f ′′(ma1)|q + (2n+ 1)|f ′′(x)|q

+ q
√

(2n+ 1)|f ′′(ma1)|q + |f ′′(x)|q
}

+
η2(a2,mx)

4(n+ 1)2 q
√

2(n+ 1) p
√
2pα+ 1

×
{

q
√

|f ′′(mx)|q + (2n+ 1)|f ′′(a2)|q
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+ q
√

(2n+ 1)|f ′′(mx)|q + |f ′′(a2)|q
}

.

Corollary 5. Taking ϕ(t) = t
α
k

kΓk(α)
in Theorem

2, we get
∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤ η2(x,ma1)

4(n+ 1)2 q
√

2(n+ 1) p

√

2pα
k

+ 1
(20)

×
{

q
√

|f ′′(ma1)|q + (2n+ 1)|f ′′(x)|q

+ q
√

(2n+ 1)|f ′′(ma1)|q + |f ′′(x)|q
}

+
η2(a2,mx)

4(n+ 1)2 q
√

2(n+ 1) p

√

2pα
k

+ 1

×
{

q
√

|f ′′(mx)|q + (2n+ 1)|f ′′(a2)|q

+ q
√

(2n+ 1)|f ′′(mx)|q + |f ′′(a2)|q
}

.

Corollary 6. Taking ϕ(t) = t(a2−t)α−1 and f(x)
is symmetric to x = ma1+a2

2 , in Theorem 2, we
obtain

∣

∣

∣

∣

∣

I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(

ma1 + a2

2
, a1, a2

)

∣

∣

∣

∣

∣

≤
αη2(ma1+a2

2 ,ma1)
2(n+1)2 q

√
2(n+1) p

√

B∗

Λ
(1)
m,n

(p)

[

aα2 −
(n+1)

(α+1)η(ma1+a2
2 ,ma1)






a
α+1
2 −



a2−
η(ma1+a2

2 ,ma1)
n+1





α+1





]

(21)

×
{

q

√

√

√

√|f ′′(ma1)|q + (2n+ 1)

∣

∣

∣

∣

∣

f ′′

(

ma1 + a2

2

)

∣

∣

∣

∣

∣

q

+ q

√

√

√

√(2n+ 1)|f ′′(ma1)|q +
∣

∣

∣

∣

∣

f ′′

(

ma1 + a2

2

)

∣

∣

∣

∣

∣

q}

+

αη2
(

a2,m
(ma1+a2)

2

)

2(n+1)2 q
√

2(n+1) p

√

B∗

Λ
(2)
m,n

(p)

[

aα2 −
(n+1)

(α+1)η

(

a2,m
(ma1+a2)

2

)











a
α+1
2 −









a2−

η

(

a2,m
(ma1+a2)

2

)

n+1









α+1










]

×
{

q

√

√

√

√

∣

∣

∣

∣

∣

f ′′

(

m
(ma1 + a2)

2

)

∣

∣

∣

∣

∣

q

+ (2n+ 1)|f ′′(a2)|q

+ q

√

√

√

√(2n+ 1)

∣

∣

∣

∣

∣

f ′′

(

m
(ma1 + a2)

2

)

∣

∣

∣

∣

∣

q

+ |f ′′(a2)|q
}

,

where

B∗
Λ
(1)
m,n

(p) =
1

α
(22)

×
∫ 1

0

[

aα2 t−
(n+ 1)

(α+ 1)η
(

ma1+a2
2 ,ma1

)

×



aα+1
2 −

(

a2 −
η
(

ma1+a2
2 ,ma1

)

t

n+ 1

)α+1




]p

dt

and

B∗
Λ
(2)
m,n

(p) =
1

α
(23)

×
∫ 1

0

[

aα2 t−
(n+ 1)

(α+ 1)η
(

a2,m
(ma1+a2)

2

)

×






aα+1
2 −



a2 −
η
(

a2,m
(ma1+a2)

2

)

t

n+ 1





α+1






]p

dt.

Corollary 7. Taking ϕ(t) = t
α
exp

[

(

−1−α
α

)

t
]

for α ∈ (0, 1), in Theorem 2, we have
∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤ (α− 1)η2(x,ma1)

2(n+ 1)2 q
√

2(n+ 1)
(24)

× 1
{

exp
[

(

−1−α
α

) η(x,ma1)
n+1

]

− 1

}

× p

√

B⋄
Λ
(1)
m,n

(p)

×
{

q
√

|f ′′(ma1)|q + (2n+ 1)|f ′′(x)|q

+ q
√

(2n+ 1)|f ′′(ma1)|q + |f ′′(x)|q
}

+
(α− 1)η2(a2,mx)

2(n+ 1)2 q
√

2(n+ 1)

{

exp
[

(

−1−α
α

) η(a2,mx)
n+1

]

− 1

}

× p

√

B⋄
Λ
(2)
m,n

(p)

×
{

q
√

|f ′′(mx)|q + (2n+ 1)|f ′′(a2)|q

+ q
√

(2n+ 1)|f ′′(mx)|q + |f ′′(a2)|q
}

,

where

B⋄
Λ
(1)
m,n

(p) =
1

(α− 1)p
(25)

×
∫ 1

0

[

(n+ 1)α

(α− 1)η(x,ma1)

×
{

exp

[

(

−1− α

α

)

η(x,ma1)

(n+ 1)
t

]

− (t+ 1)

}]p

dt

and

B⋄
Λ
(2)
m,n

(p) =
1

(α− 1)p
(26)

×
∫ 1

0

[

(n+ 1)α

(α− 1)η(a2,mx)
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×
{

exp

[

(

−1− α

α

)

η(a2,mx)

(n+ 1)
t

]

− (t+1)

}]p

dt.

Theorem 3. Let f : P −→ R be a twice differen-
tiable mapping on (ma1, a2). If |f ′′|q is preinvex
on P for q ≥ 1, then the following inequality for
generalized fractional integrals hold:

∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤
(

1

n+ 1

)
2q+1

q η2(x,ma1)

2∆
(1)
m,n(1)

(27)

×
(

B
Λ
(1)
m,n

(1)
)1− 1

q

×
{

q

√

C
Λ
(1)
m,n

|f ′′(ma1)|q +D
Λ
(1)
m,n

(n)|f ′′(x)|q

+ q

√

D
Λ
(1)
m,n

(n)|f ′′(ma1)|q + C
Λ
(1)
m,n

|f ′′(x)|q
}

+

(

1

n+ 1

)
2q+1

q η2(a2,mx)

2∆
(2)
m,n(1)

(

B
Λ
(2)
m,n

(1)
)1− 1

q

×
{

q

√

C
Λ
(2)
m,n

|f ′′(mx)|q +D
Λ
(2)
m,n

(n)|f ′′(a2)|q

+ q

√

D
Λ
(2)
m,n

(n)|f ′′(mx)|q + C
Λ
(2)
m,n

|f ′′(a2)|q
}

,

where

C
Λ
(i)
m,n

=

∫ 1

0
(1− t)Λ(i)

m,n(t)dt, ∀ i = 1, 2 (28)

D
Λ
(i)
m,n

(n) =

∫ 1

0
(n+ t)Λ(i)

m,n(t)dt, ∀ i = 1, 2 (29)

and B
Λ
(i)
m,n

(1), ∀ i = 1, 2, are defined as in Theo-

rem 2, where p = 1.

Proof. From Lemma 1, preinvexity of |f ′′|q,
power mean inequality and properties of the mod-
ulus, we have

∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤ η2(x,ma1)

2(n+ 1)2∆
(1)
m,n(1)

×
{

∫ 1

0
Λ(1)
m,n(t)

[∣

∣

∣

∣

∣

f ′′
(

ma1 +
(n+ t)

n+ 1
η(x,ma1)

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f ′′
(

ma1 +
(1− t)

n+ 1
η(x,ma1)

)

∣

∣

∣

∣

∣

]

dt

}

+
η2(a2,mx)

2(n+ 1)2∆
(2)
m,n(1)

×
{

∫ 1

0
Λ(2)
m,n(t)

[∣

∣

∣

∣

∣

f ′′
(

mx+
(1− t)

n+ 1
η(a2,mx)

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f ′′
(

mx+
(n+ t)

n+ 1
η(a2,mx)

)

∣

∣

∣

∣

∣

]

dt

}

≤ η2(x,ma1)

2(n+ 1)2∆
(1)
m,n(1)

(∫ 1

0
Λ(1)
m,n(t)dt

)1− 1
q

×
{(

∫ 1

0
Λ(1)
m,n(t)

∣

∣

∣

∣

∣

f ′′
(

ma1 +
(n+ t)

n+ 1
η(x,ma1)

)

∣

∣

∣

∣

∣

q

dt

)
1
q

+

(

∫ 1

0
Λ(1)
m,n(t)

∣

∣

∣

∣

∣

f ′′
(

ma1 +
(1− t)

n+ 1
η(x,ma1)

)

∣

∣

∣

∣

∣

q

dt

)
1
q
}

+
η2(a2,mx)

2(n+ 1)2∆
(2)
m,n(1)

(∫ 1

0
Λ(2)
m,n(t)dt

)1− 1
q

×
{(

∫ 1

0
Λ(2)
m,n(t)

∣

∣

∣

∣

∣

f ′′
(

mx+
(1− t)

n+ 1
η(a2,mx)

)

∣

∣

∣

∣

∣

q

dt

)
1
q

+

(

∫ 1

0
Λ(2)
m,n(t)

∣

∣

∣

∣

∣

f ′′
(

mx+
(n+ t)

n+ 1
η(a2,mx)

)

∣

∣

∣

∣

∣

q

dt

)
1
q
}

≤ η2(x,ma1)

2(n+ 1)2∆
(1)
m,n(1)

(

B
Λ
(1)
m,n

(1)
)1− 1

q

×
{[

∫ 1

0
Λ(1)
m,n(t)

×
[

(

1− n+ t

n+ 1

)

∣

∣f ′′(ma1)
∣

∣

q
+
(n+ t)

n+ 1

∣

∣f ′′(x)
∣

∣

q

]

dt

] 1
q

+

[

∫ 1

0
Λ(1)
m,n(t)

×
[

(

1− 1− t

n+ 1

)

∣

∣f ′′(ma1)
∣

∣

q
+
(1− t)

n+ 1

∣

∣f ′′(x)
∣

∣

q

]

dt

] 1
q
}

+
η2(a2,mx)

2(n+ 1)2∆
(2)
m,n(1)

(

B
Λ
(2)
m,n

(1)
)1− 1

q

×
{[

∫ 1

0
Λ(2)
m,n(t)

×
[

(

1− 1− t

n+ 1

)

∣

∣f ′′(mx)
∣

∣

q
+
(1− t)

n+ 1

∣

∣f ′′(a2)
∣

∣

q

]

dt

] 1
q

+

[

∫ 1

0
Λ(2)
m,n(t)

×
[

(

1− n+ t

n+ 1

)

∣

∣f ′′(mx)
∣

∣

q
+
(n+ t)

n+ 1

∣

∣f ′′(a2)
∣

∣

q

]

dt

] 1
q
}

=

(

1

n+ 1

)
2q+1

q η2(x,ma1)

2∆
(1)
m,n(1)

(

B
Λ
(1)
m,n

(1)
)1− 1

q

×
{

q

√

C
Λ
(1)
m,n

|f ′′(ma1)|q +D
Λ
(1)
m,n

(n)|f ′′(x)|q
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+ q

√

D
Λ
(1)
m,n

(n)|f ′′(ma1)|q + C
Λ
(1)
m,n

|f ′′(x)|q
}

+

(

1

n+ 1

)
2q+1

q η2(a2,mx)

2∆
(2)
m,n(1)

(

B
Λ
(2)
m,n

(1)
)1− 1

q

×
{

q

√

C
Λ
(2)
m,n

|f ′′(mx)|q +D
Λ
(2)
m,n

(n)|f ′′(a2)|q

+ q

√

D
Λ
(2)
m,n

(n)|f ′′(mx)|q + C
Λ
(2)
m,n

|f ′′(a2)|q
}

.

The proof of Theorem 3 is completed. �

We point out some special cases of Theorem 3.

Corollary 8. Taking q = 1 in Theorem 3, we
have

∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤ 1

(n+ 1)3

{

η2(x,ma1)

2∆
(1)
m,n(1)

(30)

×
(

C
Λ
(1)
m,n

+D
Λ
(1)
m,n

(n)
) [

|f ′′(ma1)|+ |f ′′(x)|
]

+
η2(a2,mx)

2∆
(2)
m,n(1)

×
(

C
Λ
(2)
m,n

+D
Λ
(2)
m,n

(n)
) [

|f ′′(mx)|+ |f ′′(a2)|
]

}

.

Corollary 9. Taking ϕ(t) = t in Theorem 3, we
get

∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤
(

1

n+ 1

)
2q+1

q η2(x,ma1)

12 q
√
4

(31)

×
{

q
√

|f ′′(ma1)|q + (4n+ 3)|f ′′(x)|q

+ q
√

(4n+ 3)|f ′′(ma1)|q + |f ′′(x)|q
}

+
η2(a2,mx)

12 q
√
4

×
{

q
√

|f ′′(mx)|q + (4n+ 3)|f ′′(a2)|q

+ q
√

(4n+ 3)|f ′′(mx)|q + |f ′′(a2)|q
}

.

Corollary 10. Taking x = a1+a2
2 , m = 1, n =

0, η(x,ma1) = x−ma1 and η(a2,mx) = a2 −mx

in Corollary 9, we obtain
∣

∣

∣

∣

∣

I
f,Λ

(1)
1,0,Λ

(2)
1,0,∆

(1)
1,0,∆

(2)
1,0

(

a1 + a2

2
, a1, a2

)

∣

∣

∣

∣

∣

≤
(

1

n+ 1

)
2q+1

q (a2 − a1)
2

48 q
√
4

(32)

×
{

q

√

√

√

√|f ′′(a1)|q + 3

∣

∣

∣

∣

∣

f ′′

(

a1 + a2

2

)

∣

∣

∣

∣

∣

q

+ q

√

√

√

√3|f ′′(a1)|q +
∣

∣

∣

∣

∣

f ′′

(

a1 + a2

2

)

∣

∣

∣

∣

∣

q

+ q

√

√

√

√

∣

∣

∣

∣

∣

f ′′

(

a1 + a2

2

)

∣

∣

∣

∣

∣

q

+ 3|f ′′(a2)|q

+ q

√

√

√

√3

∣

∣

∣

∣

∣

f ′′

(

a1 + a2

2

)

∣

∣

∣

∣

∣

q

+ |f ′′(a2)|q
}

.

Corollary 11. Taking ϕ(t) = tα

Γ(α) in Theorem

3, we have
∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤
(

1

n+ 1

)
2q+1

q

(33)

× Γ(α+ 1)

2Γ(α+ 3)
q

√

Γ(α+ 3)

Γ(α+ 4)
η2(x,ma1)

×
{

q

√

|f ′′(ma1)|q +
[

n(α+ 3) + (α+ 2)
]

|f ′′(x)|q

+ q

√

[

n(α+ 3) + (α+ 2)
]

|f ′′(ma1)|q + |f ′′(x)|q
}

+

(

1

n+ 1

)
2q+1

q Γ(α+ 1)

2Γ(α+ 3)
q

√

Γ(α+ 3)

Γ(α+ 4)
η2(a2,mx)

×
{

q

√

|f ′′(mx)|q +
[

n(α+ 3) + (α+ 2)
]

|f ′′(a2)|q

+ q

√

[

n(α+ 3) + (α+ 2)
]

|f ′′(mx)|q + |f ′′(a2)|q
}

.

Corollary 12. Taking ϕ(t) = t
α
k

kΓk(α)
in Theorem

3, we get
∣

∣I
f,Λ

(1)
m,n,Λ

(2)
m,n,∆

(1)
m,n,∆

(2)
m,n

(x, a1, a2)
∣

∣

≤
(

1

n+ 1

)
2q+1

q

(34)

× Γk(α+ k)

2Γk(α+ k + 2)
q

√

Γk(α+ k + 2)

Γk(α+ k + 3)
η2(x,ma1)

×
{

q

√

√

√

√|f ′′(ma1)|q +
[

n
(α

k
+ 3
)

+
(α

k
+ 2
)

]

|f ′′(x)|q

+ q

√

√

√

√

[

n
(α

k
+ 3
)

+
(α

k
+ 2
)

]

|f ′′(ma1)|q + |f ′′(x)|q
}

+

(

1

n+ 1

)
2q+1

q

× Γk(α+ k)

2Γk(α+ k + 2)
q

√

Γk(α+ k + 2)

Γk(α+ k + 3)
η2(a2,mx)
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×
{

q

√

√

√

√|f ′′(mx)|q +
[

n
(α

k
+ 3
)

+
(α

k
+ 2
)

]

|f ′′(a2)|q

+ q

√

√

√

√

[

n
(α

k
+ 3
)

+
(α

k
+ 2
)

]

|f ′′(mx)|q + |f ′′(a2)|q
}

.

Remark 2. Applying our Theorems 2 and 3, for
n ∈ N

∗ and appropriate choices of function ϕ(t) =

t; ϕ(t) = tα

Γ(α) ;
t
α
k

kΓk(α)
; ϕ(t) = t(a2− t)α−1, where

f(x) is symmetric to x = ma1+a2
2 and m ∈ (0, 1]

is a fixed number; ϕ(t) = t
α
exp

[

(

−1−α
α

)

t
]

, for

α ∈ (0, 1); such that η(x,ma1) = x − ma1 and
η(a2,mx) = a2 − mx, ∀x ∈ P , we can deduce
some new general fractional integral inequalities.
We omit their proofs and the details are left to the
interested readers.

3. Applications to special means

Consider the following special means for different
real numbers α, β and αβ 6= 0, as follows:

(1) The arithmetic mean:

A := A(α, β) =
α+ β

2
,

(2) The harmonic mean:

H := H(α, β) =
2

1
α
+ 1

β

,

(3) The logarithmic mean:

L := L(α, β) =
β − α

ln |β| − ln |α| ,

(4) The generalized log–mean:

Lr := Lr(α, β) =

[

βr+1 − αr+1

(r + 1)(β − α)

] 1
r

,

where r ∈ Z \ {−1, 0}.
It is well known that Lr is monotonic nondecreas-
ing over r ∈ Z with L−1 := L. In particular,
we have the following inequality H ≤ L ≤ A.

Now, using the theory results in section 2, we give
some applications to special means for different
real numbers.

Proposition 1. Let a1, a2 ∈ R \ {0}, where
a1 < a2 and x ∈ [a1, a2]. Then for r ∈

{

2, 3, . . .
}

,

where q > 1 and p−1 + q−1 = 1, the following
inequality hold:
∣

∣

∣

∣

∣

r

(

a2 − a1

2

)

[

A
(

ar−1
1 , ar−1

2

)

+Ar−1(a1, a2)
]

−
[

A (ar1, a
r
2) +Ar(a1, a2)

]

− 2Lr
r (a1, a2)

∣

∣

∣

∣

∣

≤ r(r − 1)(a2 − a1)
2

8 p
√
2p+ 1

(35)

×
{

q

√

A

(

|a1|q(r−2),
∣

∣

∣

a1 + a2

2

∣

∣

∣

q(r−2)
)

+ q

√

A

(

∣

∣

∣

a1 + a2

2

∣

∣

∣

q(r−2)
, |a2|q(r−2)

)

}

.

Proof. Applying Theorem 2 for x = a1+a2
2 , m =

1, n = 0, η(x,ma1) = x − ma1, η(a2,mx) =
a2 − mx, f(x) = xr and ϕ(t) = t, one can ob-
tain the result immediately. �

Proposition 2. Let a1, a2 ∈ R \ {0}, where
a1 < a2 and x ∈ [a1, a2]. Then, for q > 1 and
p−1 + q−1 = 1, the following inequality hold:

∣

∣

∣

∣

∣

(

a1 − a2

2

)

[

1

H
(

a21, a
2
2

) +
1

A2 (a1, a2)

]

−
[

1

H (a1, a2)
+

1

A (a1, a2)

]

− 2

L (a1, a2)

∣

∣

∣

∣

∣

≤ (a2 − a1)
2

4 p
√
2p+ 1

(36)

×
{

1

q

√

H

(

|a1|3q,
∣

∣

∣

a1+a2
2

∣

∣

∣

3q
)

+
1

q

√

H

(

∣

∣

∣

a1+a2
2

∣

∣

∣

3q
, |a2|3q

)

}

.

Proof. Applying Theorem 2 for x = a1+a2
2 , m =

1, n = 0, η(x,ma1) = x − ma1, η(a2,mx) =

a2 −mx, f(x) =
1

x
and ϕ(t) = t, one can obtain

the result immediately. �

Proposition 3. Let a1, a2 ∈ R \ {0}, where
a1 < a2 and x ∈ [a1, a2]. Then, for r ∈

{

2, 3, . . .
}

and q ≥ 1, the following inequality hold:
∣

∣

∣

∣

∣

r

(

a2 − a1

2

)

[

A
(

ar−1
1 , ar−1

2

)

+Ar−1(a1, a2)
]

−
[

A (ar1, a
r
2) +Ar(a1, a2)

]

− 2Lr
r (a1, a2)

∣

∣

∣

∣

∣

≤ r(r − 1)(a2 − a1)
2

48 q
√
2

(37)

×
{

q

√

A

(

3|a1|q(r−2),
∣

∣

∣

a1 + a2

2

∣

∣

∣

q(r−2)
)

+ q

√

A

(

3
∣

∣

∣

a1 + a2

2

∣

∣

∣

q(r−2)
, |a1|q(r−2)

)
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+ q

√

A

(

3|a2|q(r−2),
∣

∣

∣

a1 + a2

2

∣

∣

∣

q(r−2)
)

+ q

√

A

(

3
∣

∣

∣

a1 + a2

2

∣

∣

∣

q(r−2)
, |a2|q(r−2)

)

}

.

Proof. Applying Theorem 3 for x = a1+a2
2 , m =

1, n = 0, η(x,ma1) = x − ma1, η(a2,mx) =
a2 − mx, f(x) = xr and ϕ(t) = t, one can ob-
tain the result immediately. �

Proposition 4. Let a1, a2 ∈ R \ {0}, where
a1 < a2 and x ∈ [a1, a2]. Then for q ≥ 1, the
following inequality hold:

∣

∣

∣

∣

∣

(

a1 − a2

2

)

[

1

H
(

a21, a
2
2

) +
1

A2 (a1, a2)

]

−
[

1

H (a1, a2)
+

1

A (a1, a2)

]

− 2

L (a1, a2)

∣

∣

∣

∣

∣

≤ q

√

3

2

(a2 − a1)
2

24
(38)

×
{

1

q

√

H

(

3|a1|3q,
∣

∣

∣

a1+a2
2

∣

∣

∣

3q
)

+
1

q

√

H

(

3
∣

∣

∣

a1+a2
2

∣

∣

∣

3q
, |a1|3q

)

+
1

q

√

H

(

3|a2|3q,
∣

∣

∣

a1+a2
2

∣

∣

∣

3q
)

+
1

q

√

H

(

3
∣

∣

∣

a1+a2
2

∣

∣

∣

3q
, |a2|3q

)

}

.

Proof. Applying Theorem 3 for x = a1+a2
2 , m =

1, n = 0, η(x,ma1) = x − ma1, η(a2,mx) =

a2 −mx, f(x) =
1

x
and ϕ(t) = t, one can obtain

the result immediately. �

Remark 3. Applying our Theorems 2 and 3
for x = a1+a2

2 , m = 1, n = 0, η(x,ma1) =
x − ma1, η(a2,mx) = a2 − mx and appropriate

choices of function ϕ(t) = tα

Γ(α) ,
t
α
k

kΓk(α)
, ϕ(t) =

t(a2 − t)α−1, where f(x) is symmetric to x =
a1+a2

2 , ϕ(t) = t
α
exp

[

(

−1−α
α

)

t
]

, for α ∈ (0, 1),

such that |f ′′|q to be preinvex, we can deduce some
new general fractional integral inequalities using
above special means. We omit their proofs and
the details are left to the interested readers.

4. Conclusion

It is expected that from the results obtained,
and following the methodology applied, addi-
tional special functions may also be evaluated.
Future works can be developed in the area of nu-
merical analysis using the theorems and corollar-
ies presented. The authors hope that the ideas
and techniques of this paper will inspire interested
readers working in this fascinating field.
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The variable telegraph partial differential equation depend on initial boundary
value problem has been studied. The coefficient constant time-space telegraph
partial differential equation is obtained from the variable telegraph partial
differential equation throughout using Cauchy-Euler formula. The first and
second order difference schemes were constructed for both of coefficient con-
stant time-space and variable time-space telegraph partial differential equation.
Matrix stability method is used to prove stability of difference schemes for the
variable and coefficient telegraph partial differential equation. The variable
telegraph partial differential equation and the constant coefficient time-space
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Finally, approximation solution has been found for both equations. The error
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1. Introduction

Partial differential equations have several appli-
cations in engineering, finance, physics and seis-
mology [1–3]. They have several approximation
methods which are different from each other.
Some of these methods are solvable with respect
to variables time and space. The space- heat
equations were presented by difference schemes
in previous works [4–6]. The partial differen-
tial equations depend on time were worked on in
some papers [7–9], The telegraph partial differen-
tial equations is a special equation of the partial
differential equations. In the literature, Telegraph
equations can be defined based on time and space.
Many important studies have been done on these
equations in [10–12]. The telegraph partial differ-
ential equations were solved by difference schemes
and methods in [13–16].

In this paper, the initial boundary value problem
for variable coefficient partial differential equation
is investigated



















∂
∂t

(α(t)ut(t, x))−
∂
∂x

(β(x)ux(t, x)) + pu(t, x)

= f(t, x), 0 < t < T, 0 < x < L

u(0, x) = ϕ(x), ut(0, x) = ψ(x), 0 ≤ t ≤ T,

u(t, 0) = g1(t), u(t, L) = g2(t), 0 ≤ x ≤ L.

(1)

Here, α(t), β(x) are variable as to t, x, respec-
tively. Now, we shall construct first order differ-
ence scheme. Then, we will prove the stability
estimates for this problem.

2. First and second order difference

schemes for variable telegraph

partial differential equation

If taking as α(t) = t2, β(x) = x2 and p = 1 in the
formula (1), this formula can be written as follow
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t2utt(t, x) + 2tut(t, x)− x2uxx(t, x)− 2xux(t, x)

+u(t, x) = f(t, x), 1 < t < eT , 1 < x < eL

u(0, x) = In(ϕ(x)), ut(0, x) = In(ψ(x)),

u(t, 0) = u(t, L) = 0, 1 ≤ t ≤ eT , 1 ≤ x ≤ eL.

(2)

This equation represents a variable time-space
telegraph partial differential equation. It is not
easy to find out the analytical solution of this
equation.

Therefore, if the Cauchy-Euler formula is applied
to the last part of the equation separately for the
x and t variables, the formula (2) can be written
as



















utt(t, x) + ut(t, x)− uxx(t, x)− ux(t, x) + u(t, x)

= f(t, x), 0 < t < T, 0 < x < L

u(0, x) = ϕ(x), ut(0, x) = ψ(x), 0 ≤ t ≤ T,

u(t, 0) = u(t, L) = 0, 0 ≤ x ≤ L.

(3)

The problem (3) is a coefficient time-space tele-
graph partial differential equation.

Now, we shall construct the first and the second
order of accuracy difference scheme for the equa-
tion (2). In the first step, we consider the set
wτ,h = [0, 1]τ × [0, π]h of a family of grid points
depending on the small parameters τ and h. To
evaluate difference scheme for problem (2), the
following formula

[0, 1]τ × [0, π]h = {(tk, xn) : tk = kτ, 0 ≤ k ≤ N,

Nτ = 1, xn = nh, 0 ≤ n ≤M ;Mh = π},

is used. For the formula (2), we get the first order
difference scheme











































































t2k
uk+1
n − 2ukn + uk−1

n

τ2
+ 2tk

uk+1
n − ukn

τ

−x2n
ukn+1 − 2ukn + ukn−1

h2
− 2xn

ukn+1 − ukn−1

2h

+ukn = fkn , xn = nh, tk = kτ,

1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

uk0 = ukM = 0, u0n = In(ϕ(xn)), 0 ≤ k ≤ N

u1n − u0n
τ

= In(ψ(xn)), 0 ≤ n ≤M,

(4)

and the second order difference scheme for the
formula (2)































































































































t2k
uk+1
n − 2ukn + uk−1

n

τ2
+ 2tk

uk+1
n − uk−1

n

2τ

−x2
n

2

uk+1
n+1 − 2uk+1

n + uk+1
n−1

h2

−x2
n

2

uk−1
n+1 − 2uk−1

n + uk−1
n−1

h2

−xn

2

uk+1
n+1 − uk+1

n−1

h
− xn

2

uk−1
n+1 − uk−1

n−1

h

+1
2u

k+1
n + 1

2u
k−1
n = fkn ,

xn = nh, tk = kτ, 1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

u1n − u0n
τ

= In(ψ(xn)) +
τ
2

u2n − 2u1n + u0n
τ2

,

u0n = In(ϕ(xn)), u
k
0 = ukM = 0,

0 ≤ k ≤ N, 0 ≤ n ≤M.

(5)

Similarly, the first order difference schemes for the
formula (3) are



























































uk+1
n − 2ukn + uk−1

n

τ2
+
uk+1
n − ukn

τ
−
ukn+1 − 2ukn + ukn−1

h2

−
ukn+1 − ukn−1

2h
+ ukn = fkn , xn = nh, tk = kτ,

1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

uk0 = ukM = 0, u0n = ϕ(xn),
u1n − u0n

τ
= ψ(xn),

0 ≤ k ≤ N, 0 ≤ n ≤M,

(6)

and the second order difference schemes















































































































uk+1
n − 2ukn + uk−1

n

τ2
+
uk+1
n − uk−1

n

2τ

−1
2

uk+1
n+1 − 2uk+1

n + uk+1
n−1

h2

−1
2

uk−1
n+1 − 2uk−1

n + uk−1
n−1

h2

−1
4

uk+1
n+1 − uk+1

n−1

h
− 1

4

uk−1
n+1 − uk−1

n−1

h

+1
2u

k+1
n + 1

2u
k−1
n = fkn ,

xn = nh, tk = kτ, 1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

u0n = ϕ(x),
u1n − u0n

τ
= ψ(x) + τ

2

u2n − 2u1n + u0n
τ2

,

uk0 = ukM = 0, 0 ≤ k ≤ N, 0 ≤ n ≤M.

(7)

The formula (4) is rewritten as
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(

t2k
τ2

+ 2
tk
τ

)

uk+1
n +

(

−
x2n
h2

−
xk
h

)

ukn+1

+

(

−2
t2k
τ2

− 2
tk
τ

+ 1 + 2
x2n
h2

)

ukn

+

(

−
x2n
h2

+
xn
h

)

ukn−1 +

(

t2k
τ2

)

uk−1
n = fkn .

(8)

Then, the last formula can be written as

auk+1
n + bukn+1 + cukn + dukn−1 + euk−1

n = fkn . (9)

Here,

a =
t2k
τ2

+ 2
tk
τ
, b = −

x2n
h2

−
xk
h
,

c = −2
t2k
τ2

− 2
tk
τ

+ 1 + 2
x2n
h2
,

d = −
x2n
h2

+
xn
h

and e =
t2k
τ2
.

From the formula (9), the following matrices’ for-
mulas are obtained as

AUk+1 +BUk + CUk−1 = φk. (10)

where, A,B and C are (N +1)× (N +1) matrix,
Uk+1, Uk, Uk−1 and φk = F k

n is (N +1)×1 vector
as the following

A = a























0 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 0























(N+1)×(N+1)

,

(11)

B =





























c b 0 0 . . . 0 0 0 0
d c b 0 . . . 0 0 0 0
0 d c b . . . 0 0 0 0
0 0 d c . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . c b 0 0
0 0 0 0 . . . d c b 0
0 0 0 0 . . . 0 d c b
0 0 0 0 . . . 0 0 d c





























(N+1)×(N+1)

,

(12)

C = e
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0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1
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(13)
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uk+1
N−1

uk+1
N































(N+1)×1.

Modified Gauss elimination method is applied to
solve the above difference equations. After that,
a solution of the matrix equation is looked for as
the following form

uj = αj+1uj+1+βj+1; uM = 0; j =M−1, . . . , 2, 1.
(14)

Using boundary conditions, the formula

u0 = α1u1 + β1 = 0

is obtained. Then, α1 is obtained the (N +
1) × (N + 1) zero matrix and β1 is obtained the
(N+1)×1 zero column vector. Using the formula
(14), the following formula is found

Auj+1 +B[αj+1uj+1 + βj+1] + C[αjuj + βj ] = φj ,

Auj+1 +B[αj+1uj+1 + βj+1] + C[αj [αj+1uj+1

+ βj+1] + βj ] = φj ,

Auj+1 +Bαj+1uj+1 +Bβj+1 + Cαjαj+1uj+1

+ Cαjβj+1 + Cβj = φj ,
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[A+Bαj+1 + Cαjαj+1]uj+1 +Bβj+1

+ Cαjβj+1 + Cβj = φj ,

and then also

[A+Bαj+1 + Cαjαj+1]uj+1 = 0

and

Bβj+1 + Cαjβj+1 + Cβj = φj .

(15)

From the (15), the formulas are found

αj+1 = −(B + Cαj)
−1A,

and

βj+1 = (B+Cαj)
−1(Dφ−Cβj), j = 1, 2, . . . ,M−1.

Here, αj is (N + 1)× (N + 1) zero matrix and βj
is (N + 1)× 1 zero column vector.

Now, we shall prove the stability estimate by
applying the method of analyzing the eigen-
values of the iteration matrices of the schemes
for the formula (4). For this, we express

‖A‖ = ‖A‖∞ = max
1≤k≤N−1

[

∑N−1
i=1 |akm|

]

, where

A = [akm](N−1)×(N−1), I is unit matrix.

Let ρ(A) be the spectral radius of a matrix A,
which means the maximum of the absolute value
of the eigenvalues of the matrix A. We can write
the following theorem.

Theorem 1. If −2
t2k
τ2

−2
tk
τ
+1+2

x2n
h2

> 0, then,

the difference scheme (4) is stable.

Proof. From the method [18], we should prove
that ρ(αn) < 1, 1 ≤ n ≤M.

ρ(α1) = 0 < 1 is clearly.

ρ(α2) =
∥

∥−BA−1
∥

∥ ≤ ‖−B‖
∥

∥A−1
∥

∥

= ‖B‖
1

min
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m 6=k,
m=1
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∣
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∣
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∣

∣
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∣

∣
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+
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∣

∣
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∣

∣
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−
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−
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h

∣

∣

∣

∣

+

∣

∣

∣

∣

−
x2n
h2

+
xk
h

∣

∣

∣

∣

∣

∣

∣

∣

t2k
τ2

+
tk
τ

∣

∣

∣

∣

=
−2

t2k
τ2

− 2
tk
τ

+ 1 + 2
x2n
h2

−
x2n
h2

−
xk
h

−
x2n
h2

+
xk
h

t2k
τ2

+
tk
τ

=
1− 2

t2k
τ2

− 2
tk
τ

t2k
τ2

+
tk
τ

=
1− 2(k2 + k)

(k2 + k)
≤ 1, k = 1, 2, ...M.

If ρ(αn) < 1, let us calculate ρ(αn+1) for the
formula (3) and procedure [19]. We know that
αni = ρ(αn) and 0 ≤ ρ(αn) < 1 for 2 ≤ i ≤ N+1.
Then, we can obtain that ρ(αn+1) < 1. Thus, the
proof of the theorem is completed. �

For the stability estimate of the second order dif-
ference schemes formula (5), a similar procedure
can be used. The stability estimates of the for-
mulas (6) and (7) were given in the [13], [17].

Now let’s find the approximate solutions of a few
examples for the application of these theoretical
expressions.

3. Numerical experiments

In this section, some numerical example for the
telegraph partial differential equation by the first
and second order difference schemes method will
be present. We can calculate the maximum norm
of the error of the numerical solution as

EN
M = max

1≤k≤N−1,1≤n≤M−1
|u(tk, xn)− ukn|.

Where u(tk, xn) represents the exact solution
and ukn represents numerical solution at points
(tk, xn). Result of calculations tell us the second
order has more accurate than the first order of
accuracy difference scheme.

Example 1. Consider the following initial
boundary value problem for Telegraph partial dif-
ferential equation
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utt(t, x) + ut(t, x)− uxx(t, x)− ux(t, x) + u(t, x)

= cos(x− t)− sin(x) cos(t), 0 < t < 1, 0 < x < π,

u(0, x) = − sin(x), ut(0, x) = 0,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1, 0 ≤ x ≤ π.

(16)

Using the Laplace transform method, the ex-
act solution of the problem (16) is u(x, t) =
− sin(x) cos(t). Error analysis Table 1 is shown
the approximation solution of the problem (16).

Table 1. Error analysis for exact and
approximation solution for example
16.

τ = 1/N ,
h = π/M

First
Order

Difference
Scheme

Second
Order

Difference
Scheme

N =M = 20 1.1102× 10−2 1.8527× 10−3

N =M = 50 3.8794× 10−3 2.9979× 10−4

N =M = 100 1.8400× 10−3 7.5204× 10−5

N =M = 200 8.9448× 10−4 1.8815× 10−5

N =M = 400 4.4078× 10−4 4.7025× 10−6

N =M = 600 2.9241× 10−4 2.0896× 10−6

Example 2. Investigate the following initial
boundary value problem for Telegraph partial dif-
ferential equation















































utt(t, x) + ut(t, x)− uxx(t, x)− ux(t, x) + u(t, x)

= (x2 − 2x− 2)e−t + π(1− x)e−t,

0 < t < 1, 0 < x < π,

u(0, x) = x(x− π), ut(0, x) = −x(x− π),

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1, 0 ≤ x ≤ π.

(17)

The exact solution of the problem (17) is u(x, t) =
(x2−πx)e−t. Error analysis Table 2 is shown the
approximation solution of the problem (17).

Table 2. Error analysis for exact and
approximation solution for example
17.

τ = 1/N ,
h = π/M

First
Order

Difference
Scheme

Second
Order

Difference
Scheme

N =M = 20 3.7052× 10−2 2.1852× 10−3

N =M = 50 1.5780× 10−2 3.5362× 10−4

N =M = 100 8.0644× 10−3 8.8693× 10−5

N =M = 200 4.0783× 10−3 2.2207× 10−5

N =M = 400 2.0505× 10−3 5.5558× 10−6

N =M = 600 1.3695× 10−3 2.4698× 10−6

The exact and approximate solution of these ex-
amples are also presented in the following figures.
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Figure 1. Figure of exact solution
for problem16, where N=M=20.
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Figure 2. Figure of approxima-
tion solution for problem 16, where
N=M=20.
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Remark 1. Using the first order difference
scheme formula (4), we obtain the the following
numerical results for the problem (2) and exam-
ple ( 17). For example; Taking N = 21,M = 20,
we obtain maxerror = 8.7021 × 10−1. For these
values, the figures are the added as follow:
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Exact solution

Figure 3. Figure of exact solution
for problem(2) and example (16),
where N=21, M=20.

0
5

10
15

20
25

0

10

20

30
−1

−0.5

0

0.5

Approximation solution

Figure 4. Figure of approximation
solution for problem(2) and example
(16), where N=21, M=20.

Remark 2. The following results are obtained
through using the Cauchy-Euler formula:
i. The non-uniform region becomes a smooth re-
gion. And this is easier made calculation of the
Matlab program.
ii. This also provides to obtain more appropriate
and beautiful numerical results.

4. Conclusion

In this paper, the variable telegraph partial differ-
ential equation has been investigated. Then, this
equation is transformed to the constant coefficient

via using Cauchy-Euler formula. For this equa-
tion, we construct the first and second order dif-
ference schemes. Stability estimate is proved for
these difference schemes. The exact and approx-
imate solution of the problem were compared to
obtain the error analysis in the maximum norm.
Numerical examples show that this method is ap-
propriate for this problem.
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Eğil Vocational and Technical Anatolian High School, Diyarbakır, Turkey
omeroruc0@gmail.com

ARTICLE INFO ABSTRACT

Article History:
Received 04 November 2019

Accepted 25 May 2020

Available 01 July 2020

In this study we will investigate generalized regularized long wave (GRLW)
equation numerically. The GRLW equation is a highly nonlinear partial dif-
ferential equation. We use finite difference approach for time derivatives and
linearize the nonlinear equation. Then for space discretization we use delta-
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1. Introduction

Consider following generalized equation

ut + αux + ǫ (up)x − µuxxt − γuxx = 0, (1)

−∞ < x < ∞, t > 0

in which t is time, x is spatial variable and u is
the amplitude, and α ≥ 0, ǫ ≥ 0, µ ≥ 0, γ ≥ 0,
p ≥ 2. The Eq. (1) presents a lot of mathematical
models according to the values of α, ǫ, µ, γ [1] for
instance :

• if α = 0, ǫ = 0, µ = 0, γ 6= 0 then Eq. (1)
corresponds to heat equation,

• if α 6= 0, ǫ = 0, µ = 0, γ = 0 then Eq. (1)
corresponds to wave equation,

• if α = 0, ǫ 6= 0, µ = 0, γ 6= 0, p = 2 then
Eq. (1) corresponds to viscous Burgers’
equation,

• if α = 1, ǫ 6= 0, µ 6= 0, γ = 0, p = 2 then
Eq. (1) corresponds regularized long wave
(RLW) equation,

• if α = 1, ǫ 6= 0, µ 6= 0, γ = 0, p > 2 then
Eq. (1) corresponds generalized regular-
ized long wave (GRLW) equation.

In this paper, we will study GRLW equation nu-
merically. The GRLW equation was first pro-
posed by Peregrine [2, 3] for description of an
undular bore and then by Benjamin et al. [4]
GRLW equation suggested as a model for long
waves with small amplitudes on the surface of wa-
ter in a channel. Since the GRLW equation can
be a model for a lot of real life phenomena such
as plasma waves [5] and shallow water waves [2]
it is crucial to develop efficient methods for solv-
ing this equation. Since analytical solutions of
the GRLW equation are available only for limited
initial and boundary conditions it is inevitable for
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looking at numerical methods. Due to highly non-
linear structure of the GRLW equation, develop-
ing efficient numerical methods for this equation
also is a challenging work.

GRLW equation includes RLW and modified
RLW equation for certain values of p. There are
a vast of studies related to both RLW and modi-
fied RLW equations, see for example [6–14] and
references therein. On the other hand for the
GRLW equation literature is not so rich. But,
nevertheless there are some studies related to
the GRLW equation. For example, the GRLW
equation has been solved using Sinc-collocation
method [16], Wang et al. [17] used a meshless
method for the GRLW equation, element-free kp-
Ritz method has been used by Guo et al. [18] for
solving the GRLW equation, Kang et al. [19] used
a second-order Fourier pseudospectral method for
the GRLW equation, compact finite difference
method and finite difference method have been
used in [20, 21], respectively. Roshan [22], used
a Petrov-Galerkin method for the GRLW equa-
tion. B-spline finite element method has been
used in [23], a collocation method with cubic B-
splines is used in [6], Karakoc and Zeybek [24]
used septic B-spline collocation method, more re-
cently local momentum-preserving algorithms [25]
are developed for the GRLW equation.

We will investigate numerical solution of the
GRLW equation given in following form;

ut + ux + p(p+ 1)upux − µuxxt = 0, a ≤ x ≤ b
(2)

with Dirichlet boundary conditions u(a, t) =
u(b, t) = 0 by employing finite difference and
delta-shaped basis functions.

The paper is organized as follows. In Section 2, a
brief information about delta-shaped basis func-
tions is given. In section 3, time discretization
with finite difference and space discretization with
delta-shaped basis functions are described. The
results of numerical simulations are presented in
Section 4. Finally, the paper is concluded in Sec-
tion 5.

2. Delta-shaped basis functions

Delta-shaped basis functions (DBFs) have been
derived by Reutskiy [26] from Fourier series of
Dirac-delta function and were used for simulat-
ing a set of scattered data in both regular and
irregular domains successfully. Since then DBFs
have been used in some studies for numerical solu-
tion of partial differential equations. For instance,
DBFs are used for solving Helmholtz-type equa-
tions in [27, 28], Hon and Yang used DBFs for

default barrier model [29], one-dimensional Ste-
fan problems are solved by DBFs [30], numeri-
cal solution of the Schrödinger equations are ob-
tained by using DBFs [31], DBFs are used for
solving ill-posed nonhomogeneous elliptic bound-
ary value problems [32], recently a pseudo spec-
tral method based on DBFs is developed in [33]
for solving modified Burgers equation. We briefly
introduce delta-shaped basis functions, in the se-
quel [29, 31]. Consider following Sturm-Liouville
eigenvalue problem

{

−d2φ
dx2 = λφ, x ∈ (−1, 1),

φ(−1) = φ(1) = 0.

Let (φn(x), λn) be a solution to the above Sturm-
Liouville eigenvalue problem. Clearly, φn(x) =

sin
(

nπ x+1
2

)

, λn =
(

nπ
2

)2
and further

∫ 1

−1
φm(x)φn(x)dx = δmn =

{

1, m = n,

0, m 6= n.

That means, eigenfunctions {φn(x)}
∞

n=1 form an
orthogonal system on interval [−1, 1] and further-
more Dirac’s delta function can be expressed as
follows

δ(x− ξ) =
∞
∑

n=1

φn(ξ)φn(x). (3)

The series in Eq. (3), can be used with some regu-
larization techniques [30] to derive smooth delta-
shaped function IM,χ(x, ξ). Otherwise the series
in Eq. (3) diverges at any point in the interval
[−1, 1] [26]. Here we consider Riesz regularization
approach and thus the regularized delta-shaped
functions are in the following form

IM,χ(x, ξ) =
M
∑

n=1

(

1−
n2

(M + 1)2

)χ

φn(ξ)φn(x).

(4)

The parameters M and χ may be think of as
shape parameters since they form the properties
of delta-shaped functions. The parameter M is
responsible for scaling, as M increases the sup-
port of basis function decreases. This can be seen
in left column of Fig. 1. The parameter χ respon-
sible for regularizing, if χ = 0 i.e. when there is
no regularization, basis function shows oscillat-
ing behavior on its support. On the other hand
if χ increases basis function gets smoother. We
show this situation in right column of Fig. 1. We
should note that choosing optimal values of shape
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Figure 1. Effect of M and χ with center ξ = 0 on delta-shaped functions.

parameters for delta-shaped functions is still an
open problem.

3. Solution method for GRLW

equation

In this section, we describe time discretization
and space discretization for the GRLW equation.
We start with time discretization.

3.1. Time discretization by finite

differences

We take GRLW equation as

ut + ux + ǫupux − µuxxt = 0, a ≤ x ≤ b, t > 0
(5)

with initial condition
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u(x, 0) = f(x),

and boundary conditions

u(a, t) = g1(t), u(b, t) = g2(t), t ≥ 0, (6)

where ǫ = p(p + 1) > 0, µ > 0 and f(x),g1(t)
and g2(t) are prescribed functions. We use for-
ward Euler formula for time derivatives and uti-
lize θ−weighted (0 ≤ θ ≤ 1) scheme between time
levels j and j + 1 as

uj+1 − uj

∆t
+ θ

[

(ux)
j+1 + ǫ (upux)

j+1
]

+(1− θ)
[

(ux)
j + ǫ (upux)

j
]

(7)

−
µ

∆t

(

(uxx)
j+1 − (uxx)

j
)

= 0

where ∆t is time step size and tj+1 = tj + ∆t,
uj+1 = u(x, tj+1). Following [16], the nonlinear

term (upux)
j+1 can be linearized as

(upux)
j+1

≃ (upux)
j
+∆t

[

(up
t )

j
uj
x + (up)

j
(uxt)

j
]

+O(∆t2)

= (upux)
j

+∆t

[

(up)
j+1

− (up)
j

∆t
uj
x + (up)

j u
j+1
x − uj

x

∆t

]

+O(∆t2)

≃ (up)
j
uj+1
x + p

(

up−1
)j

uj
xu

j+1 − p (up)
j
uj
x.

(8)

Now by plugging Eq. (8) into the Eq. (7) we
obtain time discretized scheme as follows [16].

uj+1

+∆tθ
[

uj+1
x + ǫ

(

(up)j uj+1
x + p

(

up−1
)j

ujxu
j+1
)]

−µ (uxx)
j+1

= uj +∆t
[

ǫ ((p+ 1)θ − 1) (up)j ujx − (1− θ)ujx

]

−µ (uxx)
j

(9)

In numerical calculations we select θ = 1
2 which

corresponds famous Crank-Nicolson approach.

3.2. Space discretization with DBFs

Let us assume the solution u(x) can be approxi-
mated by the linear combination of DBFs as fol-
lows

uj+1(x) =
N
∑

i=1

λj+1
i IM,χ(x, ξi). (10)

Then first and second order derivatives can be
found simply as

d

dx
uj+1(x) =

N
∑

i=1

λj+1
i

d

dx
IM,χ(x, ξi), (11)

d2

dx2
uj+1(x) =

N
∑

i=1

λj+1
i

d2

dx2
IM,χ(x, ξi), (12)

Substituting Eqs. (10)-(12) into the Eq. (9) we
obtain

N
∑

i=1

λj+1
i

(

IM,χ(x, ξi) + ∆tθ

[

d

dx
IM,χ(x, ξi)

+ǫ

(

(up)j
d

dx
IM,χ(x, ξi) + p

(

up−1
)j

ujxIM,χ(x, ξi)

)]

−µ
d2

dx2
IM,χ(x, ξi)

)

= ∆t
[

ǫ ((p+ 1)θ − 1) (up)j ujx − (1− θ)ujx

]

+uj − µ (uxx)
j

(13)

Discretizing Eq. (13) at collocation points a =
x1 < x2 < ... < xN = b and imposing boundary
conditions (6) we can obtain a linear system of
equations with size of N×N whose solution gives
expansion coefficients λi. Then by using these
coefficients in the (10) numerical solution can be
found for each time step. The centers ξi are dif-
ferent from collocation points but for convenience
we take ξi same as collocation points. For starting
simulation, right hand side of the Eq. (13) must
be calculated from initial condition.

We also should note that IM,χ(x, ξ) vanishes near
the boundaries x = ±1. Thus centers and col-
location points should not be near the boundary
in [−1, 1]. To overcome this issue, as pointed out
in [26], considered partial differential equations
should be redefined in subdomain [−0.5, 0.5] by
some scaling and transformation operations.

4. Numerical experiments

To indicate the performance of the proposed
method we will use the error norms L2 and L∞

defined by
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L2 =

∥

∥

∥

∥

uexacti − unumi

∥

∥

∥

∥

2

≃

(

∆x

N
∑

i=1

∣

∣uexacti − unumi

∣

∣

2

)1/2

L∞ =

∥

∥

∥

∥

uexacti − unumi

∥

∥

∥

∥

∞

≃ max
i

∣

∣uexacti − unumi

∣

∣

and invariants [23]:

• Conservation of mass

I1 =

∫ b

a
udx = ∆x

N
∑

i=1

ui,

• Conservation of momentum

I2 =

∫ b

a

(

u2 + µu2x
)

dx

= ∆x
N
∑

i=1

[

(ui)
2 + µ ((ux)i)

2
]

,

• Conservation of energy

I3 =

∫ b

a

(

u4 − µu2x
)

dx = ∆x

N
∑

i=1

(

u4i − µ ((ux)i)
2
)

.

Further, we calculate the convergence orders by
the following formulae

C1 =
log
(

L∞,2(2∆t,N)
L∞,2(∆t,N)

)

log 2
, C2 =

log
(

L∞,2(∆t,N)
L∞,2(∆t,2N)

)

log 2
.

We denote absolute differences of I1, I2, I3 be-
tween initial time t = 0 and final time t = t− final
as |∆Ii| = |It−final

i − It−initial
i |, i = 1, 2, 3. In all

numerical simulations we choose θ = 0.5 and we
take M = 2N +100, χ = M/40 for single solitary
wave problem, M = 2N + 300, χ = M/100 for
interaction of two-three solitary waves problem
and M = 5N + 100, χ = M/100 for Maxwellian
problem. Numerical calculations have been done
in Python environment [34, 35] with a desktop
computer (Linux OS, NumPy version 1.15.1, Intel
i7-8750H, 8GB RAM). Graphical outputs in this
study were generated by Matplotlib package [36].

4.1. Single solitary wave motion

We investigate motion of single solitary given as

u(x, 0) = p

√

c(p+ 2)

2p
sech2

(

p

2

√

c

µ(c+ 1)
(x− x0)

)

.

To this end, we calculate the error norms L2, L∞

and the invariants I1, I2, I3 for constant values
of x0 = 40, µ = 1, 0 ≤ x ≤ 100 and for various

values of ∆t, c, p, N . Firstly, to see convergence
of the present method in space we fix ∆t = 0.0001
and we increase number of collocation points, ob-
tained results are reported in Table 1. As it can
be seen from the table by increasing number of
collocation points the errors decrease. Later, we
set N = 400 and decrease time step size to see
convergence in temporal variable. Obtained re-
sults are given in Table 2 where one can see that
by halving the time step size the errors decrease
and convergence orders are about two which is
theoretical convergence order of Crank-Nicolson
method.

In Table 3, for N = 100, c = 0.1, ∆t = 0.05
and p = 2, 3 the error norms are given at dif-
ferent final times with CPU times taken during
simulation. Accuracy of the results can be seen
from the table. Table 4 indicates variation in the
invariants for N = 400, ∆t = 0.1, c = 0.1 and
p = 2, 3 at different final times. From the table
one can conclude that the proposed method can
conserve invariants quite good.

In Tables 5 and 6 the invariants and errors are
calculated and compared with ones of septic B-
spline collocation method [24] for ∆t = 0.01,
µ = 1,p = 4, c = 0.3 and N = 250 (in case
of the present method), h = 0.1 (in case of the
method of [24]). Absolute differences of I1, I2, I3
between initial time t = 0 and final time t = 10
are approximately 2e − 07, 2e − 06, 2e − 06, re-
spectively for the method of [24] while these differ-
ences are approximately 2e−07, 4e−07, 1.2e−06,
respectively for the present method. In Table 7,
a comprehensive comparison between B-spline fi-
nite element [23], cubic B-spline collocation [6],
Petrov-Galerkin [22], septic B-spline collocation
[24] methods and the present method is given for
p = 2, 3, 4. For present method we take N = 250
while for the other methods space step size h is
taken as 0.2 and 0.1. From the table it is clearly
seen that for p = 3 lowest errors are obtained by
the present method and for p = 2, 4 lowest errors
are obtained by the method of [24]. Finally in
Table 8 a comparison with compact finite differ-
ence [20] is given for ∆t = c = 0.1 where accuracy
of the present method is obvious.

In Figs. 2 and 3, motion of single solitary waves
are given for p = 3, c = 1.2 and p = 4, c = 4/3,
respectively. It can be seen that at t = 0 the
solitary wave is located at x0 = 40 and as time
goes the single solitary wave moves rightward with
constant speed and with almost invariable ampli-
tude.
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Table 1. Error norms and convergence orders for c = 4/3, p = 4 and increasing values of N
at t = 0.1.

N L2 L∞ C2 for L2 C2 for L∞

40 7.154182e-01 4.146875e-01 - -
80 1.528925e-01 1.253767e-01 2.2263 1.7258
160 1.141233e-03 8.628014e-04 7.0658 7.1830
320 1.912428e-05 2.386172e-05 5.8990 5.1763

Table 2. Error norms and convergence orders for c = 4/3, p = 4 and decreasing values of ∆t
at t = 1.

∆t L2 L∞ C1 for L2 C1 for L∞

1/10 5.540555e-02 3.539277e-02 - -
1/20 1.409159e-02 9.028174e-03 1.9752 2.0136
1/40 3.494540e-03 2.234878e-03 2.0117 2.0142
1/80 8.792614e-04 5.534720e-04 1.9907 2.0136

Table 3. Error norms and CPU times for N = 100, c = 0.1, ∆t = 0.05, x0 = 40 on 0 ≤ x ≤ 100
at different times.

p = 2 p = 3
Time L2 L∞ L2 L∞ CPU time
t = 2 1.396342e-05 5.698786e-06 3.618557e-05 1.747289e-05 0.03
t = 4 2.732318e-05 1.146938e-05 7.126962e-05 3.143534e-05 0.04
t = 6 4.059471e-05 1.720380e-05 1.060434e-04 4.661107e-05 0.04
t = 8 5.360908e-05 2.260812e-05 1.401759e-04 6.109345e-05 0.05
t = 10 6.632761e-05 2.753908e-05 1.736471e-04 7.520650e-05 0.06

Table 4. Invariants on 0 ≤ x ≤ 100 for N = 400, ∆t = 0.1, c = 0.1 at different final times.

p = 2 p = 3 CPU time
t I1 I2 I3 I1 I2 I3
0 3.294918 0.683426 0.024121 4.062584 1.133875 0.092900 0.00
2 3.294919 0.683426 0.024121 4.062584 1.133874 0.092899 0.33
4 3.294920 0.683426 0.024121 4.062585 1.133873 0.092899 0.38
6 3.294919 0.683425 0.024121 4.062585 1.133872 0.092898 0.42
8 3.294919 0.683425 0.024121 4.062584 1.133871 0.092896 0.48
10 3.294918 0.683425 0.024121 4.062583 1.133871 0.092895 0.53

Table 5. Invariants and their comparison on 0 ≤ x ≤ 100 for N = 250, ∆t = 0.01, µ = 1,p = 4,
c = 0.3

[24] (second) Present [24] (second) Present [24] (second) Present
t I1 I1 I2 I2 I3 I3
0 3.7592865 3.7592300 1.7300239 1.7300029 0.2894189 0.2894090
2 3.7592865 3.7592300 1.7300244 1.7300028 0.2894183 0.2894091
4 3.7592865 3.7592299 1.7300250 1.7300027 0.2894178 0.2894097
6 3.7592864 3.7592299 1.7300254 1.7300026 0.2894174 0.2894100
8 3.7592864 3.7592299 1.7300256 1.7300025 0.2894171 0.2894101
10 3.7592863 3.7592298 1.7300259 1.7300024 0.2894169 0.2894102

4.2. The interaction of two solitary waves

In this subsection, we examine interaction of two
solitary waves, namely we consider the Eq. (2)
with following initial condition

u(x, 0) =

2
∑

i=1

p

√

ci(p+ 2)

2p
sech2

(

p

2

√

ci
µ(ci + 1)

(x− xi)

)
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Table 6. Invariants and their comparison on 0 ≤ x ≤ 100 for N = 250, ∆t = 0.01, µ = 1,p = 4,
c = 0.3

[24] (first) [24] (second) Present [24] (first) [24] (second) Present
t L2 × 104 L2 × 104 L2 × 104 L∞ × 104 L∞ × 104 L∞ × 104

2 0.25417530 0.19937853 0.2803098 0.13193138 0.09833776 0.1510377
4 0.50867400 0.39600506 0.5629237 0.25511505 0.19527926 0.2957829
6 0.76378746 0.59159317 0.8494472 0.37848569 0.29108460 0.4345260
8 1.01967310 0.78622772 1.1406822 0.50227119 0.38611041 0.5756090
10 1.27628477 0.98004530 1.4373113 0.62645346 0.48083798 0.7138410

Table 7. Comparison of the results on 0 ≤ x ≤ 100 for µ = 1 at t = 10.

p = 2, c = 1 p = 3, c = 0.3 p = 4, c = 0.3

∆t = 0.025, h = 0.2 ∆t = 0.01, h = 0.1 ∆t = 0.01, h = 0.1

I1 Present method, N = 250 4.44288292 3.67755181 3.75922990

Collocation+PA-CN (cubic) [23] 4.44000000 - -

Collocation-CN (cubic) [23] 4.44200000 - -

Collocation (cubic) [6] 4.44288000 - -

Petrov–Galerkin (quintic) [22] 4.44288000 3.67755000 3.75923000

Collocation (septic) [24] 4.44286610 3.67760690 3.75928630

Present method, N = 250 3.29978116 1.56574072 1.73000240

Collocation+PA-CN (cubic) [23] 3.29600000 - -

Collocation-CN (cubic) [23] 3.29900000 - -

Collocation (cubic) [6] 3.29983000 - -

I2 Petrov–Galerkin (quintic) [22] 3.29981000 1.56574000 1.72999000

Collocation (septic) [24] 3.29971510 1.56576200 1.73002590

Present method, N = 250 1.41416306 0.22683878 0.28941022

Collocation+PA-CN (cubic) [23] 1.41100000 - -

Collocation-CN (cubic) [23] 1.41300000 - -

I3 Collocation (cubic) [6] 1.41420000 - -

Petrov–Galerkin (quintic) [22] 1.41416000 0.22683700 0.28940600

Collocation (septic) [24] 1.41431220 0.22684460 0.28941690

Present method, N = 250 3.91431278 0.06900426 0.14368290

Collocation+PA-CN (cubic) [23] 20.30000000 - -

Collocation-CN (cubic) [23] 16.39000000 - -

L2 × 103 Collocation (cubic) [6] 9.30196000 - -

Petrov–Galerkin (quintic) [22] 3.00533000 0.07197600 0.12253900

Collocation (septic) [24] 2.57148152 0.07851367 0.09800453

Present method, N = 250 2.00191759 0.03304418 0.07169059

Collocation+PA-CN (cubic) [23] 11.20000000 - -

Collocation-CN (cubic) [23] 9.24000000 - -

L∞ × 103 Collocation (cubic) [6] 5.43718000 - -

Petrov–Galerkin (quintic) [22] 1.68749000 0.03772280 0.06620700

Collocation (septic) [24] 1.34021078 0.03650124 0.04808379

which describes propagation of two waves with
different amplitudes, one placed at x1 and the
other placed at x2.

First numerical simulation have been done with
the following values p = 2, c1 = 4, c2 = 1, x1 =
25, x2 = 55, ∆t = 0.025, µ = 1 on the inter-
val 0 ≤ x ≤ 250. The results obtained are re-
ported in Table 9 and are compared with Petrov-
Galerkin [22] and septic B-spline collocation [24]
methods.

From the table we can see that the invariants ob-
tained by the present method are compatible with
the ones of [22], [24]. In Fig. 4, interaction of the
solitary waves are depicted.

Second simulation have been done with p = 3,
c1 = 48/5, c2 = 6/5, x1 = 20, x2 = 50, ∆t = 0.01,
0 ≤ x ≤ 120 and µ = 1. The obtained results are
reported and compared with the results of [22]
and [24] in Table 10. Variations in the invari-
ants I1, I2, I3 are approximately 2.0e− 06, 0.111,
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Table 8. Comparison of the results on 0 ≤ x ≤ 100, µ = 1, x0 = 40 and ∆t = c = 0.1.

p = 1 p = 2

I1 I2 L2 L∞ I1 I2 L2 L∞

t = 2 [20], h = 0.1 1.989963 0.196378 0.013774 0.005403 3.29492 0.649425 0.039859 0.018973

Present, N = 250 1.989964 0.202616 0.000011 0.000004 3.294919 0.683426 0.000055 0.000023

t = 4 [20], h = 0.1 1.989964 0.197220 0.012347 0.004610 3.29492 0.653939 0.036136 0.015780

Present, N = 250 1.989965 0.202616 0.000022 0.000008 3.294920 0.683426 0.000109 0.000047

t = 6 [20], h = 0.1 1.989964 0.198076 0.010985 0.003841 3.29492 0.658616 0.032839 0.013296

Present, N = 250 1.989965 0.202616 0.000032 0.000012 3.294919 0.683425 0.000162 0.000070

t = 8 [20], h = 0.1 1.989963 0.198947 0.009737 0.003158 3.29492 0.663465 0.030230 0.011791

Present, N = 250 1.989964 0.202616 0.000043 0.000016 3.294919 0.683425 0.000214 0.000093

t = 10 [20], h = 0.1 1.989962 0.199832 0.008677 0.002656 3.29492 0.668494 0.028541 0.011065

Present, N = 250 1.989963 0.202616 0.000053 0.000020 3.294918 0.683425 0.000265 0.000113
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Figure 2. Motion of single solitary
wave at t = 0, 5, 10, 15 for N = 400,
∆t = 0.05 and p = 3.
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Figure 3. Motion of single solitary
wave at t = 0, 5, 10, 15 for N = 400,
∆t = 0.05 and p = 4.

Table 9. Comparison of the results for p = 2, c1 = 4, c2 = 1, x1 = 25, x2 = 55, ∆t = 0.025,
µ = 1 on 0 ≤ x ≤ 250 at different final times.

t = 0 t = 4 t = 8 t = 12 t = 16 t = 20

I1 Present method, N = 400 11.4676982 11.4677197 11.4676926 11.4676587 11.4676037 11.4674483

[24] Collocation (second), h = 0.2 11.4676542 11.4676484 11.466 884 9 11.4676777 11.4676555 11.4676452

[22] Petrov–Galerkin (quintic), h = 0.2 11.4677000 11.4677000 11.4677000 11.4677000 11.4677000 11.4677000

Present method, N = 400 14.6290652 14.6194206 14.6068263 14.6029824 14.5933673 14.5831979

I2 [24] Collocation (second), h = 0.2 14.6292089 14.6277880 14.1400014 14.6803731 14.6442435 14.6309639

[22] Petrov–Galerkin (quintic), h = 0.2 14.6286000 14.6292000 14.6229000 14.6299000 14.6295000 14.6299000

Present method, N = 400 22.8816460 22.8411085 22.7875495 22.7753681 22.7381963 22.6975609

[24] Collocation (second), h = 0.2 22.8803575 22.8817784 23.3695650 22.8291933 22.8653229 22.8786025

[22] Petrov–Galerkin (quintic), h = 0.2 22.8788000 22.8811000 22.8798000 22.8803000 22.8805000 22.8806000

0.45 respectively for the present method. Fig. 10
shows the interaction of the solitary waves.

4.3. The interaction of three solitary

waves

The Eq. (2) with initial condition

u(x, 0) =

3
∑

i=1

p

√

ci(p+ 2)

2p
sech2

(

p

2

√

ci
µ(ci + 1)

(x− xi)

)
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Figure 4. Interaction of two solitary waves for N = 400, p = 2, c1 = 4, c2 = 1, x1 = 25,
x2 = 55,∆t = 0.025, and µ = 1 at t = 0, 4, 8, 12, 16, 20.

Table 10. Comparison of the results for p = 3, c1 = 48/5, c2 = 6/5, x1 = 20, x2 = 50,
∆t = 0.01, µ = 1 on 0 ≤ x ≤ 120 at different final times.

t = 0 t = 2 t = 3 t = 4 t = 5 t = 6

I1 Present method, N = 400 9.6907416 9.6907408 9.6907405 9.6907403 9.6907398 9.6907396

[24] Collocation (second), h = 0.1 9.6907772 9.6881175 9.6850972 9.6860154 9.6847993 9.6834620

[22] Petrov–Galerkin (quintic), h = 0.1 9.6907500 9.6907400 9.6907400 9.6907400 9.6907400 9.6907400

Present method, N = 400 12.9443811 12.9034856 12.8814687 12.8721151 12.8526253 12.8331028

I2 [24] Collocation (second), h = 0.1 12.9443914 12.9390629 12.3046064 12.9703128 13.0538036 13.0027533

[22] Petrov–Galerkin (quintic), h = 0.1 12.9444000 12.9452000 12.9379000 12.9453000 12.9457000 12.9454000

Present method, N = 400 17.0187240 16.8733431 17.5959108 16.7459006 16.5917866 16.5602450

I3 [24] Collocation (second), h = 0.1 17.0186758 17.0240043 17.6584608 16.9927544 16.9092637 16.9603139

[22] Petrov–Galerkin (quintic), h = 0.1 17.0184000 16.9835000 17.0591000 16.9261000 16.8781000 16.9113000

is considered in this subsection. The above initial
condition describes movement of three solitary
waves with different amplitudes in same direction.
For numerical simulation, we choose 0 ≤ x ≤ 100,
µ = 1,c1 = 0.6, c2 = 0.3, c3 = 0.15,x1 = 15,
x2 = 35, x3 = 60 and different values of ∆t and
p. In Table 11, we calculate the invariants for
N = 400, p = 2, ∆t = 0.1 and compare the results
with compact finite difference method [20]. In the
same table we give absolute difference of the in-
variants approximately, between initial time t = 0
and final time t = 10 where it can be seen that the
present method conserves invariants better than
the method of [20]. In Tables 12, 13 the invari-
ants and their changes are given for N = 400,
∆t = 0.05 and p = 3, 4 respectively. From these
tables we can conclude that the present method
can conserve invariants successfully. Finally the

interaction of three solitary waves are shown in
Figs. 6 and 7.

4.4. Maxwellian inital condition

Finally, in this subsection we consider the Eq.(2)
with

u(x, 0) = e−(x
2), −20 ≤ x ≤ 60

Maxwellian initial condition. In this case, it is
known that solution depends on µ [15,21]. Let us
assume µc be some critical value. If µ ≫ µc then
the solution shows rapidly oscillating behavior
without breaking up into solitons. When µ < µc

the solution forms solitons based on the value of
µ. Lastly if µ = µc a leading soliton with oscillat-
ing tail occurs. We perform numerical simulations
for various values of µ = 0.1, 0.05 0.025, 0.01. In
first simulation we consider the case p = 3. We
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Figure 5. Interaction of two solitary waves for N = 400, p = 3, c1 = 48/5, c2 = 6/5, x1 = 20,
x2 = 50, ∆t = 0.025, and µ = 1 at t = 0, 4, 8, 12, 16, 20.

Table 11. Invariants and their changes for p = 2 and ∆t = 0.1.

[20], h = 0.1 Present, N = 400
t I1 I2 I3 I1 I2 I3
0 10.9245 4.4191 0.740798 10.9245437 4.4191243 0.7407977
2 10.9245 3.8743 0.505953 10.9246354 4.4190394 0.7407469
4 10.9246 4.0302 0.573556 10.9246419 4.4189527 0.7406946
6 10.9245 4.2342 0.669611 10.9246165 4.4188661 0.7406418
8 10.9245 4.5023 0.812142 10.9245872 4.4187793 0.7405883
10 10.9244 4.8697 1.039870 10.9245403 4.4186918 0.7405338
|∆Ii| → 1.0e-04 0.45060 0.29907 3.4e-06 4.325e-04 2.639e-04

Table 12. Invariants and their changes for p = 3, N = 400 and ∆t = 0.05.

t I1 I2 I3 CPU time
0 11.1945795 4.8882472 0.7971747 0.00
2 11.1946512 4.8881944 0.7972071 0.25
4 11.1946551 4.8881413 0.7972680 0.34
6 11.1946323 4.8880883 0.7973291 0.43
8 11.1946040 4.8880352 0.7974067 0.51
10 11.1945561 4.8879819 0.7975176 0.60
|∆Ii| → 9.5100e-05 2.6530e-04 3.4290e-04

Table 13. Invariants and their changes for p = 4, N = 400 and ∆t = 0.05.

t I1 I2 I3 CPU time
0 11.4706872 5.3297106 0.9191609 0.00
2 11.4707529 5.3295569 0.9192072 0.25
4 11.4707560 5.3294031 0.9193171 0.35
6 11.4707341 5.3292498 0.9194077 0.42
8 11.4707057 5.3290969 0.9195143 0.51
10 11.4706562 5.3289442 0.9196717 0.61
|∆Ii| → 3.1000e-05 7.6640e-04 5.1080e-04

takeN = 400, ∆t = 0.005 for the present method. We give changes in the invariants and their com-
parison with results of septic B-spline collocation
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Figure 6. Interaction of three solitary
waves for p = 3, N = 400, µ = 1,c1 =
0.6, c2 = 0.3, c3 = 0.15,x1 = 15, x2 =
35 and x3 = 60 at t = 0, 2, 4, 6, 8, 10.
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Figure 7. Interaction of three solitary
waves for p = 4, N = 400, µ = 1,c1 =
0.6, c2 = 0.3, c3 = 0.15,x1 = 15, x2 =
35 and x3 = 60 at t = 0, 2, 4, 6, 8, 10.

Table 14. Invariants and their comparison for p = 3, N = 400, ∆t = 0.005 and different values of µ.

p = 3

Present [24] Present [24] Present [24]

t I1 I1 I2 I2 I3 I3

µ = 0.1 0 1.772454 1.772453 1.378646 1.378645 0.760896 0.760895

2 1.772766 1.772452 1.379399 1.548191 0.607357 0.591349

4 1.772561 1.772451 1.378142 1.546329 0.604010 0.593211

6 1.772610 1.772449 1.378273 1.545540 0.603203 0.594000

|∆I1| → 0.000156 4.0e-06 |∆I2| → 0.000373 0.166895 |∆I3| → 0.157693 0.166895

µ = 0.05 0 1.772454 1.772453 1.315980 1.315979 0.823561 0.823561

2 1.772215 1.772376 1.312421 1.514843 0.639867 0.624697

4 1.772022 1.772272 1.311619 1.514131 0.639441 0.625409

6 1.773135 1.772168 1.317028 1.513035 0.648906 0.626505

|∆I1| → 0.000681 0.000285 |∆I2| → 0.001048 0.197056 |∆I3| → 0.174655 0.197056

µ = 0.025 0 1.772454 1.772453 1.284647 1.284646 0.854894 0.854894

2 1.782801 1.768943 1.332664 1.502469 0.815844 0.637071

4 1.774529 1.764956 1.302657 1.501801 0.754045 0.637740

6 1.754215 1.761477 1.222551 1.498994 0.589541 0.640546

|∆I1| → 0.018239 0.010976 |∆I2| → 0.062096 0.214348 |∆I3| → 0.265353 0.214348

µ = 0.01 0 1.772454 1.772453 1.265847 1.265847 0.873694 0.873693

2 1.733125 1.720433 1.172092 1.456451 0.616309 0.683090

4 1.711463 1.706008 1.120066 1.450265 0.541076 0.689276

6 1.731412 1.700567 1.196719 1.451593 0.733945 0.687947

|∆I1| → 0.041042 0.071886 |∆I2| → 0.069128 0.185746 |∆I3| → 0.139749 0.185746

method in Table 14. Further, for p = 4 the results
obtained are reported in Table 15.

Graphics of numerical solutions for various values
of parameter µ are given in Figs. 8 and 9. Break-
ing of solitons can be observed from the Figs. 8
and 9.

5. Conclusion

In this paper, delta-shaped functions combined
with the finite difference and a linearization ap-
proach are used for numerically solving general-
ized regularized long wave equation.

The present method has been tested on four clas-
sic problems and its accuracy has been assessed
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Table 15. Invariants and their comparison for p = 4, N = 400, ∆t = 0.005 and different values of µ

p = 4

Present [24] Present [24] Present [24]

t I1 I1 I2 I2 I3 I3

µ = 0.1 0 1.772454 1.772453 1.378646 1.378645 0.760896 0.760895

2 1.772594 1.772110 1.376700 1.591837 0.474657 0.547703

4 1.772315 1.771702 1.375158 1.588948 0.467131 0.550592

6 1.774090 1.771297 1.381579 1.587779 0.469617 0.551761

|∆I1| → 0.001636 0.001156 |∆I2| → 0.002933 0.209134 |∆I3| → 0.291279 0.209134

µ = 0.05 0 1.772454 1.772453 1.315980 1.315979 0.823561 0.823561

2 1.765624 1.753662 1.293771 1.535874 0.512686 0.603666

4 1.772599 1.741625 1.321959 1.528679 0.551366 0.610862

6 1.755506 1.733910 1.265309 1.523490 0.481081 0.616050

|∆I1| → 0.016948 0.038543 |∆I2| → 0.05067 0.207511 |∆I3| → 0.342480 0.207511

µ = 0.025 0 1.772454 1.772453 1.284647 1.284646 0.854894 0.854894

2 1.789069 1.693029 1.355683 1.482414 0.739884 0.657126

4 1.711672 1.682425 1.133213 1.476250 0.412816 0.663290

6 1.714808 1.674869 1.141655 1.468703 0.409811 0.670837

|∆I1| → 0.057646 0.0975840 |∆I2| → 0.142992 0.184057 |∆I3| → 0.445083 0.184057

µ = 0.01 0 1.772454 1.772453 1.265847 1.265847 0.873694 0.873693

2 1.825320 1.651315 1.464030 1.437490 1.304239 0.702051

4 1.750123 1.644999 1.261045 1.439995 0.843022 0.699545

6 1.761501 1.633634 1.294508 1.431710 0.929302 0.707830

|∆I1| → 0.010953 0.138819 |∆I2| → 0.028661 0.165863 |∆I3| → 0.055608 0.165863
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Figure 8. Numerical solution for p = 3, N = 400, ∆t = 0.005 and different values of µ at t = 6.

by comparing calculated error norms L2, L∞

and invariants I1, I2, I3 with exact values and
with finite element, finite difference and colloca-
tion methods. It is seen that from calculations
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Figure 9. Numerical solution for p = 4, N = 400, ∆t = 0.005 and different values of µ at t = 6.

the invariants are almost constant during numer-
ical simulations and error norms are satisfactorily
good even in less collocation points. The perfor-
mance of the present method indicates that the
present method is competitive with existing meth-
ods such as finite element method, finite difference
and collocation methods. Furthermore, the per-
formance of the present method encourages us to
use the method for other nonlinear partial differ-
ential equations that have applications in various
engineering and scientific fields.
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[8] Oruç, Ö., Bulut, F., & Esen, A.(2016). Nu-
merical Solutions of Regularized Long Wave
Equation By Haar Wavelet Method, Mediter-
ranean Journal of Mathematics, 13(5), 3235-
3253.

[9] Dehghan, M., & Salehi, R.(2011). The soli-
tary wave solution of the two-dimensional
regularized long-wave equation in fluids and
plasmas, Computer Physics Communications,
182, 2540-2549.



Numerical investigation of nonlinear generalized regularized long wave equation via delta-shaped . . . 257

[10] Dehghan, M., Abbaszadeh, M., & Mohebbi,
A.(2015). The use of interpolating element-
free Galerkin technique for solving 2D gener-
alized Benjamin-Bona-Mahony-Burgers and
regularized long wave equations on non-
rectangular domains with error estimate,
Journal of Computational and Applied Math-
ematics, 286, 211-231.

[11] Dag, I., Irk, D., & Sari, M. (2013). The ex-
tended cubic b-spline algorithm for a mod-
ified regularized long wave equation, Chi-
nese Physics B, 22(4), doi: 10.1088/ 1674-
1056/22/4/040207.
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1. Introduction

As the most basic nonlinear optimization problem
with continuous variables, unconstrained opti-
mization naturally arises in many disciplines such
as regression, image and signal processing, phys-
ical systems, optimal control and so on. Even,
based on penalization schemes, constrained non-
linear programming problems can be reformu-
lated as unconstrained problems [1]. Generally,
the problem can be defined as minimization of an
objective function that depends on real variables
without any restriction on their values.

Among the efficient tools for solving uncon-
strained optimization problems there are the trust
region (TR) methods and the line search (LS)
techniques [1]. In each iteration of a TR method,
a neighborhood is defined around the available
approximation of the solution, called the trust re-
gion, and then, an approximation of the objec-
tive function is minimized within the region to
achieve the new estimation. The term used for
the method originates from the fact that a local
approximation is trusted as the predictor of the

objective function behavior. In another guideline,
in each iteration of an LS method a search direc-
tion is defined at the available approximation of
the solution and then, the objective function is
minimized along the given direction to achieve the
new estimation. As known, an LS method often
requires more iterations to find a minimizer of the
objective function than does a TR method, while
computing the successive approximations of the
solution more quickly.

To evaluate acceptability level of the local approx-
imate model of the objective function in an arbi-
trary iteration of a TR method, a ratio is defined
often by dividing the distance of the objective
function values to the distance of their local ap-
proximations in the recent iterates. When the TR
ratio is small, the approximate model is found to
be a poor predictor of the objective function be-
havior. In such situation, the model should be
resolved in a smaller region. However, when the
TR ratio is large enough, the approximate model
is found to be a locally suitable predictor of the
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objective function behavior. So, the generated es-
timation of the solution should be accepted and
the region can be enlarged in the next iteration.
It is worth noting that to decrease computational
cost of the TR methods, the LS techniques can
be effectively employed in the case where the TR
ratio is small, as an alternative of resolving the
approximate model in a reduced neighborhood.
A review of the literature reveals an abundance
of the studies on the TR methods; see for exam-
ple [2–4] and the references therein.

Here, based on the simulated annealing strategy,
we develop a randomized TR–LS method. The
method is discussed in details in the next section.
We provide a test bed to shed light on the ad-
vantages of our heuristic algorithm in Section 3.
Finally, in Section 4 we come out with concluding
remarks.

2. A randomized trust region line

search algorithm

Consider the unconstrained optimization prob-
lem min

x∈Rn
f(x) in which the objective function

f : Rn → R is assumed to be continuously dif-
ferentiable. Iterative formula of the optimization
algorithms is generally in the following form:

x0 ∈ R
n, xk+1 = xk + sk, k = 0, 1, ...,

where sk is the step taken from xk. In a TR
method, often sk is an approximate solution of
the following subproblem, being a local quadratic
approximation of the objective function:

min
s∈Rn

mk(s) = fk + gTk s+
1

2
sTBks,

s.t. ||s|| ≤ ∆k,
(1)

where fk = f(xk), gk = ∇f(xk), Bk is an approx-
imation of the Hessian ∇2f(xk), ∆k > 0 is the
TR radius and ||.|| stands for the Euclidean norm.
Meanwhile, in an LS method we have sk = αkdk
where dk ∈ R

n is a descent search direction and

αk ≈ argmin
α>0

f(xk + αdk),

is called the step length.

To describe our randomization scheme, we use
the framework of the TR–LS algorithm proposed
in [2]. Firstly, we adopt the adaptive choice of the
TR radius suggested in [5], that is

∆k = −
gTk qk

qTk Bkqk
||qk||, (2)

in which Bk is a positive definite quasi–Newton
approximation of the Hessian and qk ∈ R

n is a
vector parameter satisfying the angle condition

[1], i.e.

−
gTk qk

||gk|| ||qk||
≥ τ, (3)

for some constant τ ∈ (0, 1]. To evaluate local
consistency between the objective function and
the quadratic model (1), we apply the following
traditional TR ratio [1]:

ρk =
fk − f(xk + sk)

mk(0)−mk(sk)
. (4)

Now, for a prespecified constant µ ∈ (0, 1), if ρk is
large enough in the sense that ρk > µ, then we set
xk+1 = xk+ sk. Otherwise, to avoid resolving the
TR subproblem (1), we set xk+1 = xk + sk with
a specific probability which depends on the value
of ρk, or (similar to the approach of [2]) we use
the Armijo–type LS procedure proposed by Wan
et al. [6] as follows:

Line search 2.1. Let Lk be an approximation
of the Lipschitz constant of the gradient and set

βk = −
gTk sk

Lk||sk||2
. The step length αk is the largest

quantity in {tiβk}
∞

i=0 which satisfies the following
inequality:

f(xk + αksk) ≤ fk + σαk(g
T
k sk −

1

2
αkrLk||sk||

2),

where t ∈ (0, 1), σ ∈ (0, 1/2), and r ∈ [0,+∞)
are real constants.

As seen, the distinct feature of our algorithm is
that we may accept a trial step sk even when
ρk < µ, despite the classical TR algorithms for
which such trial steps are rejected and the sub-
problem (1) is resolved with a smaller radius, or
an LS strategy is employed. So, we need to define
a reasonable probability for the mentioned ran-
domized part of the algorithm. In this context,
we apply the probabilistic approach of the simu-
lated annealing (SA) strategy.

Among the earliest and most popular metaheuris-
tic techniques of optimization, there is the simu-
lated annealing (SA) algorithm. The method ori-
gins from the successful annealing process of the
materials which involves the cautious control of
the cooling schedule [7]. SA is a local search al-
gorithm capable of escaping from local optima by
use of random hill–climbing moves in the search
process [8,9]. It is very efficient in practice [9,10]
and well–developed in theory [11, 12].

To provide a detailed description of the SA
method [8], note that similar to the TR technique,
at the iteration t of the method a neighborhood
Nt is defined around the iterate xt. Then, a neigh-
bor y ∈ Nt is randomly selected. If y is better
than xt (often in the cost function point of view,
i.e. f(y) < f(xt)), then we move to y in the sense
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that we set xt+1 = y. However, when xt is better
than y, we move to y with the probability

pt = e−
d(xt,y)

T , (5)

and stay in xt otherwise, where T is a positive
constant commonly called the temperature and
d(xt, y) is a nonnegative function which demon-
strates the measure of unfitness of the feasible so-
lution y in contrast to xt.

The temperature T controls the likelihood of cost
increases in the sense that when T is small, cost
increases are highly unlikely while when T is large,
the value of d(xt, y) has an insignificant effect on
the probability pt and any particular transition.
In order to guarantee the global convergence with
probability one, the temperature needs to be de-
creased logarithmically with the iteration number
t [13], making the process too slow. In practice,
the temperature is usually updated by

T ← λT, (6)

with a prespecified constant 0≪ λ < 1 [11].

In order to allow probable moves to some inferior
solutions as well as to reduce the effect of unsuc-
cessful iterations (with ρk < µ), we apply the SA
scheme in our algorithm. In this context, when at
the kth iteration of the algorithm the TR ratio is
negative or a small positive number near to zero,
we may accept the trial step sk. More exactly,
if ρk < µ, then we set xk+1 = xk + sk with the
following probability:

pρk = e−
µ−ρk

T , (7)

and stay in xk otherwise, where T is the tem-
perature. Considering (4) and (5), here we set
d(xk, y) = µ − ρk with y = xk + sk. As seen,
the given probability is small when ρk ≪ µ or the
temperature T is small.

Here, based on the above preliminaries, we are in
a position to describe the algorithm in details.

Algorithm 2.1. (A randomized trust region line
search algorithm (RTRLS))

Step 0: {Initialization} Choose an initial
point x0 ∈ R

n, a symmetric positive defi-
nite matrix B0 ∈ R

n×n, and the constants
t ∈ (0, 1), σ ∈ (0, 1/2), r ∈ [0,+∞),
µ ∈ (0, 1], L0 > 0, ǫ > 0, and T0 > 0
as the initial temperature. Compute f0,
and set k = 0 and T = T0.

Step 1: {Stopping criterion} If ||gk|| < ǫ,
then stop.

Step 2: Choose qk satisfying (3) and com-
pute ∆k by (2).

Step 3: Solve the subproblem (1) to find the
trial step sk.

Step 4: Compute ρk by (4). If ρk ≥ µ,
then set xk+1 = xk+sk, and goto Step 6;
otherwise, with the probability pρk given
by (7) set xk+1 = xk + sk and goto Step
6.

Step 5: Find the step length αk using Line
search 2.1 and set xk+1 = xk + αksk.

Step 6: Compute the new Hessian approxi-
mation Bk+1 by a quasi–Newton updating
formula. Set k = k+ 1, decrease the tem-
perature T and goto Step 1.

Note that if the temperature is decreased loga-
rithmically, then, based on the classical conver-
gence properties of the SA [13] and the conver-
gence analysis conducted in [5], with probability
one Algorithm 2.1 can be globally convergent.

3. Numerical experiments

Here, we present some numerical results obtained
by applying MATLAB 7.14.0.739 (R2012a) im-
plementations of RTRLS (Algorithm 2.1) and the
efficient accelerated nonmonotone TR–LS algo-
rithm proposed in [2] (in which Andrei’s initial
choice of the step length is employed [14]), here
called AccTRLS. The runs were performed on a
set of 84 unconstrained optimization test prob-
lems of the CUTEr collection [15] with the min-
imum dimension being equal to 50, as specified
in [3], using a computer Intel(R) Core(TM)2 Duo
CPU 2.00 GHz with 1.50 GB of RAM.

For both algorithms, we adopted the parameter
values suggested in [2] as well as the same stop-
ping criteria. In addition, for RTRLS we set
T0 = ||g0|| and in Step 4, we decreased T by (6)
with λ = 0.9, found to be appropriate. Among
the wide scope of the choices of qk satisfying (3),
here we set qk = −B−1

k gk. Similar to the approach
of [2], to compute the Hessian approximation we
used the scaled memoryless DFP formula where
its inverse can be effectively determined in a mem-
oryless form [1]. Also, we used the double Dogleg
method [1] to solve the subproblem (1).

Efficiency comparisons were drawn using the
Dolan–Moré performance profile [16] on the num-
ber of iterations, number of objective function
evaluations, number of gradient evaluations and
the running time. Performance profile gives, for
every ω ≥ 1, the proportion p(ω) of the test
problems that each considered algorithmic vari-
ant has a performance within a factor of ω of the
best. Figures 1–4 illustrate the results of compar-
isons. As seen, generally RTRLS outperforms Ac-
cTRLS. It is worth noting that in 64% of the itera-
tions RTRLS achieves the solution faster than Ac-
cTRLS. Thus, in general our randomized strategy
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based on the SA method turns out to be practi-
cally promising. Especially, it can be employed as
an alternative of the acceleration/nonmonotone
schemes used in the TR–LS algorithms.

Figure 1. Number of iterations per-
formance profiles

Figure 2. Number of objective func-
tion evaluations performance profiles

Figure 3. Number of gradient eval-
uations performance profiles

Figure 4. CPU time performance profiles

4. Conclusions

Employing the simulated annealing aspects in a
recent adaptive trust region line search method,
a heuristic algorithm has been suggested to be
used in unconstrained optimization. The method
can also be considered as a randomized version
of the trust region line search algorithm. Numer-
ical experiments showed that the proposed ran-
domization scheme can enhance efficiency of the
classical trust region line search algorithms; espe-
cially, it can serve as an alternative of the accel-
eration/nonmonotoe approaches used in the algo-
rithms.

As a future work, one can investigate possible em-
ploying of other metaheuristic algorithms in the
trust region line search methods. In addition, ef-
fect of such randomized schemes on the backtrack-
ing line search techniques can be studied.
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