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 The periodic vehicle routing problem (PVRP) is an extension of the well-known 

vehicle routing problem. In this paper, the PVRP with time windows and time 

spread constraints (PVRP-TWTS) is addressed, which arises in the high-value 

shipment transportation area. In the PVRP-TWTS, period-specific demands of the 

customers must be delivered by a fleet of heterogeneous capacitated vehicles over 

the several planning periods. Additionally, the arrival times to a customer should 

be irregular within its time window over the planning periods, and the waiting time 

is not allowed for the vehicles due to the security concerns. This study, proposes 

novel mixed-integer linear programming (MILP) and constraint programming 

(CP) models for the PVRP-TWTS. Furthermore, we develop several valid 

inequalities to strengthen the proposed MILP and CP models as well as a lower 

bound. Even though CP has successful applications for various optimization 

problems, it is still not as well-known as MILP in the operations research field. 

This study aims to utilize the effectiveness of CP in solving the PVRP-TWTS. 

This study presents a CP model for PVRP-TWTS for the first time in the literature 

to the best of our knowledge. Having a comparison of the CP and MILP models 

can help in providing a baseline for the problem. We evaluate the performance of 

the proposed MILP and CP models by modifying the well-known benchmark set 

from the literature. The extensive computational results show that the CP model 

performs much better than the MILP model in terms of the solution quality. 
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1. Introduction 

The periodic vehicle routing problem (PVRP) is an 

extension of the standard vehicle routing problem 

(VRP), which plans the vehicle routes over the several 

planning periods. In each period, routes are constructed 

for a fleet of capacitated vehicles such that: each 

vehicle starts and ends its tour at the depot; demands of 

the customers are delivered, and vehicle capacities are 

regarded. Then, the goal of the PVRP is to find a set of 

vehicle routes that minimizes the total travel time (or 

distance) over the planning horizon. 

This paper addresses the periodic vehicle routing 

problem with time windows and time spread 

constraints (PVRP-TWTS), which arises in high-value 

shipment transportation. Since the high-value shipment 

companies generally plan the vehicle routes over 

several days and most of their customers are visited 

each day, their transportation processes can be 

formulated as a PVRP. Besides the aforementioned 

assumptions and limitations, in the PVRP-TWTS, there 

are also time windows for the customers, where each 

customer can only be visited within its time window. 

Furthermore, due to security concerns, changing arrival 

times are preferred in high-value shipment 

transportation. Hence, there are also time spread 

constraints for the customers. Namely, the arrival times 

of any two visits to the same customer must vary by a 

given time constant over the planning periods. 

Additionally, due to the security reasons, the waiting 

times are not allowed for the vehicles. 

The PVRP-TWTS can be seen in real-life during the 

planning of the daily trips for the loading/unloading 

operations of the Automated Teller Machines (ATM). 

Generally, the banks make agreements with the 

corporations, which are specialized in the 

transportation of the expensive products, for the 

loading/unloading operations of these ATMs. The 

http://www.ams.org/msc/msc2010.html
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purpose of these Cash in Transit (CIT) companies is to 

move valuable things like coins, banknotes, or jewels 

from one location to a different one safely. The 

customers of these CIT corporations also involve 

supermarkets and various shopping stores in addition to 

the banks. Since these CIT companies transport 

valuable products, they must arrange their daily visits 

using different routes due to security reasons [1,2]. 

In this study, we consider the PVRP-TWTS with 

heterogeneous vehicles and customers with period-

specific demands, which is a novel extension of the 

problem. We propose a novel mixed-integer linear 

programming (MILP) model and a novel constraint 

programming (CP) model for the problem, as exact 

solution approaches. Furthermore, we develop several 

valid inequalities to strengthen the proposed MILP and 

CP models as well as a simple lower bound. Then, we 

evaluate the performance of the proposed models on the 

well-known benchmark set of [3] by modifying these 

instances. 

In the literature, the CP technique has been successfully 

applied to various combinatorial optimization 

problems, and it has become a strong competitor to 

state-of-the-art mathematical programming techniques 

such as MILP [4]. However, it is still not as well-known 

as the MILP in the operations research field. The MILP 

models have mainly been employed to solve various 

real-life problems, including the VRP and its variants. 

Even though some studies have applied CP to solve the 

VRP [5-8], MILP models have been widely used for 

those types of problems in the literature.  

This study aims to utilize the effectiveness of CP in 

solving such a complex PVRP-TWTS. To the best of 

our knowledge, this study presents a CP model for the 

PVRP with time spread constraints for the first time in 

the literature. In this paper, we compare the CP and 

MILP techniques for the PVRP-TWTS. Having a 

comparison of CP with a MILP model can help to 

provide a baseline for the problem and increase the 

usage of CP for similar problems in the literature by 

showing its effectiveness. 

The rest of the paper is structured as follows. A 

literature review is provided in Section 2. Section 3 

formally defines the problem. In Section 4, the MILP 

and CP formulations are presented as well as the valid 

inequalities and the lower bound. Section 5 presents the 

computational results to assess the performance of the 

proposed models. In Section 6, the conclusions are 

mentioned as well as future research directions. 

2. Literature review 

Many exact and heuristic methods have been proposed 

in the literature for vehicle routing problems such as 

[9,10]. Three recent comprehensive reviews are 

provided for the VRP in [11-13]. A recent survey on 

PVRP is also presented by [14]. 

There are two main approaches in the literature for 

constructing unpredictable routes: order dissimilarity 

and arrival time dissimilarity. The order dissimilarity is 

generally addressed under the peripatetic vehicle 

routing problems. The m-peripatetic vehicle routing 

problem (m-PVRP) aims to obtain a set of edge-disjoint 

routes with a minimum cost over 𝑚 periods such that: 

each customer is visited only once in a period, and the 

edge among a pair of customers can be utilized at most 

once through the 𝑚 periods. The m-PVRP was initially 

studied by [15], in which several upper and lower 

bounds were proposed for the problem. Later, the same 

authors also proposed another lower bounding 

procedure and an exact method based on polyhedral 

and column generation approaches for the m-PVRP in 

[16]. A hard constraint of the m-PVRP is that: no edge 

is traversed twice during the 𝑚 periods. Later, in [17], 

this limitation was loosened by proposing a related 

problem named the k–dissimilar VRP, where the aim is 

to obtain 𝑘 various VRP solutions such that the 

similarity among a couple of solutions is under a given 

level. Note that the k-dissimilar VRP does not forbid 

the multiple usages of an edge explicitly. 

Akgün et al. [18] stated that edge dissimilarity does not 

always result in geographically dispersed routes. In 

[19], spatially different routes were developed by 

evaluating the intersection zones between the routes, 

where Pareto-optimal paths were found by employing 

a multi-criteria shortest path algorithm. In [20], a bi-

objective function was employed to minimize the 

shipping cost and the security risk of transferring high-

value goods. The authors developed a combined risk 

criterion, which is the weighted sum of the route 

similarity and the risk of a route. Talarico et al. [21,22] 

also developed a risk measure related to the quantity of 

loaded money and the distance traversed by the 

vehicles.  

Another strategy to construct unforeseeable routes is to 

differ the visiting (arrival) time of each customer over 

the planning periods. In [23], diversification of the 

visiting times was studied for the case of overnight 

safety guarding, where the aim is to obtain a set of 

dissimilar routes with regard to visiting times. Note that 

they presumed that all customers have the same time 

window.   

Constantino et al. [24] studied the problem of gathering 

the money from parking meters, where the aim is to 

minimize the total traveling time and keep a similarity 

measure under a given threshold. They developed a 

MILP model and a metaheuristic for the problem, 

where the similarity measure of two tours is expressed 

as the fraction of tasks that are served in the same 

period. Yan et al. [25] also studied the arrival time 

diversification by assuming that the visiting time of a 

customer must vary by at least 𝛽𝑝 minutes from the 𝑝𝑡ℎ 

previous visiting time. They formulated the problem as 

an integer multi-commodity network flow problem. 

To the best of our knowledge, there are two studies 

[1,2] that consider similar PVRP to our PVRP-TWTS. 

In the first study of Michallet et al. [1], the PVRP with 

arrival time dissimilarity was modeled by differing the 

arrival time at each customer by at least a given time 
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spread constant over the planning periods. In the study 

of [1], there are also time windows for the customers, 

and waiting time is not permitted for the vehicles. They 

developed an iterated local search for the problem, 

where the infeasible solutions that violate the arrival 

time dissimilarity and the time window limitations are 

penalized with a time-dependent penalty function. 

Later, Hoogeboom and Dullaert [2] also studied a 

similar problem to the one of [1], where a specific time 

spread constant is defined for each customer. In [2], a 

rolling horizon approach is employed instead of using 

the periodic setting of [1]. According to their rolling 

horizon approach, arrival time slots from the previous 

periods are deleted from the solution region in each 

period, then, a VRP with multiple time windows is 

solved for each period. They proposed an iterated 

granular tabu search algorithm for the problem, as well 

as four penalization approaches to permit infeasible 

solutions through the heuristic procedure. 

Note that these two studies [1,2] mentioned above 

assume that all vehicles are identical, i.e., have the same 

capacity, and the demand of a customer is the same in 

all periods. However, in real-life, the CIT companies 

generally have a heterogeneous fleet of vehicles, and 

the demand of a customer varies from one period to 

another due to the seasonality. Consequently, in this 

paper, we extend the PVRP-TWTS of [1] by 

considering heterogeneous vehicles with different 

capacities and customers with period-specific demands 

to reflect the real practice. Lack of exact solution 

procedures for this novel extension of the PVRP-

TWTS is a significant gap in the literature that needs to 

be filled. This study aims to fill this gap by proposing 

novel MILP and CP models for this more realistic 

extension of the PVRP-TWTS, as exact solution 

methods. Additionally, several valid inequalities are 

developed to strengthen the proposed MILP and CP 

models, as well as a simple lower bound.  

Even though some studies have applied CP to solve the 

VRP [5-8], to the best of our knowledge, the CP model 

is proposed for the PVRP with time spread constraints 

in this study, for the first time in literature. This study 

also aims to emphasize the impact of CP approaches 

and their increasing attractiveness by showing its 

effectiveness on such a complex PVRP-TWTS. Finally, 

we intend this work to be useful to different researchers 

and experts in the field as a beginning point for their CP 

and/or PVRP research attempts. 

3. Problem definition 

In this paper, we consider the PVRP-TWTS for the 

ATM loading process of the banks. Generally, banks 

plan the visits of the vehicles to the customers (ATMs) 

over several days, where the customers must be visited 

within their time windows each day. Namely, in each 

day (period), they assign customers to the vehicles, and, 

then, they plan the routes of the vehicles regarding 

these assignments. In the ATM loading process, a team 

of workers departs from the depot, loads the ATMs, 

which are on their path, and turns back to the depot 

again. Note that the workers should load each ATM 

within specified periods, i.e., time windows, preferably 

outside the working hours of the customers. 

Furthermore, since each vehicle has an individual 

capacity, the total demand of the customers on the 

vehicle’s route should not exceed the capacity of the 

vehicle. As the demand of the customers (ATMs) 

generally varies from day to day, each customer has a 

different demand in each period. 

Since the vehicles are carrying valuable goods, i.e., 

money for the ATMs, arrivals earlier than the start of 

the customer’s time window are forbidden to ensure the 

security of the vehicles. Furthermore, the arrival times 

of the vehicles to a customer should be irregular over 

the planning periods. Namely, the arrival times of any 

two visits to the same customer must vary by at least a 

certain amount of time 𝜖 over the periods, without 

violating the time window of the customer. In this way, 

the arrival times to a customer (ATM) vary between the 

periods. Since it is going to be hard to track the 

vehicles, the exact time of the visits to the ATMs would 

not be known. Consequently, the goal of the banks is to 

provide the security of transfers over several planning 

periods with minimum travel time. Note that this 

problem with additional limitations, i.e., the PVRP-

TWTS, can also be seen in other high-value shipment 

transportation processes of the CIT companies. 

The PVRP-TWTS can be formally defined on a 

directed graph with a planning horizon P of several 

periods, i.e., days. The set of nodes 𝑁 = {0, 1, … , 𝑛,
𝑛 + 1} contains the set of customers, where nodes 0 

and 𝑛 + 1 denote the depot. There is a set 𝑉 of 

heterogeneous vehicles with different capacities, where 

each vehicle 𝑘 has an individual capacity 𝑊𝑘. The 

service at each customer 𝑖 includes providing an 

amount 𝑑𝑖,𝑝 of goods in a period 𝑝 ∈ 𝑃, with a service 

time 𝑠𝑖, without arriving earlier than 𝑎𝑖 and not after the 

𝑏𝑖. Note that waiting at a customer until the beginning 

of its time window is forbidden. Furthermore, for any 

two periods, 𝑝 and 𝑝′, a minimum time constant 𝜖 

should split the arrival times at a customer, 

corresponding to time spread constraints. 

The PVRP-TWTS aims to construct a set of vehicle 

routes in each period that minimizes total travel time 

while distinguishing the arrival times. In a route, a 

vehicle departs from the depot with a load that complies 

with its capacity; visits a subgroup of customers, which 

are assigned to it, within their time windows; delivers 

to these customers their demands; and returns to the 

depot. Note that the PVRP-TWTS considers both the 

assignment of the vehicles to customers and the routing 

of the vehicles. The PVRP-TWTS is NP-hard, since the 

basic single-period version of the problem, i.e., the 

vehicle routing problem, is known to be NP-hard [26]. 

A variant of the PVRP-TWTS was initially studied in 

the literature by [1], and a MILP formulation was 

provided for the problem. However, the authors [1] 

assume that all vehicles are identical, and the demand 
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of a customer is the same in all periods. In this paper, 

we consider heterogeneous vehicles with different 

capacities and customers with period-specific demands 

to reflect the real practice. Consequently, we extend the 

MILP model of [1] by including heterogeneous 

vehicles and customers with period-specific demands. 

Furthermore, we propose a novel CP model for the 

studied PVRP-TWTS as well as valid inequalities and 

a lower bound. 

4. Mathematical models 

As mentioned in Section 3, this paper formulates a 

MILP model and a CP model for the PVRP-TWTS 

using the OPL modeling language [27]. All parameters 

and sets of the PVRP-TWTS used in the proposed 

MILP and CP models are presented as follows. 

Sets & parameters  

𝑁: Set of nodes = {0, 1,…, n, n+1} 

𝐶: Set of customers = {1,…, n} 

𝑉: Set of vehicles 

𝑃: Set of periods 

𝑊𝑘: Capacity of vehicle 𝑘 ∈ 𝑉 

𝑡𝑖,𝑗: Travel time from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 

𝑑𝑖,𝑝: Demand of node 𝑖 ∈ 𝑁 at period 𝑝 ∈ 𝑃. Note 

that the demand of the depot nodes equal to 0 

in all periods. 

𝑎𝑖: Start time of the time window of node 𝑖 ∈ 𝑁 

𝑏𝑖: End time of the time window of node 𝑖 ∈ 𝑁 

𝑠𝑖: Service time at node 𝑖 ∈ 𝑁. Note that the 

service time of the depot nodes equal to 0. 

𝜖: Minimum time-spread constant between any 

two arrivals at a customer such that:  

𝜖 ≤ 𝜖𝑢𝑝 = min
𝑖∈𝐶

{𝑏𝑖 − 𝑎𝑖} (|𝑃| − 1)⁄  

𝑀: A sufficiently large integer: 

𝑀 = max
𝑖∈𝐶

{𝑏𝑖 − 𝑎𝑖} + 𝜖 

𝐵: A sufficiently large integer: 

𝐵 = max
𝑖∈𝑁

{𝑏𝑖} + 𝜖 

4.1. Mixed integer linear programming (MILP) 

model 

The decision variables of the MILP model are defined 

as follows: 

Decision variables 

𝑦𝑖,𝑘,𝑝 = {
1, if node 𝑖 𝑖s assigned to vehicle 𝑘

 in period 𝑝                                       
 0, otherwise                                         

  

𝑥𝑖,𝑗,𝑘,𝑝 = {
1, if node 𝑗 is visited immediately          

after node 𝑖 by vehicle 𝑘 in period 𝑝
 0, otherwise                                                   

  

𝑧𝑖,𝑝,𝑝′,𝑘,𝑘′ = {
1, 𝑡𝑠𝑖,𝑘,𝑝 − 𝑡𝑠𝑖,𝑘′,𝑝′ ≥ 𝜖

0, 𝑡𝑠𝑖,𝑘′,𝑝′ − 𝑡𝑠𝑖,𝑘,𝑝 ≥ 𝜖
 

𝑡𝑠𝑖,𝑘,𝑝: Arrival time of vehicle 𝑘 to customer 𝑖 in 

period 𝑝. 

The objective function and the constraints of the MILP 

model are presented below. 

 

Objective function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ ∑ 𝑡𝑖,𝑗𝑥𝑖,𝑗,𝑘,𝑝𝑖,𝑗∈𝑁|𝑖≠𝑗𝑘∈𝑉𝑝∈𝑃   (1) 

Constraints 

∑ 𝑦𝑖,𝑘,𝑝𝑘∈𝑉 = 1    ∀𝑖 ∈ 𝐶, 𝑝 ∈ 𝑃  (2) 

∑ 𝑦0,𝑘,𝑝𝑘∈𝑉 ≤ |𝑉|    ∀𝑝 ∈ 𝑃  (3) 

∑ 𝑥𝑖,𝑗,𝑘,𝑝𝑖∈𝑁|𝑖≠𝑗 = 𝑦𝑗,𝑘,𝑝  

   ∀𝑗 ∈ 𝑁\{0}, 𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (4) 

∑ 𝑥𝑖,𝑗,𝑘,𝑝𝑗∈𝑁|𝑖≠𝑗 = 𝑦𝑖,𝑘,𝑝  

   ∀𝑖 ∈ 𝑁\{𝑛 + 1}, 𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (5) 

∑ 𝑥𝑖,𝑛+1,𝑘,𝑝𝑖∈𝑁\{𝑛+1} = 1    ∀𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (6) 

∑ 𝑑𝑖,𝑝 ∗ 𝑦𝑖,𝑘,𝑝𝑖∈𝑁 ≤ 𝑊𝑘    ∀𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (7) 

𝑡𝑠𝑖,𝑘,𝑝 + 𝑠𝑖 + 𝑡𝑖,𝑗 − (𝑏𝑖 + 𝑠𝑖 + 𝑡𝑖,𝑗)(1 − 𝑥𝑖,𝑗,𝑘,𝑝) ≤

   𝑡𝑠𝑗,𝑘,𝑝        ∀𝑖, 𝑗 ∈ 𝑁|𝑖 ≠ 𝑗, 𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (8) 

𝑡𝑠𝑖,𝑘,𝑝 + 𝑠𝑖 + 𝑡𝑖,𝑗 + 𝑏𝑗(1 − 𝑥𝑖,𝑗,𝑘,𝑝) ≥ 𝑡𝑠𝑗,𝑘,𝑝  

   ∀𝑖, 𝑗 ∈ 𝑁|𝑖 ≠ 𝑗, 𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (9) 

𝑡𝑠𝑖,𝑘,𝑝 ≥ 𝑎𝑖   ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (10) 

𝑡𝑠𝑖,𝑘,𝑝 ≤ 𝑏𝑖   ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (11) 

𝑡𝑠𝑖,𝑘,𝑝 − 𝑡𝑠𝑖,𝑘′,𝑝′ + 𝑀(1 − 𝑧𝑖,𝑝,𝑝′,𝑘,𝑘′) ≥ 𝜖  

    ∀𝑖 ∈ 𝐶, 𝑘, 𝑘′ ∈ 𝑉, 𝑝, 𝑝′ ∈ 𝑃|𝑝 ≠ 𝑝′ (12) 

𝑡𝑠𝑖,𝑘′,𝑝′ − 𝑡𝑠𝑖,𝑘,𝑝 + 𝑀 ∗ 𝑧𝑖,𝑝,𝑝′,𝑘,𝑘′ ≥ 𝜖  

    ∀𝑖 ∈ 𝐶, 𝑘, 𝑘′ ∈ 𝑉, 𝑝, 𝑝′ ∈ 𝑃|𝑝 ≠ 𝑝′ (13) 

The objective function of the PVRP-TWTS (Eq.1) 

minimizes the total travel time of the vehicles. The 

model aims to reduce the total cost of the routes within 

the planning horizon. The constraint (Eq.2) ensures 

that, in each period, each customer is visited precisely 

once by a single vehicle, while the constraint (Eq.3) 

guarantees that the number of departures from the depot 

is not greater than the total number of vehicles in each 

period. Constraints (Eq.4- Eq.5) state that there must be 

arrival to each node except the depot node 0, and there 

must be a departure from each node except the depot 

node 𝑛 + 1, respectively. All vehicles should return to 

the depot node 𝑛 + 1, specified by the constraint 

(Eq.6).  

Since vehicles have different capacities, the customer-

vehicle assignments should respect those vehicle 

capacities. The constraint (Eq.7) guarantees that the 

total demand assigned to a vehicle does not exceed its 

capacity. Constraints (Eq.8- Eq.9) ensure that arrival 

times are consistent on a route, waiting times are not 

allowed, and sub tours are avoided. The following 

constraints (Eq.10- Eq.11) are written to respect the 

time window restrictions of the customers by providing 

that arrival times at each node must be within its time 

window. There should be a minimum time interval 

between the visits of the same customer in different 

periods due to security reasons, which is provided by 

the constraints (Eq.12- Eq.13). 

4.2. Valid inequalities for the MILP model 

In order to strengthen the MILP model in Section 4.1, 

two valid inequalities are developed as follows: 
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∑ 𝑥𝑖,𝑗,𝑘,𝑝𝑘∈𝑉,𝑝∈𝑃 = 0  

   ∀𝑖, 𝑗 ∈ 𝐶|𝑖 ≠ 𝑗, 𝑏𝑖 + 𝑠𝑖 + 𝑡𝑖,𝑗 < 𝑎𝑗  (14) 

∑ 𝑥𝑖,𝑗,𝑘,𝑝𝑘∈𝑉,𝑝∈𝑃 = 0  

   ∀𝑖, 𝑗 ∈ 𝐶|𝑖 ≠ 𝑗, 𝑎𝑖 + 𝑠𝑖 + 𝑡𝑖,𝑗 > 𝑏𝑗   (15) 

As mentioned before, waiting times are not allowed for 

the vehicles while traveling from a customer to another. 

The first valid inequality (Eq.14) is written concerning 

this assumption. Note that the latest time for a vehicle 

to arrive at a customer is the upper limit of its time 

window. If a vehicle visits a customer 𝑖 at the upper 

limit of its time window (𝑏𝑖) and serves it with a service 

time 𝑠𝑖; after that, travels to another customer 𝑗 with 

travel time (𝑡𝑖,𝑗), and arrives at the customer 𝑗 earlier 

than the lower limit of its time window (𝑎𝑗), then the 

vehicle should wait to serve the customer 𝑗 until its time 

window is opened. Since the waiting times are not 

allowed, the vehicle cannot visit the customer 𝑗 

immediately after visiting the customer 𝑖 if the 

aforementioned situation occurs.  

The second inequality (Eq.15) is written concerning the 

time window restrictions of the nodes. Note that the 

earliest time for a vehicle to serve a customer is the 

lower limit of its time window. If a vehicle visits a 

customer 𝑖 at the lower limit of its time window (𝑎𝑖) 

and serves it with a service time 𝑠𝑖; after that, travels to 

another customer 𝑗 with travel time (𝑡𝑖,𝑗), and arrives at 

the customer 𝑗 later than the upper limit of its time 

window (𝑏𝑗), then, the vehicle cannot visit the customer 

𝑗 immediately after visiting customer 𝑖, as the upper 

limit of the time window of customer 𝑗 is exceeded. 

4.3. Constraint programming (CP) model 

The following parts present the decision variables, the 

objective function, and the constraints for the CP 

model. In the CP model, optional interval variables are 

defined to represent serving node 𝑖 with a service time 

𝑠𝑖 regarding its time window by vehicle 𝑘 at period 𝑝. 

Furthermore, the sequence variables are defined to 

represent the route of a vehicle 𝑘 at period 𝑝. Each 

sequence constraint collects all the optional interval 

variables related to a certain vehicle. 

Decision variables 

𝑥𝑖,𝑘,𝑝: Optional interval variable for visiting the node 𝑖 

by vehicle 𝑘 in period 𝑝 with a service time 𝑠𝑖, which 

is defined in a domain of [𝑎𝑖 , 𝑏𝑖 + 𝑠𝑖].  

𝑣ℎ𝑘,𝑝: Sequence variable of vehicle 𝑘 for period 𝑝 over 

{𝑥𝑖,𝑘,𝑝|𝑖 ∈ 𝑁}. 

Objective function 

𝑀𝑖𝑛 𝑍 = ∑ ∑ ∑ 𝑡𝑖,𝑁𝑒𝑥𝑡(𝑣ℎ𝑘,𝑝,𝑥𝑖,𝑘,𝑝,𝑖,𝑖)𝑖∈𝑁𝑘∈𝑉𝑝∈𝑃  (16) 

Constraints 

∑ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑥𝑖,𝑘,𝑝)𝑘∈𝑉 = 1  ∀𝑖 ∈ 𝐶, 𝑝 ∈ 𝑃     (17) 

∑ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑥𝑖,𝑘,𝑝)𝑘∈𝑉,𝑝∈𝑃 = |𝑃|  ∀𝑖 ∈ 𝐶   (18) 

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑥0,𝑘,𝑝)   ∀𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (19) 

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑥𝑛+1,𝑘,𝑝)  ∀𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (20) 

∑ 𝑑𝑖,𝑝 ∗ 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑥𝑖,𝑘,𝑝)𝑖∈𝑁 ≤ 𝑊𝑘   ∀𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃  

   (21) 

𝑓𝑖𝑟𝑠𝑡(𝑣ℎ𝑘,𝑝, 𝑥0,𝑘,𝑝)   ∀𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (22) 

𝑙𝑎𝑠𝑡(𝑣ℎ𝑘,𝑝, 𝑥𝑛+1,𝑘,𝑝)   ∀𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (23) 

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑣ℎ𝑘,𝑝, 𝑡𝑖,𝑗 , 1)   ∀𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (24) 

𝑎𝑏𝑠 (𝑠𝑡𝑎𝑟𝑡(𝑥𝑖,𝑘,𝑝, 𝐵 + 𝜖) − 𝑠𝑡𝑎𝑟𝑡(𝑥𝑖,𝑘′,𝑝′, 𝐵)) ≥ 𝜖  

   ∀𝑖 ∈ 𝐶, 𝑘, 𝑘′ ∈ 𝑉, 𝑝, 𝑝′ ∈ 𝑃|𝑝 ≠ 𝑝′ (25) 

𝑠𝑡𝑎𝑟𝑡(𝑥𝑛+1,𝑘,𝑝) − 𝑒𝑛𝑑(𝑥0,𝑘,𝑝) =

∑ 𝑡𝑖,𝑁𝑒𝑥𝑡(𝑣ℎ𝑘,𝑝,𝑥𝑖,𝑘,𝑝,𝑖,𝑖)𝑖∈𝑁\{𝑛+1} + ∑ 𝑠𝑖 ∗𝑖∈𝐶

𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒(𝑥𝑖,𝑘,𝑝)      ∀𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃    (26) 

In the objective (Eq.16), the CP model minimizes the 

total travel time of the vehicles over all periods. In the 

equation (Eq.16), the next operator displays the next 

node in the route of the vehicle 𝑘, immediately after 

visiting node 𝑖 in period 𝑝. The constraint (Eq.17) 

ensures that each customer is visited by only a single 

vehicle at each period, and the constraint (Eq.18) 

guarantees that each customer is visited exactly |𝑃| 
times over the planning horizon. Constraints (Eq.19- 

Eq.20) ensure that the vehicles start and end their routes 

at the depot in each period. Note that nodes 0 and 𝑛 +
1 represent the depot. Since a vehicle visits a subset of 

customers at each period, the total demand of those 

customers should not exceed the capacity of the 

vehicle, which is assured by the constraint (Eq.21). 

According to the constraints (Eq.22, Eq.23), the depot 

should be the first and the last node in the route of a 

vehicle for each period. A vehicle cannot visit more 

than one node at the same time. Thus, the constraint 

(Eq.24) states that visits of a vehicle in a route should 

not be overlapped, and there must be at least the 

traveling time of those visited customers between their 

visits. To provide the security of the vehicles, and 

differentiate the routes between periods, the model 

inserts at least a certain interval 𝜖 between the visits of 

the same customer in different periods using the 

constraint (Eq.25). The constraint (Eq.26) prohibits the 

waiting time for a vehicle by limiting its tour as the sum 

of the service time and travel time to the customers on 

the route. 

4.4. Valid inequalities for the CP model 

In order to strengthen the CP model presented in 

Section 4.3, the following two valid inequalities are 

added: 

𝑁𝑒𝑥𝑡(𝑣ℎ𝑘,𝑝, 𝑥𝑖,𝑘,𝑝, 𝑖, 𝑖) ≠ 𝑗   

   ∀𝑖, 𝑗 ∈ 𝐶|𝑖 ≠ 𝑗, 𝑏𝑖 +  𝑠𝑖 + 𝑡𝑖,𝑗 < 𝑎𝑗 , 𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (27) 

𝑏𝑒𝑓𝑜𝑟𝑒(𝑣ℎ𝑘,𝑝, 𝑥𝑖,𝑘,𝑝, 𝑥𝑗,𝑘,𝑝) 

   ∀𝑖, 𝑗 ∈ 𝐶|𝑖 ≠ 𝑗, 𝑏𝑖 < 𝑎𝑗 , 𝑘 ∈ 𝑉, 𝑝 ∈ 𝑃 (28) 

The constraint (Eq.27) ensures that if there is a waiting 

time between the subsequent visits of customers 𝑖 and 

𝑗, then customer 𝑗 should not be visited immediately 

after customer 𝑖 since the waiting times are not allowed 

between consecutive visits of the customers. Note that, 
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the valid inequality (Eq.27) for the CP model is 

equivalent to the valid inequality (Eq.14) of the MILP 

model.  

The constraint (Eq.28) forces a customer 𝑖 to be visited 

before another customer 𝑗 due to the limits of their time 

windows if both of these customers are assigned to the 

same vehicle. Namely, suppose the upper limit of the 

time window of customer 𝑖 is less than the lower limit 

of the time window of customer 𝑗. In that case, the 

customer 𝑖 should be visited before customer 𝑗, if both 

customers 𝑖 and 𝑗 are assigned to the same vehicle. 

4.5. Lower bound 

To strengthen the aforementioned MILP and CP 

models, we also present a simple lower bound for the 

studied PVRP-TWTS as follows: 

𝐿𝐵 = ∑ (∑ min
𝑖∈𝑁\{𝑛+1}|𝑖≠𝑗

{𝑡𝑖,𝑗}𝑗∈𝐶 + min
𝑖∈𝐶

{𝑡𝑖,𝑛+1})𝑝∈𝑃  (29) 

As stated in the aforementioned models, in each period 

𝑝, there must be arrival to each customer 𝑗 from another 

node 𝑖 except the node 𝑛 + 1. Hence, taking the 

minimum traveling time for visiting customer 𝑗 

provides a lower bound for the traveling time to the 

customer 𝑗. Furthermore, in each period 𝑝, there must 

be at least one return to the depot (𝑛 + 1) from one of 

the customers. Thus, taking the minimum traveling 

time for returning to the depot 𝑛 + 1 provides a lower 

bound for the traveling time to the depot 𝑛 + 1.  

In the presented lower bound (LB) in (Eq.29), the sum 

of minimum traveling time of each customer and the 

depot over all the periods provides a lower bound for 

the total traveling time of the vehicles over all periods, 

i.e., the objective function of the PVRP-TWTS. In 

order to strengthen the proposed MILP and CP models, 

we also included this lower bound (LB) to the MILP 

and CP models by including a constraint 𝑍 ≥ 𝐿𝐵.  

5. Experimental results 

Experimental results are divided into two subsections. 

In the first part, the data generation procedure is 

explained in detail. Then, the computational results of 

the MILP and the CP models are compared in the 

second section. 

5.1. Data generation 

In order to evaluate the performance of the proposed 

MILP and CP models, we generate 280 instances by 

modifying the well-known benchmark set of Solomon 

[3] for the VRP with time windows. Originally, there 

are 56 instances in this set [3], where there are six 

subsets for the instances. The given data for these 

instances is the number of customers, the vehicle 

capacity, Euclidean coordinates of the nodes 

(customers and the depot), demand and service time of 

the nodes, and the time windows of the nodes. 

Instance sets R1 (12 instances) and R2 (11 instances) 

include randomly scattered nodes, sets C1 (9 

instances), and C2 (8 instances) include clustered 

customers, while sets RC1 (8 instances) and RC2 (8 

instances) include a combination of random and 

clustered settings. Instance sets of type 1 have a short 

scheduling horizon, allowing only a few customers to 

route. On the other hand, the instance sets of type 2 

have a long scheduling horizon, permitting more 

customers to be served by the same vehicle. Within a 

set, the instances vary with respect to the width of the 

time windows.  

In order to use these benchmark sets, we include 

additional parameters to these instances as follows. We 

assume three periods for the planning horizon and 𝜖 =

⌊𝜖𝑢𝑝 ∗ 0.5⌋ as proposed by [1]. The travel time between 

two nodes is equal to the corresponding Euclidean 

distance, which is rounded down to the nearest integer. 

Since the demand of each customer varies from period 

to period in our PVRP-TWTS, we generate the demand 

of each customer in each period according to a discrete 

uniform distribution in the range [1,50]. We also 

assume that there are two types of vehicles with 

different capacities: the first type of vehicle (large 

vehicle) has a capacity of 100 units, whereas the other 

(small vehicle) has a capacity of 75 units. 

Originally, the benchmark set of Solomon [3] has 100 

customers and 25 identical vehicles. Since exact 

solution approaches have been presented in this study, 

these instances are very large to test the performance of 

the mathematical models. Therefore, we cropped the 

original instances to have small-sized instance sets with 

varying customers from 5 to 15. Namely, we take the 

first 𝑛 customers in the original instances, and we 

generate 56 instances with 𝑛 customers, where 𝑛 =
{5, 8, 10, 12, 15}. Note that there are 56 instances for 

each customer size, resulting in 280 instances in total. 

For each instance, we assume that the number of 

vehicles is equal to the number of customers. Note that 

there are ⌊𝑛/2⌋ large vehicles in each instance, whereas 

the rest are small vehicles. 

5.2. Computational results 

As mentioned in Section 5.1, the computational tests 

have been organized on five different sets of instances, 

where the number of customers ranges from 5 to 15. 

The MILP and CP models are coded on the IBM ILOG 

CPLEX Optimization Studio and solved with CPLEX 

12.8. Both MILP and CP results are obtained for all 

instances with a 30- and 60-minutes time limit on a 

Core i5, 3.20 GHz, 8 GB RAM computer. Note that 

only instances with five customers can be optimally 

solved within the 1-hour time limit. Since the studied 

PVRP-TWTS is NP-hard, optimal results cannot be 

obtained for the instances with a higher number of 

customers. 

The relative percentage deviation (RPD) is computed 

for each instance as follows: 

𝑅𝑃𝐷 = % 100 ∙ (𝑍𝑠𝑜𝑚𝑒 − 𝑍𝐵𝑒𝑠𝑡) 𝑍𝐵𝑒𝑠𝑡⁄   (30) 

where  𝑍𝑠𝑜𝑚𝑒 is the objective function value obtained 

by a given mathematical model (MILP or CP), and 
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𝑍𝐵𝑒𝑠𝑡 is the best objective function value that is found 

among the proposed models under the same time limit. 

The average relative percentage deviation (ARPD) of 

the MILP and CP models under 30- and 60-minutes 

time limits are reported for each instance set in Table 1 

and Table 2, respectively, as well as the number of best 

solutions found. As mentioned in Section 5.1, there are 

six subsets of instances (R1, R2, RC1, RC2, C1, C2) 

for each customer size. The first column of the table 

represents each subset of instances grouped according 

to the scheduling horizon, the distribution of the nodes, 

and the number of customers. In other words, the 

average RPD of the results that belong to the same 

cluster type (R, C, or RC) have the same scheduling 

horizon (type 1 or type 2), and the same number of 

customers (5, 8, 10, 12, or 15) are computed. For 

example, instance set R101-R112-5 represents the 

instances with randomly scattered customers (R) 

having a short scheduling horizon (type 1) and 5 

customers. Also, this example has a total of 12 

instances ranges between R101 and R112. Then, for a 

given model, “# of Best” and ARPD columns of the 

table report the number of best solutions found and the 

ARPD value for each subset of instances. Finally, for a 

given model, the last row of the table reports the total 

number of best solutions found and the average ARPD 

value overall. 

In both tables, the MILP model cannot reach any 

feasible solution within the given time limit for some 

of the sets with 12 and 15 customers. For these instance 

sets (with 12/15 customers), the number of instances in 

which the MILP cannot find any feasible solution is 

specified by a superscript in the “# of Best” column. 

As seen in Table 1, the CP model clearly outperforms 

the MILP model under a 30 minutes time limit in terms 

of the overall ARPD value. Specifically, the overall 

ARPD value of the MILP is 9.22%, whereas the overall 

ARPD value of the CP model is 0.53%. Additionally, 

the effectiveness of the CP model is obviously seen 

when the number of customers increases. Note that the 

CP has smaller ARPD and finds a higher number of 

best solutions than the MILP for the instances with a 

higher number of customers. Moreover, the MILP 

cannot obtain a feasible solution within the 30 minutes 

time limit for some of the instances with 12 and 15 

customers and one instance with 10 customers, whereas 

the CP finds a feasible solution for all instances within 

the 30 minutes time limit. 

Furthermore, the MILP model provides 121 out of the 

280 best solutions, whereas the number of best 

solutions found by the CP model is nearly twice as high 

as the MILP model, i.e., the CP finds 235 out of the 280 

best solutions. Consequently, it can be said that the 

proposed CP model is very effective in solving the 

PVRP-TWTS in terms of both ARPD value and the 

number of best solutions found, as compared to the 

MILP model. 

 

 

Table 1. The results for the MILP and CP models under 30 

minutes time limit. 

Instance Set  

- # of Customers 

MILP CP 

# of 

Best 
ARPD  

# of 

Best 
ARPD 

R101-R112-5 12 0.00 10 0.46 

R201-R211-5 11 0.00 10 0.24 

RC101-RC108-5 8 0.00 7 0.17 

RC201-RC208-5 8 0.00 8 0.00 

C101-C109-5 9 0.00 8 0.09 

C201-C208-5 8 0.00 8 0.00 

R101-R112-8 8 0.93 7 1.36 

R201-R211-8 6 1.98 7 1.13 

RC101-RC108-8 5 1.84 3 1.99 

RC201-RC208-8 6 1.59 3 2.44 

C101-C109-8 6 0.28 8 0.23 

C201-C208-8 5 1.36 8 0.00 

R101-R112-10 6 1.61 8 2.05 

R201-R211-10 4 3.49 8 1.00 

RC101-RC108-10 3 4.54 5 1.25 

RC201-RC208-10 2 3.86 6 0.31 

C101-C109-10 3 7.23 8 0.37 

C201-C208-10 31 4.32 8 0.00 

R101-R112-12 11 18.19 11 0.08 

R201-R211-12 05 19.30 11 0.00 

RC101-RC108-12 03 8.76 8 0.00 

RC201-RC208-12 12 11.81 7 0.34 

C101-C109-12 1 24.35 8 0.39 

C201-C208-12 11 19.17 8 0.00 

R101-R112-15 29 7.73 10 1.06 

R201-R211-15 08 14.78 11 0.00 

RC101-RC108-15 13 38.11 7 0.44 

RC201-RC208-15 06 30.00 8 0.00 

C101-C109-15 16 19.21 8 0.49 

C201-C208-15 05 32.10 8 0.00 

Overall 121 9.22 235 0.53 

The performances of the models are also analyzed 

under a longer time limit to see their changes on the 

solution quality. Table 2 summarizes the results of the 

MILP and CP models under 60 minutes time limit. As 

seen in Table 2, again, the CP model clearly 

outperforms the MILP model in terms of the overall 

ARPD value. Specifically, the overall ARPD value of 

the MILP is 9.18%, whereas the overall ARPD value of 

the CP model is 0.50%.  

Moreover, the MILP model can find 130 out of the 280 

best solutions, whereas the CP model can find 236 out 

of the 280 best solutions. Similar to the results under a 

30 minutes time limit, the effectiveness of the CP 

model is clearly seen when the number of customers 

increases. Additionally, the MILP cannot obtain a 

feasible solution within the 60 minutes time limit for 

some of the instances with 12 and 15 customers, 

whereas the CP finds a feasible solution for all 

instances within the 60 minutes time limit. 
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Table 2. The results for the MILP and CP models under 60 

minutes time limit. 

Instance Set  

- # of Customers 

MILP CP 

# of 

Best 
ARPD  

# of 

Best 
ARPD 

R101-R112-5 12 0.00 10 0.46 

R201-R211-5 11 0.00 11 0.00 

RC101-RC108-5 8 0.00 8 0.00 

RC201-RC208-5 8 0.00 8 0.00 

C101-C109-5 9 0.00 9 0.00 

C201-C208-5 8 0.00 8 0.00 

R101-R112-8 10 0.67 8 0.69 

R201-R211-8 6 1.01 7 1.23 

RC101-RC108-8 4 0.80 4 0.78 

RC201-RC208-8 6 2.87 3 0.16 

C101-C109-8 6 0.28 8 0.10 

C201-C208-8 6 0.46 8 0.00 

R101-R112-10 8 1.16 6 2.30 

R201-R211-10 5 2.66 7 1.08 

RC101-RC108-10 5 4.21 3 3.33 

RC201-RC208-10 4 2.61 4 1.35 

C101-C109-10 5 5.06 8 0.26 

C201-C208-10 3 4.51 8 0.00 

R101-R112-12 11 17.04 11 0.08 

R201-R211-12 05 15.03 11 0.00 

RC101-RC108-12 1 11.02 7 0.96 

RC201-RC208-12 11 10.05 7 0.27 

C101-C109-12 1 17.47 9 0.00 

C201-C208-12 11 12.72 8 0.00 

R101-R112-15 09 19.79 12 0.00 

R201-R211-15 08 25.16 11 0.00 

RC101-RC108-15 13 38.47 7 2.02 

RC201-RC208-15 05 35.33 8 0.00 

C101-C109-15 03 23.70 9 0.00 

C201-C208-15 05 23.40 8 0.00 

Overall 130 9.18 236 0.50 

As seen in Table 2, ARPD values and the number of 

best solutions found do not have a dramatic change 

compared to the results under a 30 minutes time limit. 

Namely, the proportion of the best solutions found and 

the ARPD values of the MILP and CP models are 

nearly the same with those obtained under a 30 minutes 

time limit. However, according to the “# of Best” 

column's superscript numbers, as the solution time limit 

increases, the MILP model starts to find more feasible 

solutions; specifically, it finds nine more feasible 

results. 

In terms of CPU times, the CP model has always 

operated up to the time limit, so the CPU time of the CP 

model is equal to the given time limit. This also applies 

to the MILP model, except for the instances with five 

customers. The MILP model has yielded results in less 

than the given time limit in some of the instances with 

five customers. Namely, the average CPU time for the 

instances with five customers is 524.67 seconds for the 

MILP model when the limit is 30 minutes, and it is 

984.43 seconds when the limit is 60 minutes. 

Table 3 presents the effect of the time limit on the 

number of best solutions found and the ARPD values. 

Instead of comparing the MILP and CP models under 

the same time limit, Table 3 compares the MILP and 

CP results under 30 minutes time limit with the best 

results obtained under the 60 minutes limit. As the time 

limit increases, the objective function decreases, and 

the solution quality increases, the best results are 

assumed as the best results obtained among MILP and 

CP models under 60 minutes time limit. Table 3 

indicates the number of best solutions found and ARPD 

values of the MILP and CP models under 30 minutes 

time limit with respect to the best results. Note that 

these results and deviations are calculated with respect 

to the best solutions obtained under 60 minutes time 

limit. 

Table 3. The results for the MILP and CP models under 30 

minutes time limit with respect to the best results obtained 

under 60 minutes time limit. 

Instance Set  

- # of Customers 

MILP CP 

# of 

Best 
ARPD  

# of 

Best 
ARPD 

R101-R112-5 12 0.00 10 0.46 

R201-R211-5 11 0.00 10 0.24 

RC101-RC108-5 8 0.00 7 0.17 

RC201-RC208-5 8 0.00 8 0.00 

C101-C109-5 9 0.00 8 0.09 

C201-C208-5 8 0.00 8 0.00 

R101-R112-8 6 1.16 7 1.61 

R201-R211-8 5 2.25 6 1.40 

RC101-RC108-8 4 1.93 2 2.08 

RC201-RC208-8 4 4.28 2 5.25 

C101-C109-8 6 0.28 8 0.23 

C201-C208-8 5 1.36 8 0.00 

R101-R112-10 4 2.35 3 2.79 

R201-R211-10 2 4.83 3 2.32 

RC101-RC108-10 0 7.99 2 4.57 

RC201-RC208-10 1 5.82 2 2.19 

C101-C109-10 3 8.38 6 1.36 

C201-C208-10 31 5.20 7 0.69 

R101-R112-12 11 21.30 1 2.38 

R201-R211-12 05 21.23 4 1.76 

RC101-RC108-12 03 15.96 1 6.42 

RC201-RC208-12 02 14.40 0 2.62 

C101-C109-12 0 27.05 4 2.45 

C201-C208-12 11 19.78 6 0.41 

R101-R112-15 09 20.28 0 16.91 

R201-R211-15 08 26.05 1 7.31 

RC101-RC108-15 03 59.60 0 18.48 

RC201-RC208-15 06 33.82 0 9.30 

C101-C109-15 06 19.87 5 3.06 

C201-C208-15 05 32.10 8 0.00 

Overall 101 11.91 137 3.22 

Table 3 indicates that the solution quality of both 

models gets worse when the time limit decreases to 30 

minutes. The number of best solutions found by the 

MILP model decreases from 130 to 101, while its 

ARPD increases from 9.18% to 11.91%. The difference 

between the results is not too much for the MILP model 
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because the CP model mostly finds the best solutions. 

In spite of obtaining the MILP results under different 

time limits, the performance of the MILP model is 

worse than the CP model in both configurations, 

resulting in close numbers in the solutions. Therefore, 

it seems that increasing the solution time limit does not 

change the performance of the MILP model 

significantly. 

As seen from Table 3, when the time limit decreases, 

the number of best solutions provided by the CP model 

decreases from 236 to 137, and the ARPD increases 

from 0.50% to 3.22%. We can infer from those results 

that the level of a time limit has a vital effect on the 

performance of the CP model. 

In order to compare all the results of both models under 

two different time limits, Figure 1 is depicted. In Figure 

1, we compare the ARPD values of MILP and CP 

models under 30- and 60-minutes time limits with 

respect to the best results obtained among MILP and 

CP models under 60 minutes time limit. The detailed 

RPD values for all model and time limit configurations 

(MILP-30 min., MILP-60 min., CP-30 min., CP-60 

min.) are also provided in the Appendix (Table A1-A5). 

Figure 1. ARPD results of MILP and CP models under 30- 

and 60- minutes limits. 

As seen from Figure 1, all ARPD results are nearly the 

same for the instances with 5 and 8 customers. The 

ARPD results start to be differentiated as the customer 

size increases, and the differences are obvious when the 

customer size equals 15. The CP model generates the 

best solutions under 60 minutes time limit, and the 

worst results belong to the MILP model under a 30 

minutes time limit. The ARPD results of the CP model 

under 30 minutes time limit are much better than the 

ARPD results of the MILP model under 60 minutes 

time limit, highlighting the superior performance of the 

CP model over the MILP model. 

As mentioned before, and it can also be seen from 

Figure 1, the level of a time limit has a vital effect on 

the performance of the CP model. To see the limitation 

of this effect, we increased the time limit to 120 minutes 

just for the CP model and obtained the results for some 

of the instance configurations. Note that the CP model 

dominates the MILP model for the instances with the 

larger sizes of the customers. Additionally, data sets 

having only five customers are not realistic when the 

real-life situation is considered. Therefore, we did not 

obtain the results under 120 minutes for the instances 

with five customers. Consequently, only a single 

representative instance from each combination is taken 

for the remaining data sets, resulting in 24 instances in 

total. For these instances, Figure 2 is generated to show 

the performance of the CP model under different time 

limits, i.e., 30, 60, and 120 minutes. In this figure, we 

compare the RPD values of the CP model under 

different time limits with respect to the best results 

obtained by the CP model under 120 minutes time limit. 

 

Figure 2. RPD results of the CP model under 30-, 60-, and 

120- minutes limits. 

As seen in Figure 2, for the instances with 8 and 10 

customers, the CP model found the same result under 

all the time limitations. However, for the instances with 

12 and 15 customers, Figure 2 indicates that as the time 

limit increases, the RPD value of the CP model 

decreases. The difference is not obvious for the smaller 

instances, but apparent when the customer size equals 

15. There is a substantial difference between the 

solutions under the 30- and 60-minutes time limit. 

Nevertheless, there is no significant difference between 

the solutions under the 60- and 120-minutes time limit. 

Finally, the detailed analysis of the experiments 

designates the superior performance of the CP model 

over the MILP model. As the given time limit increases, 

both models’ solution quality improves, but more 

improvement is achieved for the CP model. However, 

there is not a noteworthy difference between the results 

under the 60- and 120-minutes time limit of the CP 

model. Consequently, it can be said that the CP model 

is very effective in solving the PVRP-TWTS in terms 

of the solution quality, as compared to the MILP model. 

6. Conclusion 

This paper introduces novel MILP and CP models for 

the PVRP-TWTS to provide safe routes for a fleet of 

heterogeneous vehicles while distributing valuable 

products, i.e., distributing the money between the 

ATMs throughout the city. In the PVRP-TWTS, to 

avoid unsecured situations and protect the transferred 

goods, waiting times are not allowed. The routes of the 

vehicles are differentiated over the planning periods by 

forcing the time spread constraints. In addition, the 

availability of the customers, i.e., working and off 

hours of ATMs, is regarded by employing time 

windows. Therefore, under those realistic constraints, 

this paper aims to construct safe routes for the vehicles 
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by minimizing the total travel time, which reduces the 

fuel consumption of the vehicles.  

When the managerial implications of the study are 

concerned, the proposed solution approaches can be 

used to construct efficient and safe routes in the area of 

high-value shipment transportation, regarding many 

realistic constraints such as arrival time diversification, 

time windows, and waiting time restrictions. The 

proposed models can help the manager in solving such 

a complex problem effectively. 

The contributions of this study to the literature can be 

summarized as follows. Two different novel exact 

solution approaches, namely the MILP and CP models, 

were proposed to solve the PVRP-TWTS with 

heterogeneous vehicles and customers with period-

specific demands, which was a novel extension of the 

problem. In order to improve the solution quality, valid 

inequalities were added to both mathematical models, 

and a lower bound was developed for the studied 

problem. The instances were derived from the literature 

and modified according to the specifications of the 

considered problem. Then, the solutions of the models 

were compared using the modified benchmark set. The 

extensive computational results showed that the CP 

model outperforms the MILP model in terms of the 

solution quality.  

We hope that our paper can serve as a reference to 

researchers and experts studying in this field. The 

results demonstrate that, for a small number of 

customers up to 15, it is now possible to obtain high-

quality solutions using the proposed exact solution 

methods for such a complex problem, which is a 

significant development. It is useful to emphasize that 

the CP model is highly compact and solved by a black-

box, commercial solver. Although the potential future 

contribution that can be obtained through the CP model 

is evident, the possible drawback, i.e., the loss of 

solution quality and the high CPU time caused by the 

unavoidable increase of customer nodes, can be 

substantial. Therefore, as future research, new 

techniques for the CP solution approach, such as 

employing constructive heuristics with CP, will be 

experimented extensively to handle this drawback 

before the practical implementation.  

Since exact solution methods were proposed in this 

study, the limitation of the paper is that the proposed 

models can solve the problem for a small number of 

customers, up to 15 customers. Additionally, in the 

deeper analysis of the CP model, an effective lower 

bound is also necessary to find the proven optimal 

solution. Therefore, we are planning to formulate a 

hybrid model that employs both MILP and CP models 

to reduce the CPU time and provide more qualified 

solutions. Furthermore, heuristic, meta-heuristic, or 

matheuristic algorithms can be proposed for the PVRP-

TWTS to solve larger instances. 
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Appendix 

Table A1. The RPD results for instances with 5 customers. 

Instance 

Name_# of 

Customers 

MILP  

30 min. 

MILP  

60 min. 

CP  

30 min. 

CP  

60 min. 

R101_5 0.00 0.00 0.00 0.00 

R102_5 0.00 0.00 0.00 0.00 

R103_5 0.00 0.00 0.00 0.00 

R104_5 0.00 0.00 0.00 0.00 

R105_5 0.00 0.00 0.00 0.00 

R106_5 0.00 0.00 0.00 0.00 

R107_5 0.00 0.00 0.00 0.00 

R108_5 0.00 0.00 0.00 0.00 

R109_5 0.00 0.00 0.00 0.00 

R110_5 0.00 0.00 0.00 0.00 

R111_5 0.00 0.00 3.80 3.80 

R112_5 0.00 0.00 1.73 1.73 

R201_5 0.00 0.00 0.00 0.00 

R202_5 0.00 0.00 0.00 0.00 

R203_5 0.00 0.00 0.00 0.00 

R204_5 0.00 0.00 0.00 0.00 

R205_5 0.00 0.00 0.00 0.00 

R206_5 0.00 0.00 0.00 0.00 

R207_5 0.00 0.00 2.63 0.00 

R208_5 0.00 0.00 0.00 0.00 

R209_5 0.00 0.00 0.00 0.00 

R210_5 0.00 0.00 0.00 0.00 

R211_5 0.00 0.00 0.00 0.00 

RC101_5 0.00 0.00 0.00 0.00 

RC102_5 0.00 0.00 0.00 0.00 

RC103_5 0.00 0.00 0.00 0.00 

RC104_5 0.00 0.00 0.00 0.00 

RC105_5 0.00 0.00 0.00 0.00 

RC106_5 0.00 0.00 0.00 0.00 

RC107_5 0.00 0.00 0.00 0.00 

RC108_5 0.00 0.00 1.33 0.00 

RC201_5 0.00 0.00 0.00 0.00 

RC202_5 0.00 0.00 0.00 0.00 

RC203_5 0.00 0.00 0.00 0.00 

RC204_5 0.00 0.00 0.00 0.00 

RC205_5 0.00 0.00 0.00 0.00 

RC206_5 0.00 0.00 0.00 0.00 

RC207_5 0.00 0.00 0.00 0.00 

RC208_5 0.00 0.00 0.00 0.00 

C101_5 0.00 0.00 0.00 0.00 

C102_5 0.00 0.00 0.00 0.00 

C103_5 0.00 0.00 0.81 0.00 

C104_5 0.00 0.00 0.00 0.00 

C105_5 0.00 0.00 0.00 0.00 

C106_5 0.00 0.00 0.00 0.00 

C107_5 0.00 0.00 0.00 0.00 

C108_5 0.00 0.00 0.00 0.00 

C109_5 0.00 0.00 0.00 0.00 

C201_5 0.00 0.00 0.00 0.00 

C202_5 0.00 0.00 0.00 0.00 

C203_5 0.00 0.00 0.00 0.00 

C204_5 0.00 0.00 0.00 0.00 

C205_5 0.00 0.00 0.00 0.00 

C206_5 0.00 0.00 0.00 0.00 

C207_5 0.00 0.00 0.00 0.00 

C208_5 0.00 0.00 0.00 0.00 

 

 

 

 

Table A2. The RPD results for instances with 8 customers. 

Instance 

Name_# of 

Customers 

MILP  

30 min. 

MILP  

60 min. 

CP  

30 min. 

CP  

60 min. 

R101_8 0.00 0.00 0.00 0.00 

R102_8 1.08 0.00 0.00 0.00 

R103_8 0.00 0.00 0.00 0.00 

R104_8 0.18 0.00 0.36 0.36 

R105_8 0.00 0.00 0.00 0.00 

R106_8 1.79 0.00 0.00 0.00 

R107_8 0.87 0.87 0.00 0.00 

R108_8 0.00 0.00 5.76 5.76 

R109_8 0.00 0.00 0.16 0.16 

R110_8 0.00 0.00 1.89 0.00 

R111_8 2.55 0.00 11.13 2.01 

R112_8 7.39 7.20 0.00 0.00 

R201_8 0.00 0.00 0.00 0.00 

R202_8 1.35 1.35 0.00 0.00 

R203_8 0.00 0.00 0.00 0.00 

R204_8 0.00 0.00 0.19 0.19 

R205_8 4.01 2.29 0.00 0.00 

R206_8 1.07 0.00 2.50 2.50 

R207_8 2.81 1.87 0.00 0.00 

R208_8 0.00 0.00 3.51 3.51 

R209_8 3.09 2.06 0.00 0.00 

R210_8 0.00 0.00 7.37 7.37 

R211_8 12.48 3.57 1.78 0.00 

RC101_8 10.23 1.30 0.00 0.00 

RC102_8 0.26 0.26 0.92 0.00 

RC103_8 0.00 0.00 1.58 1.58 

RC104_8 1.92 1.76 0.48 0.00 

RC105_8 0.00 0.00 0.16 0.16 

RC106_8 0.00 0.00 0.31 0.31 

RC107_8 3.07 3.07 0.00 0.00 

RC108_8 0.00 0.00 13.20 4.16 

RC201_8 0.00 0.00 0.00 0.00 

RC202_8 13.33 12.98 20.88 0.00 

RC203_8 0.00 0.00 0.16 0.16 

RC204_8 0.40 0.00 12.63 0.40 

RC205_8 0.00 0.00 0.42 0.42 

RC206_8 0.00 0.00 0.13 0.13 

RC207_8 8.03 0.00 7.76 0.14 

RC208_8 12.50 9.97 0.00 0.00 

C101_8 0.00 0.00 0.00 0.00 

C102_8 0.32 0.32 0.00 0.00 

C103_8 0.00 0.00 2.06 0.88 

C104_8 0.33 0.33 0.00 0.00 

C105_8 0.00 0.00 0.00 0.00 

C106_8 0.00 0.00 0.00 0.00 

C107_8 0.00 0.00 0.00 0.00 

C108_8 0.00 0.00 0.00 0.00 

C109_8 1.85 1.85 0.00 0.00 

C201_8 0.00 0.00 0.00 0.00 

C202_8 8.25 2.47 0.00 0.00 

C203_8 0.00 0.00 0.00 0.00 

C204_8 1.21 1.21 0.00 0.00 

C205_8 0.00 0.00 0.00 0.00 

C206_8 1.46 0.00 0.00 0.00 

C207_8 0.00 0.00 0.00 0.00 

C208_8 0.00 0.00 0.00 0.00 
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Table A3. The RPD results for instances with 10 customers. 

Instance 

Name_# of 

Customers 

MILP  

30 min. 

MILP  

60 min. 

CP  

30 min. 

CP  

60 min. 

R101_10 0.00 0.00 0.00 0.00 

R102_10 3.44 3.05 0.00 0.00 

R103_10 0.00 0.00 11.63 11.63 

R104_10 2.40 0.00 3.47 1.87 

R105_10 0.12 0.00 0.12 0.00 

R106_10 0.00 0.00 9.52 8.21 

R107_10 4.56 4.29 0.69 0.00 

R108_10 4.24 0.00 2.05 2.05 

R109_10 5.88 5.38 0.00 0.00 

R110_10 5.95 1.22 2.03 0.00 

R111_10 0.00 0.00 2.47 2.47 

R112_10 1.59 0.00 1.46 1.32 

R201_10 0.00 0.00 0.00 0.00 

R202_10 3.65 3.26 2.08 0.00 

R203_10 0.89 0.89 3.69 0.00 

R204_10 2.70 0.00 3.64 2.70 

R205_10 3.41 0.00 0.79 0.79 

R206_10 9.96 8.27 0.28 0.00 

R207_10 8.51 5.45 0.00 0.00 

R208_10 0.00 0.00 7.30 4.38 

R209_10 7.20 0.00 4.03 4.03 

R210_10 6.47 6.47 3.68 0.00 

R211_10 10.36 4.92 0.00 0.00 

RC101_10 12.61 12.61 0.00 0.00 

RC102_10 0.11 0.00 0.45 0.11 

RC103_10 16.62 0.00 13.57 13.57 

RC104_10 1.59 0.00 9.93 4.41 

RC105_10 1.80 0.72 0.00 0.00 

RC106_10 20.36 20.36 4.07 0.00 

RC107_10 10.16 0.00 6.33 6.33 

RC108_10 0.70 0.00 2.20 2.20 

RC201_10 2.20 0.00 2.29 2.29 

RC202_10 5.32 4.70 2.40 0.00 

RC203_10 0.00 0.00 2.41 2.41 

RC204_10 13.06 0.00 6.47 2.86 

RC205_10 0.72 0.62 0.00 0.00 

RC206_10 12.66 12.46 0.00 0.00 

RC207_10 6.21 0.00 3.27 3.27 

RC208_10 6.39 3.13 0.72 0.00 

C101_10 0.00 0.00 0.00 0.00 

C102_10 12.53 11.35 0.00 0.00 

C103_10 21.27 6.63 0.00 0.00 

C104_10 0.00 0.00 3.32 2.30 

C105_10 0.00 0.00 0.00 0.00 

C106_10 0.71 0.00 0.00 0.00 

C107_10 10.24 0.00 0.00 0.00 

C108_10 3.84 2.40 1.20 0.00 

C109_10 26.80 25.14 7.73 0.00 

C201_10 0.00 0.00 0.00 0.00 

C202_10 1.24 1.24 0.00 0.00 

C203_10 17.34 8.27 5.51 0.00 

C204_10 3.57 2.53 0.00 0.00 

C205_10 14.24 12.32 0.00 0.00 

C206_10 0.00 0.00 0.00 0.00 

C207_10 0.00 0.00 0.00 0.00 

C208_10 - 11.71 0.00 0.00 

 

 

 

 

Table A4. The RPD results for instances with 12 customers. 

Instance 

Name_# of 

Customers 

MILP  

30 min. 

MILP  

60 min. 

CP  

30 min. 

CP  

60 min. 

R101_12 0.00 0.00 0.95 0.95 

R102_12 39.31 31.98 2.95 0.00 

R103_12 10.82 5.41 0.95 0.00 

R104_12 26.51 25.26 6.71 0.00 

R105_12 5.16 3.97 1.79 0.00 

R106_12 - - 0.00 0.00 

R107_12 11.63 6.04 3.69 0.00 

R108_12 45.14 45.14 4.17 0.00 

R109_12 41.44 39.26 4.47 0.00 

R110_12 20.45 7.76 0.47 0.00 

R111_12 3.54 3.54 0.75 0.00 

R112_12 30.26 19.14 1.67 0.00 

R201_12 12.50 1.44 0.00 0.00 

R202_12 26.79 15.85 0.00 0.00 

R203_12 - - 3.29 0.00 

R204_12 14.21 14.21 0.64 0.00 

R205_12 31.23 31.23 4.33 0.00 

R206_12 - - 0.00 0.00 

R207_12 - - 1.33 0.00 

R208_12 - - 0.68 0.00 

R209_12 14.30 13.47 4.97 0.00 

R210_12 - - 4.12 0.00 

R211_12 28.34 13.96 0.00 0.00 

RC101_12 9.36 9.36 0.00 0.00 

RC102_12 13.34 0.00 8.10 7.71 

RC103_12 - 31.47 9.94 0.00 

RC104_12 - 2.20 0.50 0.00 

RC105_12 27.39 27.39 4.34 0.00 

RC106_12 12.05 5.69 6.55 0.00 

RC107_12 - 3.83 6.94 0.00 

RC108_12 17.64 8.23 14.97 0.00 

RC201_12 27.19 17.66 1.64 0.00 

RC202_12 8.42 7.28 0.61 0.00 

RC203_12 - 9.24 0.67 0.00 

RC204_12 0.90 0.00 3.68 2.15 

RC205_12 15.56 13.06 0.56 0.00 

RC206_12 - - 2.84 0.00 

RC207_12 12.08 1.69 10.39 0.00 

RC208_12 22.24 21.45 0.60 0.00 

C101_12 1.54 0.00 5.14 0.00 

C102_12 26.70 21.04 6.31 0.00 

C103_12 28.37 5.19 2.25 0.00 

C104_12 27.62 27.62 1.81 0.00 

C105_12 66.15 21.35 6.54 0.00 

C106_12 7.66 5.75 0.00 0.00 

C107_12 30.53 30.53 0.00 0.00 

C108_12 29.11 26.54 0.00 0.00 

C109_12 25.80 19.23 0.00 0.00 

C201_12 0.00 0.00 0.00 0.00 

C202_12 33.05 33.05 0.00 0.00 

C203_12 6.27 2.17 0.24 0.00 

C204_12 38.10 23.56 3.01 0.00 

C205_12 16.59 5.32 0.00 0.00 

C206_12 8.72 8.72 0.00 0.00 

C207_12 35.75 16.22 0.00 0.00 

C208_12 - - 0.00 0.00 
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Table A5. The RPD results for instances with 15 customers. 

Instance 

Name_# of 

Customers 

MILP  

30 min. 

MILP  

60 min. 

CP  

30 min. 

CP  

60 min. 

R101_15 2.56 2.56 3.67 0.00 

R102_15 - - 5.91 0.00 

R103_15 - - 6.96 0.00 

R104_15 - - 4.95 0.00 

R105_15 13.11 12.87 26.30 0.00 

R106_15 - - 46.85 0.00 

R107_15 - - 5.48 0.00 

R108_15 - - 1.55 0.00 

R109_15 - - 49.49 0.00 

R110_15 45.16 43.94 17.84 0.00 

R111_15 - - 15.30 0.00 

R112_15 - - 18.66 0.00 

R201_15 16.68 14.00 10.85 0.00 

R202_15 - - 10.36 0.00 

R203_15 - - 13.72 0.00 

R204_15 34.88 34.88 7.38 0.00 

R205_15 - - 0.00 0.00 

R206_15 - - 8.78 0.00 

R207_15 - - 1.81 0.00 

R208_15 - - 2.34 0.00 

R209_15 - - 3.18 0.00 

R210_15 - - 10.42 0.00 

R211_15 26.60 26.60 11.56 0.00 

RC101_15 63.97 59.51 6.86 0.00 

RC102_15 - - 7.95 0.00 

RC103_15 72.90 70.21 17.91 0.00 

RC104_15 - - 26.95 0.00 

RC105_15 - - 19.52 0.00 

RC106_15 46.59 42.14 51.70 0.00 

RC107_15 49.48 20.52 0.36 0.00 

RC108_15 65.03 0.00 16.60 16.17 

RC201_15 - - 16.76 0.00 

RC202_15 - - 2.12 0.00 

RC203_15 - - 3.21 0.00 

RC204_15 38.22 23.77 3.85 0.00 

RC205_15 - - 2.67 0.00 

RC206_15 - - 9.65 0.00 

RC207_15 29.42 26.21 1.98 0.00 

RC208_15 - 56.01 34.17 0.00 

C101_15 1.98 1.98 6.47 0.00 

C102_15 - - 0.98 0.00 

C103_15 - - 11.77 0.00 

C104_15 - - 8.35 0.00 

C105_15 3.79 3.18 0.00 0.00 

C106_15 53.84 53.84 0.00 0.00 

C107_15 - 28.00 0.00 0.00 

C108_15 - 33.26 0.00 0.00 

C109_15 - 21.92 0.00 0.00 

C201_15 38.62 30.90 0.00 0.00 

C202_15 - - 0.00 0.00 

C203_15 - - 0.00 0.00 

C204_15 - - 0.00 0.00 

C205_15 33.59 15.23 0.00 0.00 

C206_15 - - 0.00 0.00 

C207_15 24.08 24.08 0.00 0.00 

C208_15 - - 0.00 0.00 
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