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1. Introduction

Fuzzy logic is studied in many areas [1,2]. To solve
many problems, Sturm-Liouville Theory is used
in mathematical physics [3, 4]. Sturm-Liouville
fuzzy problem was defined by Gültekin Çitil and
Altınışık [5]. They studied Sturm-Liouville fuzzy
problems with reel and fuzzy coefficients in the
boundary conditions under the Hukuhara differ-
entiability [6, 7]. Also, fuzzy eigenvalue problems
were investigated under the approach of gener-
alized differentiability in many papers [8, 9]. In
the other hand, the fuzzy problem with eigen-
value parameter in the boundary condition was
studied [10, 11]. But, eigenvalue parameter was
not fuzzy in these papers. The problem with
fuzzy eigenvalue parameter was defined and in-
vestigated by Gültekin Çitil [12].

This paper is on the problem with fuzzy eigen-
value parameter in one of the boundary condi-
tions. That is, we concern the fuzzy eigenvalue
problem

τ =
d2

dt2
,

τu+ [λ]α u = 0, t ∈ (a, b) (1)

[A]α u(a) + [λ]α [B]α u
′

(a) = 0, (2)

[C]α u(b) + [D]α u
′

(b) = 0, (3)

where [A]α =
[

Aα, Aα

]

, [C]α =
[

Cα, Cα

]

are neg-

ative triangular fuzzy numbers, [B]α =
[

Bα, Bα

]

,

[D]α =
[

Dα, Dα

]

are positive triangular fuzzy

numbers, [λ]α =
[

λα, λα

]

is positive fuzzy eigen-
value parameter and u(t, λ) is positive fuzzy func-
tion.

Definition 1. [13] A fuzzy number is a mapping
u : R → [0, 1] satisfying the following properties:

u is normal,

u is convex fuzzy set,

u is upper semi-continuous on R,

cl {xǫR | u (x) > 0} is compact, where cl denotes
the closure of a subset.

We show the space of fuzzy sets with RF .

Definition 2. [14] Let u ∈ RF . The α-level set
of u is defined as

[u]α = {x ∈ R | u (x) ≥ α} , 0 < α ≤ 1
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The α-level set of u is denoted as

[u]α = [uα, uα] .

Definition 3. [15]A fuzzy number u is called
positive (negative), denoted by u > 0 (u < 0), if
its membership function u(x) satisfies u(x) = 0,
∀x < 0 (x > 0).

Remark 1. [14] The sufficient and necessary
conditions for [uα, uα] to define the parametric
form of a fuzzy number as follows:

uα is bounded monotonic increasing (nondecreas-
ing) left-continuous function on (0, 1] and right-
continuous for α = 0 ,

uα is bounded monotonic decreasing (nonincreas-
ing) left-continuous function on (0, 1] and right-
continuous for α = 0,

uα ≤ uα, 0 ≤ α ≤ 1.

Definition 4. [14] For u, v ∈ RF and λ ∈ R,
the sum u + v and the product λu are defined by
[u+ v]α = [u]α+[v]α, [λu]α = λ [u]α where means
the usual addition of two intervals (subsets) of
R and λ [u]α means the usual product between a
scalar and a subset of R.

Definition 5. [16] Let u, v ∈ RF , [u]α =
[uα, uα] , [v]

α = [vα, vα] . The product uv is de-
fined by

[uv]α = [u]α [v]α , ∀α ∈ [0, 1] ,

where

[u]α [v]α = [uα, uα] [vα, vα] = [wα, wα] ,

wα = min {uαvα, uαvα, uαvα, uαvα} ,

wα = max {uαvα, uαvα, uαvα, uαvα} .

Definition 6. [17] Let u, v ∈ RF . If there exists
w ∈ RF such that u = v + w, then w is called
the Hukuhara difference of fuzzy numbers u and
v,and it is denoted by w = u⊖ v.

Definition 7. [14, 18] Let f : [a, b] → RF and
t0 ∈ [a, b] .We say that f is Hukuhara differen-

tiable at t0, if there exists an element f
′

(t0) ∈
RF such that for all h > 0 sufficiently small,
∃f (t0 + h)⊖f (t0) , f (t0)⊖f (t0 − h) and the lim-
its hold

lim
h→0

f (t0 + h)⊖ f (t0)

h
= lim

h→0

f (t0)⊖ f (t0 − h)

h

= f
′

(t0) .

2. The fuzzy eigenvalues and fuzzy

eigenfunctions of the problem

In this section, we investigate the fuzzy eigenval-
ues and the fuzzy eigenfunctions of the problem
(1)-(3).

Let be [λ]α =
[

λα, λα

]

=
[

k2α, k
2

α

]

, kα > 0,

kα > 0. Then, using the Hukuhara differentia-
bility and fuzzy arithmetic, the general solution
of the fuzzy differential equation (1) is

uα (t, λ) = c1 (α, λ) cos (kαt) + c2 (α, λ) sin (kαt) ,
(4)

uα (t, λ) = c3 (α, λ) cos
(

kαt
)

+ c4 (α, λ) sin
(

kαt
)

,

(5)

[u(t, λ)]α = [uα (t, λ) , uα (t, λ)]. (6)

Let

[ϕ(t, λ)]α = [ϕ
α
(t, λ) , ϕα (t, λ)]

be the solution of the equation (1) satisfying the
conditions

u (a) = [λ]α [B]α , u
′

(a) = − [A]α (7)

and

[χ(t, λ)]α = [χ
α
(t, λ) , χα (t, λ)]

be the solution of the equation (1) satisfying the
conditions

u (b) = [D]α , u
′

(b) = − [C]α (8)

Then, ϕ
α
(t, λ) , ϕα (t, λ) , χα

(t, λ) , χα (t, λ) can
be shown as

ϕ
α
(t, λ) = c11 (α, λ) cos (kαt)+c21 (α, λ) sin (kαt) ,

ϕα (t, λ) = c31 (α, λ) cos
(

kαt
)

+c41 (α, λ) sin
(

kαt
)

,

χ
α
(t, λ) = c12 (α, λ) cos (kαt)+c22 (α, λ) sin (kαt) ,

χα (t, λ) = c32 (α, λ) cos
(

kαt
)

+c42 (α, λ) sin
(

kαt
)

.

For [ϕ(t, λ)]α, from the first condition in (7), since
[B]α =

[

Bα, Bα

]

is positive fuzzy number, we
have

[λ]α [B]α =
[

k2α, k
2

α

]

[

Bα, Bα

]

=
[

k2αBα, k
2

αBα

]

.
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Then, using the conditions (7), it is obtained

c11 (α, λ) cos (kαa) + c21 (α, λ) sin (kαa) = k2αBα,

(9)

c11 (α, λ) kα sin (kαa)−c21 (α, λ) kα cos (kαa) = Aα,

(10)

c31 (α, λ) cos
(

kαa
)

+ c41 (α, λ) sin
(

kαa
)

= k
2

αBα,

(11)

c31 (α, λ) kα sin
(

kαa
)

−c41 (α, λ) kα cos
(

kαa
)

= Aα.

(12)

From (9)-(10),

c11 (α, λ) =
k3αBα cos (kαa) +Aα sin (kαa)

kα
,

c21 (α, λ) =
k3αBα sin (kαa)−Aα cos (kαa)

kα

are obtained. From (11)-(12), we have

c31 (α, λ) =
k
3

αBα cos
(

kαa
)

+Aα sin
(

kαa
)

kα
,

c41 (α, λ) =
k
3

αBα sin
(

kαa
)

−Aα sin
(

kαa
)

kα
.

Then, the solution of the equation (1) satisfying
the conditions (7) is

ϕ
α
(t, λ) =

(

k2αBα cos (kαa)

+
Aα

kα
sin (kαa)

)

cos (kαt)

+
(

k2αBα sin (kαa)

−
Aα

kα
cos (kαa)

)

sin (kαt) ,

ϕα (t, λ) =
(

k
2

αBα cos
(

kαa
)

Aα

kα
sin

(

kαa
)

)

cos
(

kαt
)

+
(

k
2

αBα sin
(

kαa
)

−
Aα

kα
cos

(

kαa
)

)

sin
(

kαt
)

,

[ϕ(t, λ)]α = [ϕ
α
(t, λ) , ϕα (t, λ)].

For [χ(t, λ)]α, using the conditions (8), we have
the equations

c12 (α, λ) cos (kαb) + c22 (α, λ) sin (kαb) = Dα,

(13)

c12 (α, λ) kα sin (kαb)−c22 (α, λ) kα cos (kαb) = Cα,

(14)

c32 (α, λ) cos
(

kαb
)

+ c42 (α, λ) sin
(

kαb
)

= Dα,

(15)

c32 (α, λ) kα sin
(

kαb
)

−c42 (α, λ) kα cos
(

kαb
)

= Cα.

(16)

From (13)-(14),

c12 (α, λ) =
Dα cos (kαb) + Cα sin (kαb)

kα
,

c22 (α, λ) =
Dα sin (kαb)− Cα cos (kαb)

kα

are obtained. From (15)-(16), we have

c32 (α, λ) =
Dα cos

(

kαb
)

+ Cα sin
(

kαb
)

kα
,

c42 (α, λ) =
Dα sin

(

kαb
)

− Cα sin
(

kαb
)

kα
.

Then, solution of the equation (1) satisfying the
conditions (8) is

χ
α
(t, λ) =

(

Dα

kα
cos (kαb)

+
Cα

kα
sin (kαb)

)

cos (kαt)

+

(

Dα

kα
sin (kαb)

−
Cα

kα
cos (kαb)

)

sin (kαt) ,

χα (t, λ) =

(

Dα

kα
cos

(

kαb
)

+
Cα

kα
sin

(

kαb
)

)

cos
(

kαt
)

+

(

Dα

kα
sin

(

kαb
)

−
Cα

kα
cos

(

kαb
)

)

sin
(

kαt
)

,

[χ(t, λ)]α = [χ
α
(t, λ) , χα (t, λ)].
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Since the eigenvalues of the fuzzy boundary
value problem (1)- (3) if and only if are consist

of the zeros of functions W
(

ϕ
α
, χ

α

)

(t, λ) and

W (ϕα, χα) (t, λ) [5], we find Wronskian functions

W
(

ϕ
α
, χ

α

)

(t, λ) = ϕ
α

(t, λ)χ
′

α
(t, λ) (17)

−χ
α
(t, λ)ϕ

′

α
(t, λ) ,

W (ϕα, χα) (t, λ) = ϕα (t, λ)χ
′

α (t, λ) (18)

−χα (t, λ)ϕ
′

α (t, λ) .

Computing the values (17) and (18) and making
the necessary operations, we obtain

W
(

ϕ
α
, χ

α

)

(λ) =

(

AαDα

kα

−k2αBαCα

)

cos (kα (a− b))

−
(

k2αBαDα

+
AαCα

kα

)

sin (kα (a− b)) ,

W (ϕα, χα) (λ) =

(

AαDα

kα

−k
2

αBαCα

)

cos
(

kα (a− b)
)

−
(

k
2

αBαDα

AαCα

kα

)

sin (kα (a− b)) .

Example 1. Consider the fuzzy eigenvalues and
fuzzy eigenfunctions of the problem

u
′′

+ [λ]α u = 0, t ∈ (0, 1) (19)

− u(0) + [λ]α [2]α u
′

(0) = 0, (20)

[−1]α u(1) + u
′

(1) = 0, (21)

where [A]α = −1, [B]α = [2]α = [1 + α, 3− α] ,
[C]α = [−1]α = [−2 + α,−α] , [D]α = 1 and
[λ]α =

[

λα, λα

]

positive fuzzy eigenvalue parame-
ter and u(t, λ) is positive fuzzy function.

Let be [λ]α =
[

λα, λα

]

=
[

k2α, k
2

α

]

, kα > 0,

kα > 0. Solution of the equation (19) satisfying
the conditions (20) is

ϕ
α
(t, λ) = k2α (1 + α) cos (kαt) +

1

kα
sin (kαt) ,

ϕα (t, λ) = k
2

α (3− α) cos
(

kαt
)

+
1

kα
sin

(

kαt
)

,

[ϕ(t, λ)]α = [ϕ
α
(t, λ) , ϕα (t, λ)]

and solution of the equation (19) satisfying the
conditions (21) is

χ
α
(t, λ) =

(

1

kα
cos (kα)

−
α

kα
sin (kα)

)

cos (kαt)

+

(

1

kα
sin (kα)

+
α

kα
cos (kα)

)

sin (kαt) ,

χα (t, λ) =

(

1

kα
cos

(

kα
)

−
(2− α)

kα
sin

(

kα
)

)

cos
(

kαt
)

+

(

1

kα
sin

(

kα
)

+
(2− α)

kα
cos

(

kα
)

)

sin
(

kαt
)

,

[χ(t, λ)]α = [χ
α
(t, λ) , χα (t, λ)].

Then, it is obtained

W
(

ϕ
α
, χ

α

)

(λ) =
(

k2αα (1 + α)

−
1

kα

)

cos (kα)

+
(

k2α (1 + α)

+
α

kα

)

sin (kα) ,

W (ϕα, χα) (λ) =
(

k
2

α (2− α) (3− α)

−
1

kα

)

cos
(

kα
)

+
(

k
2

α (3− α)

+
(2− α)

kα

)

sin
(

kα
)

.

Since the eigenvalues of the fuzzy boundary value
problem (19)- (21) if and only if are consist of

the zeros of functions Wα (λ) = W
(

ϕ
α
, χ

α

)

(λ)

and Wα (λ) = W (ϕα, χα) (λ) , computing the val-
ues kα satisfying the equation Wα (λ) = 0 and
kα satisfying the equation Wα (λ) = 0 for each
α ∈ [0, 1], we get infinitely many values as

α = 0 ⇒

k1 = 0.915811,
k2 = 3.17289,
k3 = 6.28721,

...

k1 = 0.343085,

k2 = 2.0719,

k3 = 5.17844,
...
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α = 0.2 ⇒

k1 = 0.808395,
k2 = 2.97581,
k3 = 6.08948,

...

k1 = 0.368214,

k2 = 2.11559,
k3 = 5.222,

...

α = 0.5 ⇒

k1 = 0.674971,
k2 = 2.71138,
k3 = 5.82291,

...

k1 = 0.413302,

k2 = 2.19653,

k3 = 5.30307,
...

α = 0.8 ⇒

k1 = 0.571662,
k2 = 2.50229,
k3 = 5.61159,

...

k1 = 0.470075,

k2 = 2.30274,

k3 = 5.41,
...

α = 1 ⇒

k1 = 0.516499,
k2 = 2.39268,
k3 = 5.50079,

...

k1 = 0.516499,

k2 = 2.39268,

k3 = 5.50079,
...

We show that this values are kn and kn, k=1,2,. . .
for each α ∈ [0, 1]. Then, the eigenvalues are

[λn]
α =

[

λα,n, λα,n

]

=
[

k2α,n, k
2

α,n

]

with associated

solutions

[ϕn(t, λ)]
α = [ϕ

α,n
(t, λ) , ϕα,n (t, λ)],

ϕ
α,n

(t, λ) = k2α,n (1 + α) cos
(

kα,nt
)

+
1

kα,n
sin

(

kα,nt
)

,

ϕα,n (t, λ) = k
2

α,n (3− α) cos
(

kα,nt
)

+
1

kα,n
sin

(

kα,nt
)

and

[χn(t, λ)]
α = [χ

α,n
(t, λ) , χα,n (t, λ)],

χ
α,n

(t, λ) =

(

1

kα,n
cos

(

kα,n
)

−
α

kα,n
sin

(

kα,n
)

)

cos
(

kα,nt
)

+

(

1

kα,n
sin

(

kα,n
)

+
α

kα,n
cos

(

kα,n
)

)

sin
(

kα,nt
)

,

χα,n (t, λ) =

(

1

kα,n
cos

(

kα,n
)

−
(2− α)

kα,n
sin

(

kα,n
)

)

cos
(

kα,nt
)

+

(

1

kα,n
sin

(

kα,n
)

+
(2− α)

kα,n
cos

(

kα,n
)

)

sin
(

kα,nt
)

.

When

∂ϕ
α,n

(t, λ)

∂α
≥ 0,

∂ϕα,n (t, λ)

∂α
≤ 0, (22)

ϕ
α,n

(t, λ) ≤ ϕα,n (t, λ) ,

∂χ
n,α

(t, λ)

∂α
≥ 0,

∂χn,α (t, λ)

∂α
≤ 0, (23)

χ
n,α

(t, λ) ≤ χn,α (t, λ) ,

for all n = 1, 2, ..., [ϕn(t, λ)]
α and [χn(t, λ)]

α

are valid α−level sets. That is, [ϕn(t, λ)]
α and

[χn(t, λ)]
α are eigenfunctions when (22) and (23 )

are satisfied.

Now, we draw the graphics of [ϕn(t, λ)]
α and

[χn(t, λ)]
α for α = 0.2 and n = 2.

Figure 1. Graphic of [ϕn(t, λ)]
α:

Red → ϕ
α,n

(t, λ), Blue

→ ϕ
α,n

(t, λ), Green → ϕ
1,n

(t, λ) =

ϕ
1,n

(t, λ).
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Figure 2. Graphic of [χn(t, λ)]
α:

Red → χ
α,n

(t, λ), Blue

→ χ
α,n

(t, λ), Green → χ
1,n

(t, λ) =

χ
1,n

(t, λ).

In Figure 1, [ϕn(t, λ)]
α is a valid α−level set for

t ∈ [0, 0.538478] and in Figure 2, is a valid
α−level set for t ∈ [0.912106, 1] , since the in-
equalities (23) and the solution is positive fuzzy
function.

Then, the eigenfunctions are [ϕn(t, λ)]
α on

[0, 0.538478] and [χn(t, λ)]
α on [0.912106, 1] as-

sociated with eigenvalues [λn]
α =

[

λα,n, λα,n

]

=
[

k2α,n, k
2

α,n

]

for α = 0.2 and n = 2.

3. Conclusion

In this work, we study the problem with fuzzy
eigenvalue parameter in one of the boundary con-
ditions. We find infinitely many eigenvalues for
each α ∈ [0, 1]. Also, we find solutions associated
with eigenvalues. We draw graphics of solutions.
But solutions are not valid α−level sets every
time. That is, solutions are valid fuzzy functions
different interval for each α ∈ [0, 1]. Thus, found
solutions are solutions only in interval which they
are valid fuzzy function. That is, found solutions
are eigenfunctions only in interval which they are
valid fuzzy function.
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