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1. Introduction

Approximate dynamic programming (ADP) is a
method to solve large-scale Markov decision pro-
cesses (MDPs), which are used to model systems
that evolve stochastically over time. The term
approximate refers to the fact that the solution
obtained by the underlying ADP technique is an
approximate to the optimal solution. ADPs have
been used to solve problems arising in diverse
fields such as healthcare, manufacturing, trans-
portation, and revenue management.

In the last few decades, various ADP techniques
have been proposed to approximately solve com-
putationally intractable MDPs. The state-of-the-
art ADP techniques include the Lagrangian-based
ADP ( [1], [2]), the linear programming-based
ADP ( [3], [4]), and the direct search-based ADP
techniques ( [5], [6]). However, the performances
of those techniques have not been evaluated in the
literature.

To this end, we evaluate the performances of the
aforementioned ADP techniques through a class
of dynamic stochastic scheduling problems. These

problems have the following main features: 1)
Jobs arrive dynamically and stochastically at the
system over time; 2) Arriving jobs from differ-
ent types must be scheduled to future time slots
such as days. These problems are termed as dy-
namic stochastic advanced scheduling problems
(DSASPs) and arise in various fields such as man-
ufacturing, healthcare, and transportation. We
perform a comparison analysis, considering di-
verse scenarios obtained by different levels of cru-
cial problem parameters. In particular, we ap-
proximately solve various problem sets generated
for a class of DSASPs introduced in [3] using the
aforementioned ADP techniques. The way we im-
plement the direct search-based ADP is unique in
that we use new basis functions for value function
approximation.

The rest of the paper is structured as follows. Sec-
tion 2 discusses the relevant literature. In Sec-
tion 3, we introduce a class of dynamic stochastic
advanced scheduling problems, describe the ADP
techniques to be compared, and present our com-
putational work. Section 4 includes concluding
remarks.
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2. Literature review

We review the literature on both approximate
dynamic programming (ADP) and dynamic sto-
chastic advanced scheduling. A summary of work
done on ADP is given first.

2.1. Literature review on approximate

dynamic programming

There are many studies focusing approximate dy-
namic programming (ADP). Powell [7] provides
a good review on ADP-based techniques. We
briefly review prominent work on ADP below.

Farias and Roy [8] addressed the curse of dimen-
sionality of large-sized stochastic control prob-
lems by developing linear programming (LP)-
based ADP for solving such problems. In the
heart of their approach, a linear combination of
basis functions is fitted to cost-to-go function.
The authors developed error bounds that ensure
performance guarantees. In another study, Farias
and Van Roy [9] improved linear programming ap-
proach to ADP through the development of con-
straint sampling. They showed that a subset of
constraints can be chosen independently of total
number of constraints the problem contains under
certain conditions.

Maxwell et al. [5] proposed ADP-based algo-
rithms for ambulance redeployment. In partic-
ular, the authors introduced direct search based
ADP for solving the underlying problem. Ow-
ing to the computationally intensive nature of di-
rect search, they utilized a “post-decision state
dynamic programming formulation of ambulance
redeployment”.

Shechter et al. [10] studied an optimal search
problem where the location of a target is only
known probabilistically. The authors aimed to
minimize the probability of having a failed search
and considered the “unconstrained search” and
the “constrained search”. They developed ADP
approaches for larger instances of their problem.
Numerical results showed that ADP-based algo-
rithms perform well. In a follow-up study, Goc-
gun [11] worked on a class of optimal search prob-
lems that contain a target and an obstacle. The
author provided Markov decision process (MDP)
formulations of these problems and proposed a di-
rect search-based ADP for obtaining approximate
solutions.

Gocgun and Ghate [12] studied a class of dynamic
resource allocation problems where“multiple re-
newable resources must be dynamically allocated
to different types of jobs arriving randomly”. The
objective is to select “which jobs to service in

each time-period so as to maximize total infinite-
horizon discounted expected profit.” The authors
developed a Lagrangian relaxation-based ADP
method for obtaining approximate solutions to
those problems. In a follow-up study, Gocgun
and Ghate [1] proposed an ADP approach based
on Lagrangian relaxation for dynamic stochas-
tic scheduling problems. Their computational re-
sults demonstrated that the ADP approach out-
performs myopic decision rules.

Yin et al. [13] studied a class of metro train sched-
uling problems, considering performance metrics
such as time delay of passengers and operational
costs. They proposed a stochastic programming
model for this problem and approximately solved
it through an ADP-based algorithm.

Wang et al. [14] introduced ADP-based meth-
ods through iterated Bellman inequalities. Their
methods solve linear and semidefinite programs
and provide a bound on optimal value as well as
a reasonably good suboptimal policy.

Li and Womer [15] studied a class of project
scheduling problems that contain resource con-
straints and task durations that are uncertain.
Differing from the existing research, the authors
found a dynamic and adaptive policy through
ADP-based algorithms. Specifically, they devel-
oped a hybrid ADP framework that makes use of
the rollout policy as well as a lookup table ap-
proach.

Nozhati et al. [16] developed a framework for
recovery management. Their approach utilizes
ADP and heuristics for determining recovery ac-
tions. Their approach efficiently manages multi-
state systems following disasters.

Yang et al. [17] proposed ADP-based algorithms
for optimization problems with nonlinear con-
straints. In particular, they introduced a policy-
iteration algorithm to solve the underlying prob-
lem, and validated their control method through
the simulation of an interconnected plant.

Kanj et al. [18] employed ADP for a problem faced
in a ride-hailing system that consists of a fleet
of autonomous electric vehicles. Through ADP,
the authors developed dispatch strategies to de-
termine, for instance, which car is the most ap-
propriate for a particular trip. Their work showed
that the problem contains monotone value func-
tions.

Ou et al. [19] studied a class of gantry scheduling
problems where the material transfer is handled
by gantries. The authors introduced a method
that makes use of reinforcement learning and
ADP. Numerical results showed that the proposed
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method outperforms a standard Q-learning algo-
rithm.

2.2. Literature review on dynamic

stochastic advanced scheduling

One prominent feature of dynamic stochastic ad-
vanced scheduling problems (DSASPs) is that
they are formulated as Markov decision processes
(MDPs). We review research on DSASPs below.

Patrick et al. [3] introduced an MDP formulation
of DSASPs where patients from different types
are scheduled to future days. Due to intractable
state and action spaces, the authors employed
an ADP approach; specifically they developed an
LP-based ADP to provide approximate solutions.
In a follow-up study, Saure et al. [4] studied a
DSASP faced in radiation therapy units. The au-
thors provided an MDP formulation of the under-
lying problem and solved it using an ADP method
that is based on linear programming.

Gocgun and Puterman [20] worked on an appoint-
ment booking problem faced in chemotherapy set-
tings. Differing from the similar problems, it has
the property that patients have target dates along
with tolerance limits. The authors proposed an
LP-based ADP for acquiring an optimal solution.
In a follow-up study, Gocgun [6] worked on a
DSASP faced in chemotherapy settings and allows
for cancellation of jobs. The author employed
a direct search-based ADP for solving larger in-
stances of the underlying problem.

Akhavizadegan et al. [21] addressed appointment
scheduling in a nuclear medical center, consid-
ering patient choice and different no-show rates.
The authors formulated the problem as an MDP
and compared the optimal solution with heuris-
tic decision rules. Wang and Fung [22] studied
a class of dynamic appointment scheduling prob-
lems considering patient preferences and choices.
The authors developed a column generation-based
approximation algorithm to solve these problems.
Lu et al. [23] worked on a class of dynamic ap-
pointment scheduling problems taking into ac-
count “wait-dependent abandonment”. They for-
mulated these problems as MDPs and investi-
gated the properties of the optimal policy theo-
retically.

In a recent work, Saure et al. [24] studied a
DSASP where service times are stochastic. The
authors put forth theoretical results for the de-
terministic case with “multi-class, multi-priority”
jobs, and then developed methods for the stochas-
tic case.

2.3. Contribution

Table 1 indicates research work in which a com-
parative analysis was performed using any of the
LP-based ADP (LP-A), the direct search-based
ADP (DS-A), and the Lagrangian-based ADP
(LGR-A) techniques. To the best of our knowl-
edge, the relevant literature does not contain any
work that deals with a comparative analysis of all
the three state-of-the-art ADP techniques.

Table 1. The list of work in which
any of LP-A, DS-A, and LGR-A was
developed. “S-based A” refers to
Simulation-based ADP.

Study Proposed ADP Comparison

[5] DS-A against S-based A
[10] DS-A against heuristics
[11] DS-A against heuristics
[12] LGR-A against myopic
[1] LGR-A against myopic
[3] LP-A against myopic
[4] LP-A against myopic
[20] LP-A against myopic
[6] DS-A against myopic
[2] LGR-A against myopic

In this research, we evaluate the performance of
three state-of-the-art ADP techniques, employing
them for solving a class of DSASPs. In partic-
ular, the Lagrangian-based ADP, the LP-based
ADP, and the direct-search based ADP were used
to solve the DSASP introduced in [3]. Our contri-
bution is twofold: 1) We employ the direct search-
based ADP through basis functions that are dif-
ferent as compared to those used in the literature,
2) We close a gap in the literature, addressing the
question of which of those techniques perform the
best in an important class of dynamic scheduling
problems.

The features of the DSASP we studied are given
next.

3. Dynamic stochastic advanced

scheduling

The dynamic stochastic advanced scheduling
problem introduced in [3] has the following fea-
tures.

• Heterogeneous job types are considered.
• Arrivals of jobs to the system are random.
In addition, arrivals across job types are
independent.
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• Jobs arriving at the system must be sched-
uled to a day within a booking hori-
zon. Rejecting (or outsourcing or serving
through overtime) jobs is allowed.

• There is a deadline for jobs of each type.
Scheduling a job to a day after its deadline
results in delay cost.

• Rejecting jobs results in a penalty cost.
• The goal is to make decisions of sched-
uling and rejecting arriving jobs so as to
“minimize the total discounted expected
cost over an infinite horizon” ( [20]).

3.1. The Markov decision process model

The following notations are used in the mathe-
matical model of the aforementioned problem.

• I: the number of job types
• N : the length of the booking horizon
• xn, n = 1, . . . , N : number of jobs that are
already scheduled to day n

• ui, i = 1, . . . , I: number of type-i jobs
waiting to be scheduled

• yin, i = 1, . . . , I, n = 1, . . . , N : number of
type-i jobs to be scheduled to day n

• zi, i = 1, . . . , I: number of type-i jobs that
are rejected

• C1: daily capacity
• C2: upper bound on number of jobs re-
jected each day

• p(u′i): probability that u′i jobs of type-i
arrive on a given day

• Di: a deadline associated with type-i job
• Ci(n,Di): delay cost of scheduling a type-
i job on day n

• r(i): rejection cost of a type-i job
• F i, i = 1, . . . , I: unit delay cost for a type-
i job

• D: the set of all possible demand vectors

The Markov decision process (MDP) model of the
aforementioned problem is provided next (see [3]
for an equivalent formulation).

State Space: s = (x, u) = (xn, ui), i = 1, . . . , I
and n = 1, . . . , N . The state of the system con-
sists of the number of jobs that are already sched-
uled to each day in a booking horizon, and the
number of jobs of each type waiting to be sched-
uled.

The Action Set: (y, z) = (yin, zi), i = 1, . . . , I
and n = 1, . . . , N . The action to be made at a
given state is to decide the number of jobs of each
type to be scheduled to each day of the book-
ing horizon, and the number of jobs of each type
that are rejected. Note that zi does not have the
day index, as it represents the number of jobs of
type-i that will not be scheduled to any day of

the booking horizon and hence are rejected. Any
action must satisfy certain constraints, which are
provided below ( [3]).

xn +
I

∑

i=1

yin ≤ C1, n = 1, . . . , N, (1)

I
∑

i=i

zi ≤ C2, (2)

N
∑

n=1

yin + zi ≤ ui, i = 1, . . . , I. (3)

Constraint 1 ensures that the sum of the num-
ber of jobs that are already scheduled to day n

and total number of jobs to be scheduled to day
n does not exceed the daily capacity. Constraint
2 guarantees that total number of jobs rejected is
bounded by C2. Finally, Constraint 3 ensures that
the sum of the total number of type-i jobs to be
scheduled and the number of type-i jobs rejected
cannot be greater than the number of type-i jobs
waiting to be scheduled.

Transition Probabilities: Stochasticity in
the system arises only due to the num-
ber of new arrivals of jobs from each type.
Hence, once an action is chosen at a given
state (x1, x2, . . . , xN , u1, u2, . . . , uI), the system
switches to the following state with probability
∏I

i=1 p(u
′

i) due to the assumption of independent
arrivals:
(x2 +

∑I
i=1 yi2, x3 +

∑I
i=1 yi3, . . . , xN +

∑I
i=1 yiN , 0,

u′1, u
′

2, . . . , u
′

I). Here, for instance, x2 +
∑I

i=1 yi2
represents x′1.

Costs: The immediate cost of choosing an action
at a given state consists of total delay cost and to-
tal rejection cost. It is mathematically expressed
as follows.
c(y, z) =

∑I
i=1

∑N
n=1C

i(n,Di)yin +
∑I

i=1 r(i)zi.
Ci(n,Di) for i = 1, . . . , I is expressed as

Ci(n,Di) = max(n−Di, 0)× F i, n = 1, . . . , N.

(4)

Bellman’s Equations: The cost-to-go function
of a given state is given by

v(x, u) = min
(y,z)

{

c(y, z) + λ
∑

u′∈D

(u
′

)v(x′, u′)

}

.

(5)
Owing to extremely large number of states and
actions, the underlying MDP model is compu-
tationally intractable. The three approximate
dynamic programming techniques are briefly de-
scribed next.
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3.2. Approximate dynamic programming

techniques

Due to curse of dimensionality, Bellman equations
given in Eqn. 5 cannot be solved. The fundamen-
tal theme behind approximate dynamic program-
ming (ADP) is to approximate the value function
(i.e., cost-to-go function) through a combination
of basis functions, thereby eliminating the com-
putational intractability.

ADPs are mainly categorized as mathematical
programming (MP)-based ADP, simulation-based
ADP, and direct search-based ADP. MP-based
ADPs transform the underlying MDP model into
the “equivalent linear programming (LP) ver-
sion of Bellman equations. Approximate value
function is then used to avoid intractability” (
[20]). Examples of MP-based ADPs are linear
programming (LP)-based ADP and Lagrangian-
based ADP. Simulation-based ADP techniques,
however, simulate “the evolution of the system
over a number of initial states in order to tune
the parameters” ( [6]), thereby finding an ap-
proximate solution to the Bellman’s equations.
Simulation models such as reinforcement learn-
ing and statistical sampling are used to estimate
value functions. On the other hand, ADP based
on direct search tackles an optimization problem
where the decision variables are tuning parame-
ters, and the goal is to minimize “the expected
cost of the policy induced by the corresponding
parameter vector” ( [6]). The optimization prob-
lem is solved through direct search.

As stated earlier, in ADP, basis functions that
possess certain important features of the system
state are used to approximate the value function.
One example of utilizing basis functions is linear
approximation, which is given by

V (s) ≈
K
∑

k=1

rkΦk(s),

where “rk for k = 1, . . . ,K are tuning parameters
and Φk(s) for k = 1, . . . ,K are basis functions”
( [11]). The approximation parameters are tuned
iteratively to acquire an ADP policy after the ap-
proximation of the value function is performed.
In this context, ADP approaches aim to find the
optimal parameter vector through which a certain
performance metric is minimized ( [11]).

The parameter tuning phase enables us to have
the approximate value of a given state. We then
retrieve the ADP policy through the computation
of a decision vector for any given state.

We briefly describe the three approximate dy-
namic programming techniques, without delving

into all mathematical details. (refer to [3], [1]
and [6] for technical details of these methods).

3.2.1. Linear programming-based ADP

The LP approximation is provided below (see [3]
for the complete steps of the LP-based ADP).

“For a discounted infinite-horizon MDP (where
the objective function is in minimization form as
in (5) and α(~s) are positive numbers indexed by
states ~s ∈ S), the equivalent LP formulation is
given” ( [20]):

max
∑

~s∈S

α(~s)v(~s) (6)

s.t. c(~s,~a)+

λ
∑

~s′∈S

p(~s′|~s,~a)v(~s′) ≥ v(~s), ∀~s ∈ S,~a ∈ A~s.

Using an affine approximation, the value function
can be approximated as:

ṽ(~x, ~u) = W0 +
N
∑

n=1

Vnxn +
I

∑

i=1

Wiui. (7)

The LP formulation of our MDP model is then:

max
v

∑

(~x,~u)∈S

α(~x, ~u)v(~x, ~u) (8)

s.t. c(~y, ~z)+

λ
∑

d∈D

p(d)v(x2 +
∑

i

yi2, . . . , xN +
∑

i

yiN , 0, u
′

i)

≥ v(~x, ~u), ∀(~x, ~u) ∈ S, ∀(~y, ~z) ∈ A(~x,~u).

We substitute (7) into (6) and obtain the follow-
ing LP after rearranging terms ( [20]):

max
~V , ~W

W0 +
N
∑

n=1

Eα(Xn)Vn +
I

∑

i=1

Eα(Ui)Wi (9)

s.t. (1− λ)W0+

N
∑

n=1

Vn(xn − λxn+1 − λ

I
∑

i=1

yi(n+1))+

I
∑

i=1

Wi(ui − λEα(Ui)) ≤ c(~y, ~z), ∀(~x, ~u) ∈ S,

∀(~y, ~z) ∈ A(~x,~u),

Vn ≥ 0, n = 1, . . . , N,

Wi ≥ 0, i = 1, . . . , I.

As the above LP “still has a very large number
of constraints” ( [20]), its dual is solved through
column generation (see [3]).
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3.2.2. Lagrangian relaxation-based ADP

The Lagrangian approach is similar to the LP-
based in that it transforms the underlying MDP
and tackles the equivalent LP formulation of the
MDP through the problem decomposition ob-
tained by Lagrange multipliers. As the resulting
LP is still intractable, a hybrid Lagrangian re-
laxation - LP approach is employed to tackle in-
tractability. In particular, the Lagrangian value
functions are approximated through affine func-
tions. The resulting approximate LP is solved
using a column generation method. ( [25], [1])

3.2.3. Direct-search based ADP

As part of the direct search-based ADP, we tune
approximation parameters using direct search
with the goal of finding good policies. To be
more specific, an optimization problem where fea-
sible r’s constitute the variables and the goal is to
minimize “the expected cost of the policy induced
by the corresponding parameter vector” ( [6]) is
solved by direct search. As a result, we have the
following optimization problem ( [11]):

min
r∈RN

∞
∑

t=0

c(st, πr(st)), (10)

where “st is the state at stage t of the system, πr
is the policy obtained by the parameter vector r,
πr(st) is the action dictated by the policy πr in
the state at stage t, and c(st, πr(st)) is immedi-
ate cost incurred at step t as a result of choosing
πr(st).” [11]

We use the following basis functions during the
implementation of the direct-search based ADP.

Φ1(s) = C1 −
N
∑

n=1

I
∑

i=1

(xin + yin), (11)

Φ2(s) = −(
I

∑

i=1

zi).

The first basis function represents available capac-
ity (see [6] for a somewhat similar basis function),
whereas the second one allows us to consider dif-
ferent values of zi for the underlying optimization
problem.

Because of having two basis functions, two tuning
parameters are used, which are r1 and r2. We let
r1 and r2 range from 1 to 5 in increments of 1,
and 0 to 40 in increments of 2, respectively. For
each problem instance, the combination of (r1, r2)
that yields the best value is used for computing
average cost values.

3.3. Numerical experiments

Data generation was performed by taking into ac-
count the way data is generated in the literature
( [1]). Number of types was set to 5 and 10. Ar-
rival probabilities of jobs are assumed to follow
Poisson with a parameter DU (1,5) (DU means
discrete uniform). Discount factor was set to 0.9
and 0.99. Resource availability was set to 10 and
20. Two levels were considered for booking hori-
zon: 7 and 14. As a result, we have 16 scenarios
for the comparison analysis.

As the arrival process is random, we estimate the
discounted expected cost accrued by any of the
three ADP techniques by averaging the total dis-
counted cost through simulation. Simulation run
length was set to 50, and number of replications
was set to 20, which means that the total dis-
counted cost is averaged over 20 independent sim-
ulations. For each problem set, we ran 10 problem
instances.

3.3.1. Results

We provide results in tables 2 and 3. For each
problem set determined by the combination of
I,C1, and N , columns 2 to 4 of each table give
the average discounted cost values over 10 in-
dependent problem instances obtained for the
Lagrangian-based, the LP-based, and the direct
search-based ADP, respectively. The last column
of each table gives the percentage difference be-
tween the best and next best techniques. The
bolded percentage difference values correspond to
problem sets where the Lagrangian-based ADP
outperforms others whereas other values corre-
spond to problem sets where the direct search-
based ADP outperforms others. When the dis-
count factor (λ) has a high level (i.e., 0.99); the
Lagrangian-based ADP turns out to be the best
approach in 5 out of 8 problem sets, whereas the
direct search-based ADP outperforms others in
two problem sets. When the discount factor was
set to a low level (i.e., 0.9), the direct search-
based ADP outperforms others in all problem
sets. (Paired t-tests revealed that the respec-
tive percentage differences were statistically sig-
nificant at the 0.05 level.)
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Table 2. Results for λ = 0.99.

(I, C1, N) LGR-A LP-A DS-A Per. d.

(5,5,7) 15379 20208 16991 9.5

(5,5,14) 15273 20127 15763 3.1

(5,10,7) 6546 10380 7345 10.9

(5,10,14) 6831 9556 6676 2.3
(10,10,7) 31110 41513 33120 6.1

(10,10,14) 31256 40179 31035 0.7
(10,20,7) 12310 21844 13062 5.7

(10,20,14) 12627 16746 11174 11.5

Table 3. Results for λ = 0.90.

(I, C1, N) LGR-A LP-A DS-A Per. d.

(5,5,7) 3758 3785 3346 11
(5,5,14) 3758 3197 2762 13.6
(5,10,7) 1708 1685 1327 21.2
(5,10,14) 1708 1172 1022 12.8
(10,10,7) 7276 7514 6451 11.3
(10,10,14) 7276 5978 5185 13.3
(10,20,7) 2923 2827 2351 16.8
(10,20,14) 2923 1541 1461 5.2

4. Conclusions

In this paper, we aimed to close a gap in the
literature by comparing the performances of the
state-of-the-art approximate dynamic program-
ming (ADP) techniques through a class of dy-
namic stochastic advanced scheduling problems
(DSASPs). These problems are modeled as
Markov decision process and their large instances
are approximately solved via ADP techniques.
We solved a class of these problems using three
ADP approaches: 1)Lagrangian-based ADP, 2)
Linear programming-based ADP, and 3) direct
search-based ADP, which we uniquely imple-
mented through new basis functions.

Our numerical experiments reveal that the di-
rect search-based ADP outperforms others in 10
out of 16 problem sets. On the other hand, the
Lagrangian-based ADP outperforms others in 5
out of 16 problem sets. Future research may fo-
cus on the performance comparison of such tech-
niques through variants of DSASPs that include
extensions such as cancellations of jobs, multiple
resources, and overbooking.
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