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In this paper, we formulate an optimal control problem based on a tubercu-
losis model with multiple infectious compartments and time delays. In order
to have a more realistic model that allows highlighting the role of detection,
loss to follow-up and treatment in TB transmission, we propose an extension
of the classical SEIR model by dividing infectious patients in the compart-
ment (I) into three categories: undiagnosed infected (I), diagnosed patients
who are under treatment (T) and diagnosed patients who are lost to follow-up
(L). We incorporate in our model delays representing the incubation period
and the time needed for treatment. We also introduce three control variables
in our delayed system which represent prevention, detection and the efforts
that prevent the failure of treatment. The purpose of our control strategies is
to minimize the number of infected individuals and the cost of intervention.
The existence of the optimal controls is investigated, and a characterization
of the three controls is given using the Pontryagin’s maximum principle with
delays. To solve numerically the optimality system with delays, we present
an adapted iterative method based on the iterative Forward-Backward Sweep
Method (FBSM). Numerical simulations performed using Matlab are also pro-
vided. They indicate that the prevention control is the most effective one. To
the best of our knowledge, it is the first work to apply optimal control theory
to a TB model which considers infectious patients diagnosis, loss to follow-up
phenomenon and multiple time delays.
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1. Introduction

Infectious diseases, the scourge of humanity, have
marked the history of human societies. Over
the centuries and throughout the world, they
have always been the major cause of death.
They generate considerable and sometimes un-
bearable socio-economic, demographic, cultural,
health and safety costs.

In order to be able to deal with these devastat-
ing diseases, a relevant tool should be made avail-
able to facilitate public health decision-making.

In this context, mathematicians and epidemiolo-
gists have long worked together to create mathe-
matical models that allow competent authorities
to prepare in advance to react quickly and effec-
tively if an epidemic breaks out.

Since Daniel Bernoulli’s famous work [1], mathe-
matical models have become one of the most im-
portant tools used in fighting against epidemics.
They help to understand the dynamics of infec-
tious diseases and to estimate the effect of differ-
ent control and prevention strategies. An inter-
esting overview of the use of mathematical models
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in epidemiology can be found in [2–6]. The first
modern model in mathematical epidemiology is
the simple SIR model proposed by Kermack and
McKendrick [7] to model plague and cholera epi-
demics. In this model, a population is divided into
three compartments: susceptible (S) (those who
are not infected but may become infected), infec-
tious (I) (those who are infected and can trans-
mit the disease) and recovered or cured individu-
als (R). As such, this model was not appropriate
for many infectious diseases with a latency period
such as influenza or tuberculosis, where a person
is infected but not infectious. Therefore, an ex-
tension of the standard SIR model was proposed,
including a fourth compartment (E) of exposed
persons (those who are infected but not infec-
tious). This extension has been called the SEIR
model. (for more details on the compartmental
models in epidemiology, we refer to [8] and [9]).

Tuberculosis or TB, as it is commonly called, is
an old disease that has affected humans for thou-
sands of years. The disease is caused by the Bac-
terium Mycobacterium Tuberculosis (MTB) that
generally affects the lungs, but can also affect
other parts of the body like the brain and spine.
The TB bacteria are spread through the air from
a person to another. When people with lung TB
cough, spit, sneeze, speak, or sing, they spread
the TB germs into the air [10]. People who have
intense contact with a TB patient in poorly ven-
tilated areas are the most likely to become in-
fected. Tuberculosis is curable and preventable
but may be fatal if not treated properly [11]. (for
more details on tuberculosis, we refer the inter-
ested reader to [12–15]).

For several years TB represents a major global
health problem. Millions of people continue to
fall sick with TB each year worldwide. It is one
of the top 10 causes of death worldwide, rank-
ing above HIV/AIDS as one of the leading causes
of death from an infectious disease. According
to report by WHO [16], there were, in 2017, 10
million new TB cases and 1.6 million people died
from the disease (including 300 000 deaths among
people with HIV). There were cases in all coun-
tries and age groups, but overall 90% were adults
in their most productive years (aged ≥ 15 years)
and 87% of the world’s cases were in developing
countries.

The first mathematical model for TB dynamics
was proposed by Waaler et al. [17]. The au-
thors divided the population into three classes

and constructed the model according to the epi-
demiological characteristics of the TB transmis-
sion. Recently, several researchers have proposed
various dynamical models and developed a theo-
retical framework to understand TB transmission
and control its spread (see, e.g., [18–23] and ref-
erences cited therein).

Moualeu et al. [24] presented a deterministic
model for the transmission dynamics of Tuber-
culosis in the context of weak diagnosis capac-
ity. Optimal control theory is used to obtain a
cost-effective balance of two different intervention
methods. Huo and Zou [25] constructed a TB
model with treatment at home and treatment in
hospital. It lies emphasis on the modelling effects
of treatment at home.

In [26] Li and Ma investigated the global dynam-
ics of a TB model that considers the prevention
effect and latent delay. Silva et al. [27] introduced
delays in a TB model, representing the time delay
on the diagnosis and commencement of treatment
of individuals with active TB infection.

Kar and Mondal [28] presented a basic Tubercu-
losis model including exogenous re-infection, en-
dogenous reactivation, and the re-infection among
the treated individuals. The local stability anal-
ysis of the equilibrium is shown and an optimal
control based on treatment strategy is solved us-
ing Pontryagin’s maximum principle.

Yang et al. [29] considers in their TB model new
and relapse infections. Using Lyapunov functions,
it showed that the global dynamic is completely
determined by the basic reproduction number R0.

Altaf Khan et al. [30] proposed a fractional order
model for TB dynamics with relapse using Atan-
gana Baleanu derivative. Kim et al. [31] proposes
optimal control strategies for reducing the num-
ber of high-risk latent and infectious TB patients
with minimum intervention implementation costs.

A comparison of some control strategies for a
model with Caputo time fractional derivative is
proposed by Yildiz [32]. Purwati et al. [33],
in their model take into account a discrete age-
structured population. The existence and stabil-
ity of the model equilibrium are discussed based
on the basic reproduction ratio. Then the opti-
mal control strategy is applied for controlling the
transmission of TB in child and adult populations.

Using a basic SEI model with saturated incidence
rate, Baba et al. [34] studied the effect of optimal
controller and awareness.

It is noted that a considerable number of stud-
ies that deal with TB modelling use the basic
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SEI or SEIR model with only a single compart-
ment of infectious people (see [35–41]). How-
ever, considering a single infectious compartment
is no longer convenient, as it fails to take into
account that some infected individuals can be de-
tected and treated whereas others remain unde-
tected and untreated. Furthermore, according to
the study in [42], patients diagnosed with tuber-
culosis who do not initiate treatment represent an
important failing in the provision of care. For in-
stance, the proportion of patients diagnosed with
tuberculosis who experienced pre-treatment loss
to follow-up in Africa ranged from 6 to 38%. It
is also indicated, in this study, that some rea-
sons for the loss to follow-up were Health-system-
related obstacles, which included dissatisfaction
with long waiting times in health services, the
need for repeated visits and delays in receiving the
results of Sputum Smears. Some reasons for not
starting treatment for tuberculosis were patient-
related (e.g. difficulty getting time off from work
or a lack of understanding of tuberculosis and its
severity or the potential benefits of treatment).
Other reasons were disease-related (e.g. weakness
and fatigue). That is the reason why including
the loss to follow-up phenomenon, detection and
treatment into a TB model is too important.

Taking into consideration the works mentionned
above and as an extension of a previous work [43]
in which we have discussed the global dynamic
of an SIR model with two stages of infection, we
propose here an optimal control problem based
on a more realistic SEIR model for TB that in-
cludes two infectious levels, multiple time delays
and control terms. In our model, the first in-
fectious level contains undetected infectious indi-
viduals, i.e. individuals who are infectious but
have not yet performed the TB test. The second
level involves individuals with Tuberculosis who
accessed tests. As only a part of individuals who
carried out a TB test are notified and start treat-
ment while others are lost during the diagnostic
process or did not initiate treatment, we consider
a second infectious level which includes two sub-
classes of diagnosis patients, namely treated and
lost to follow up individuals. Furthermore, it is
well known that there is an incubation period for
TB [44] and the treatment should follow a cer-
tain process to be efficient [45] and this matter
justifies the use of two time delays representing
the incubation period and the time needed for
treatment in our model. To control the spread
of TB, we consider three control terms which rep-
resent prevention, detection efforts and the efforts
that prevent the failure of treatment. The aim of

this work is to investigate the impact of preven-
tion, detection and treatment strategies on reduc-
ing the number of exposed, undiagnosed and lost
to follow-up individuals when the dynamics of the
TB transmission is governed by a delayed model.
To our knowledge, this work is the first to apply
optimal control theory on a TB model which con-
siders the loss to follow-up phenomenon, detection
of infectious individuals and multiple time delays.

The paper is organised as follows: in Section 2, we
present our mathematical model with time delays
and control terms. In Section 3, we present some
proprieties of the model. We formulate the opti-
mal control problem in Section 4, prove the ex-
istence of a solution and put forward the control
expression. In Section 5, we propose numerical
simulations and discussion based on different con-
trol strategies. Finally, the conclusions are given
in Section 6.

2. Mathematical model

The mathematical model we consider here is a
deterministic compartmental model, composed of
a delayed differential equation and three control
terms.

At any time, an individual is in one of the six fol-
lowing compartments:
Susceptible (S): healthy individuals who are not
yet exposed to TB;
Exposed (E): individuals who are in the latent
period;
Undiagnosed infectious (I): people who have ac-
tive TB but have not been confirmed by a test;
Treated infectious (T ): people who have been di-
agnosed as having active TB and follow a thera-
peutic program;
Lost individuals (L): they accessed TB testing
but are not under treatment, either because they
were lost during the diagnostic process, did not
receive any treatment or they did not complete
their treatment;
Recovered (R): they are individuals who were
previously infected and then recover from active
TB through natural recovery or after completing
successfully their treatment.

We assume that all recruitment is into the suscep-
tible compartment and occur at a constant rate
Λ. The natural death rate, denoted µ, is con-
stant across all compartments. TB is assumed
to be fatal for infectious individuals, that is why
we define additional death rates dI , dT and dL.
The transmission of TB occurs following an ad-
equate contact between a susceptible and infec-
tious in (I), (T ) or (L). Due to the non-linear
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contact dynamics in the population, we use the

incidence function β1I
S

N
, β2T

S

N
and β3L

S

N
to

indicate successful transmission of TB, where βi,
i = 1, 2, 3, denote the effective contact rate with
infectious individuals in compartment I, T and L
respectively. Thus, new infections are produced

at the rate β1I
S

N
+ β2T

S

N
+ β3L

S

N
= λ

S

N
with

λ = β1I + β2T + β3L.

All newly infected individuals develop latent TB
and enter the compartment E. We also assume
that the latent period of the disease is represented
by the time delay τ1. People infected at time t−τ1
become infectious at time t, they join the unde-
tected compartment I at rate k (k is the rate at
which individuals leave the latent class by becom-
ing infectious). Among the undiagnosed infec-
tious some of them are diagnosed and start their
treatment at a rate δ1, while others are diagnosed
but for some reason they do not follow any treat-
ment, they enter the compartment L with a rate
δ2. After a period of time suffering from TB, some
individuals in the compartment L decide to go to
the hospital with a rate γ1. Also among the in-
fectious who had begun their treatment some of
them will give up treatment and will enter the
class L at a rate γ2. The patient under treat-
ment might need time to recover, so we consider
an other time delay τ2 that represents the treat-
ment duration. A patient who starts his treat-
ment at time t − τ2 will recover at time t. Lost
and treated individuals progress to the recovered
class with constant rates α1 and α2 respectively.

The control strategy we adopt consists of intro-
ducing three control parameters v1, v2 and v3 rep-
resenting the following:
v1: the efforts of preventing susceptible individ-
uals from becoming infectious individuals. These
efforts include awareness program, isolation and
any other distancing measurement that can limit
contact between susceptible and infectious peo-
ple;
v2: the efforts made to detect undiagnosed pa-
tients through screening tests and putting them
under a therapeutic program.
v3: the efforts that prevents the failure of treat-
ment by providing financial aid to patients, con-
solidating the number of medical staff and in-
creasing the monitoring of people at risk until
they complete successfully their treatment.

The controls v1(t), v2(t) and v3(t), which are func-
tion of time t, are assumed to be bounded with
0 ≤ vi(t) ≤ 1 for i = 1, 2, 3.

A flow chart of our model is given in Figure 1.

Figure 1. Transfer diagram.

The dynamics of the model is governed by the
following system of delayed differential equations:



dS

dt
= Λ − (1 − v1)λ

S

N
− µS,

dE

dt
= (1 − v1)λ

S

N
− µE − kEτ1 ,

dI

dt
= kEτ1 − (µ+ dI + (1 + v2) δ1 + δ2) I,

dT

dt
= (1 + v2) δ1I + γ1L− (µ+ dT + (1 − v3) γ2)T

−α2Tτ2 ,

dL

dt
= δ2I − (µ+ dL + γ1 + α1)L+ (1 − v3) γ2T,

dR

dt
= α1L+ α2Tτ2 − µR,

(1)

where Xτi = X (t− τi) , for i = 1, 2.

The initial conditions for system (1) take the form

S(θ) = φ1(θ), E(θ) = φ2(θ), I(θ) = φ3(θ),

T (θ) = φ4(θ), L(θ) = φ5(θ), R(θ) = φ6(θ),

φi(θ) ≥ 0, for i = 1, . . . , 6 where θ ∈ [−τ, 0]

and τ = max (τ1, τ2) .
(2)

The (φ1(θ), φ2(θ), φ3(θ), φ4(θ), φ5(θ), φ6(θ)) ∈
C
(
[−τ, 0] ,R6

+

)
, the space of continuous functions

mapping the interval [−τ, 0], into R6
+.

3. Some proprieties of the model

3.1. Boundedness of trajectories

Let N the total population (N = S + E + I +
T +L+R). The trajectories of the system (1) are
bounded. Indeed, by adding all equations in (1),
one has

dN

dt
≤ Λ− µN.

Thus,

N(t) ≤ Λ

µ
+N(0)e−µt,

and,
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0 ≤ N(t) ≤ Λ

µ
, when t −→ +∞.

So, all possible solutions of the system (1) enter
the region

Ω =

{
(S,E, I, T, L,R) ∈ R6

+ : N ≤ Λ

µ

}
.

3.2. Existence of solutions

Let X(t) = [S(t), E(t), I(t), T (t), L(t), R(t)]T and
Xτi = X (t− τi) , for i = 1, 2.
The system (1) can be writing as follows

dX

dt
= AX + F (X,Xτ1 , Xτ2) = G (X,Xτ1 , Xτ2) ,

where

A =


a11 0 0 0 0 0
0 a22 0 0 0 0
0 0 a33 0 0 0
0 0 a43 a44 a45 0
0 0 a53 a54 a55 0
0 0 0 0 a65 a66

 ,

with

a11 = a22 = a66 = −µ,
a33 = − (µ+ dI + (1 + v2) δ1 + δ2) ,
a43 = (1 + v2) δ1,
a44 = − (µ+ dT + (1− v3) γ2) ,
a45 = γ1,
a53 = δ2,
a54 = (1− v3) γ2,
a55 = − (µ+ dL + γ1 + α1) ,
a65 = α1,

and

F (X,Xτ1 , Xτ2) =



Λ− (1− v1)λ
S

N

(1− v1)λ
S

N
− kEτ1

kEτ1
−α2Tτ2

0

α2Tτ2


,

The function F satisfies

|F (X1, X1τ1 , X1τ2)− F (X2, X2τ1 , X2τ2) | ≤
M1|X1 −X2|+M2|X1τ1 −X2τ1 |+M3|X1τ2 −X2τ2 |,

where M1, M2 and M3 are positive constants, in-
dependent of state variables and

|X1 −X2| = |S1 − S2|+ |E1 − E2|+ |I1 − I2|
+ |T1 − T2|+ |L1 − L2|+ |R1 −R2|,

and

|X1τ1 −X2τ1 | = |S1τ1 − S2τ1 |+ |E1τ1 − E2τ1 |
+ |I1τ1 − I2τ1 |+ |T1τ1 − T2τ1 |
+ |L1τ1 − L2τ1 |+ |R1τ1 −R2τ1 |,

and

|X1τ2 −X2τ2 | = |S1τ2 − S2τ2 |+ |E1τ2 − E2τ2 |
+ |I1τ2 − I2τ2 |+ |T1τ2 − T2τ2 |
+ |L1τ2 − L2τ2 |+ |R1τ2 −R2τ2 |.

Moreover, one has

|G (X1, X1τ1 , X1τ2)−G (X2, X2τ1 , X2τ2) | ≤
M (|X1 −X2|+ |X1τ1 −X2τ1 |+ |X1τ2 −X2τ2 |) ,

where

M = max (M1 + ‖A‖,M2,M3) <∞.

Thus, it follows that the function G is uniformly
Lipschitz continuous. From the boundedness of
the controls vi, i = 1, 2, 3 and the restriction on
the state variables, we conclude that there exist a
solution of the system (1). (see [46])

3.3. The basic reproduction number

The basic reproduction number is the average
number of secondary cases produced by a single
infective individual which is introduced into an
entirely susceptible population.

Proposition 1. The basic reproduction number
of the system (1) is given by

R0 (v1, v2, v3) =
R01 +R02 +R03

R04
, (3)

where

R01 = β1k(1 − v1) [(µ+ dT + α2) (µ+ dL + α1 + γ1)

+ (1 − v3)γ2 (µ+ dL + α1)] ,

R02 = β2k(1 − v1) [δ2γ1 + δ1(1 + v2)(µ+ dL + γ1 + α1)] ,

R03 = β3k(1 − v1) [δ2 (µ+ dT + α2 + γ2(1 − v3))

+ δ1γ2(1 − v3)(1 + v2))] ,

R04 = (µ+ k) [(µ+ dT + α2) (µ+ dL + α1 + γ1)

+ (1 − v3)γ2 (µ+ dL + α1)] [µ+ dI + δ2 + δ1(1 + v2)] .
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Proof. The system (1) has a disease-free equlib-

rium (DFE) D∗ =

(
Λ

µ
, 0, 0, 0, 0

)
. In order to

calculate the basic reproduction number, we use
the Van Den Driesseche and Watmough next gen-
eration approach [47] and techniques reported in
[48, 49]. The next generation method consists of
considering only the infected classes E, I, T and
L.

We put

F =


(1− v1)λ

S

N
0
0
0


and

V =

µE + kEτ1
−kEτ1 + (µ+ dI + (1 + v2)δ1 + δ2) I
− (1 + v2) δ1I − γ1L+ (µ+ dT + (1− v3) γ2)T + α2Tτ2
−δ2I + (µ+ dL + α1 + γ1)L− (1− v3) γ2T



where F is the rate of new infections in each class,
and V describes the other flows in the infected
classes.

The Jacobian matrix of F and V at the disease-
free equilibrium D∗ are given by

F =
∂F
∂y

(D∗)

=


0 (1− v1)β1 (1− v1)β2 (1− v1)β3
0 0 0 0
0 0 0 0
0 0 0 0



and

V =
∂V
∂y

(D∗)

=


V11 0 0 0
V21 V22 0 0
0 V32 V33 V34
0 V42 V43 V44



with

V11 = µ+ k

V21 = −k
V22 = µ+ dI + (1 + v2) δ1 + δ2

V32 = − (1 + v2) δ1

V33 = µ+ dT + (1− v3) γ2 + α2

V34 = −γ1
V42 = −δ2
V43 = − (1− v3) γ2
V44 = µ+ dL + α1 + γ1

The basic reproduction number is defined, accord-
ing to Van den Driessche and Watmough [47], as
the spectral radius of the next generation matrix,
FV −1. Since FV −1 is a rank one matrix, the only
non-zero eigenvalue is given by (3). �

As R0(v1, v2, v3) is known explicitly, we can ex-
amine the sensitivity of R0 with respect to the
control terms and predict the relative change of
R0 with respect to each control. The sensitivity
of R0 with respect to a parameter ω is measured

by the so called sensitivity index
∂R0

∂ω
[50]. In this

study, we get the following results:

Proposition 2. The control v1 decreases R0 for
any value of the system parameters, while the con-
trols v2 and v3 can decrease or increase R0 de-
pending on the system parameters values.

Proof. Using the expression of R0 given by (3)
we have

∂R0

∂v1
=
β3(δ2(A− γ2(v3 − 1)) − δ1γ2(v2 + 1)(v3 − 1))

E(D + δ1(v2 + 1))(C(v3 − 1) −AB)

+
β1k(AB − Cγ2(v3 − 1))

E(D + δ1(v2 + 1))(C(v3 − 1) −AB)

+
β2k(δ2γ1 +Bδ1(v2 + 1))

E(D + δ1(v2 + 1))(C(v3 − 1) −AB)

(4)

∂R0

∂v2
= −δ1

β3γ2(v1 − 1)(v3 − 1) +Bβ2k(v1 − 1))

(E(D + δ1(v2 + 1))(C(v3 − 1)−AB))

− δ1
β3(δ2(A− γ2(v3 − 1))− δ1γ2(v2 + 1)(v3 − 1))(v1 − 1)

E(D + δ1(v2 + 1))2(C(v3 − 1)−AB)

− δ1
β1k(AB − Cγ2(v3 − 1))(v1 − 1)

E(D + δ1(v2 + 1))2(C(v3 − 1)−AB)

− δ1
β2k(δ2γ1 +Bδ1(v2 + 1))(v1 − 1)

E(D + δ1(v2 + 1))2(C(v3 − 1)−AB)

(5)

∂R0

∂v3
= −

β3(δ2γ2 + δ1γ2(v2 + 1))(v1 − 1) + Cβ1γ2k(v1 − 1)

E(D + δ1(v2 + 1))(C(v3 − 1)−AB)

− C
β3(δ2(A− γ2(v3 − 1))− δ1γ2(v2 + 1)(v3 − 1))(v1 − 1)

E(D + δ1(v2 + 1))(C(v3 − 1)−AB)2

− C
β1k(AB − Cγ2(v3 − 1))(v1 − 1)

E(D + δ1(v2 + 1))(C(v3 − 1)−AB)2

− C
β2k(δ2γ1 +Bδ1(v2 + 1))(v1 − 1)

E(D + δ1(v2 + 1))(C(v3 − 1)−AB)2

(6)
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where

A = µ+ dT + α2

B = µ+ dL + α1 + γ1

C = µ+ dL + α1

D = µ+ dI + δ2

E = µ+ k

As 0 ≤ vi ≤ 1 (for i = 1, 2, 3) and the terms A,
B, C, D and E are positive one can easily check,

from (4), that
∂R0

∂v1
is negative for any value of the

system parameters. So, we conclude that the in-
crease in v1 leads to the decrease in R0(v1, v2, v3).
Therefore, the control v1 plays an important role
in controlling the disease regardless of other sys-
tem parameters.

In the expressions (5) and (6) we can see that the

signs of
∂R0

∂v2
and

∂R0

∂v3
maybe positive or nega-

tive according to the values taken by the system
parameters. So the impact of v2 and v3 on in-
creasing or decreasing R0(v1, v2, v3) is depending
on the system parameters. �

4. Optimal control problem

In this section we present our optimal control
problem, discuss the existence of the optimal con-
trol and then give a characterization of optimal
control terms.

Note the state variable R does not appear in the
first five equations of (1). So, the other variables
do not depend on R, and we can limit our study
to the following system



dS

dt
= Λ− (1− v1)λ

S

N
− µS

dE

dt
= (1− v1)λ

S

N
− µE − kEτ1

dI

dt
= kEτ1 − (µ+ dI + (1 + v2) δ1 + δ2) I

dT

dt
= (1 + v2) δ1I + γ1L− (µ+ dT

+ (1− v3) γ2)T − α2Tτ2
dL

dt
= δ2I − (µ+ dL + γ1 + α1)L

+ (1− v3) γ2T
(7)

The control strategy aims at minimizing the num-
ber of exposed (E), undetected (I) and lost in-
dividuals (L) as well as minimizing the cost of
this strategy. Mathematically, for a fixed terminal
time tf , the problem is to minimize the objective
functional

J (v1, v2, v3) = E (tf ) + I (tf ) + L (tf )

+

∫ tf

0

{
E(t) + I(t) + L(t) +

3∑
i=1

Ai
2
v2i (t)

}
dt

(8)

where Ai ≥ 0( for i = 1, 2, 3), denote weights that
balance the size of the terms. In other words, we
seek the optimal values v∗1, v∗2 and v∗3 of the con-
trols v1, v2 and v3, such that

J (v∗1, v
∗
2, v
∗
3) = min {J (v1, v2, v3) |

(v1, v2, v3) ∈ U}
(9)

with U is the set of admissible controls defined by

U =
{(
v1(.), v2(.), v3(.)

)
∈ (L∞(0, tf ))3 |

0 ≤ v1(t), v2(t), v3(t) ≤ 1, ∀t ∈ [0, tf ]}
(10)

Remark 1. In the following, to avoid some math-
ematical complexities, we consider that the total
population N remains constant during the control
period.

In order to derive the necessary conditions for the
optimal control, the Pontryagin’s Maximum Prin-
cipale with delay given in [51] is used. This prin-
cipal converts the problem (7)–(9) into a problem
of minimizing a Hamiltonian, H, defined by

H = E + I + L+

3∑
i=1

Ai
2
v2i

+ λ1

(
Λ − (1 − v1)λ

S

N
− µS

)
+ λ2

(
(1 − v1)λ

S

N
− µE − kEτ1

)
+ λ3

(
kEτ1 − (µ+ dI + (1 + v2) δ1 + δ2) I

)
+ λ4

(
(1 + v2) δ1I + γ1L− (µ+ dT

+ (1 − v3) γ2)T − α2Tτ2

)
+ λ5

(
δ2I − (µ+ dL + γ1 + α1)L+ (1 − v3) γ2T

)

(11)

By applying Pontryagin’s Maximum Principale
with delay [51] and the existence result for op-
timal control and corresponding optimal states
from the study [52], we obtain the following the-
orem:

Theorem 1. Consider the optimal control prob-
lem (7)–(9). There exists an optimal control
(v∗1, v

∗
2, v
∗
3) ∈ U and corresponding solutions S∗,
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E∗, I∗, T ∗ and L∗ such that

J (v∗1, v
∗
2, v
∗
3) = min

(v1,v2,v3)∈U
J (v1, v2, v3)

Furthermore, there exists adjoint functions
λ1,λ2,λ3, λ4 and λ5, such that

·
λ1 = λ1

(
(1 − v1)

λ

N
+ µ

)
− λ2 (1 − v1)

λ

N
·
λ2 = −1 + λ2µ− χ[0,tf−τ1](t)

(
λτ13 − λτ12

)
k

·
λ3 = −1 + (λ1 − λ2) (1 − v1)β1

S

N

+ λ3

(
µ+ dI + (1 + v2) δ1 + δ2

)
− λ4 (1 + v2) δ1 − λ5δ2

·
λ4 = (λ1 − λ2) (1 − v1)β2

S

N
+ λ4

(
µ+ dT + (1 − v3) γ2

)
− λ5 (1 − v3) γ2 + χ[0,tf−τ2](t)α2λ

τ2
4

·
λ5 = −1 + (λ1 − λ2) (1 − v1)β3

S

N
− λ4γ1

+ λ5

(
µ+ dL + α1 + γ1

)

with the transversality conditions

λ1 (tf ) = 0, λ2 (tf ) = 1, λ3 (tf ) = 1, λ4 (tf ) = 0,

λ5 (tf ) = 1 and λ
τj
i (t) = λi (t+ τj) with i =

1, . . . , 5 and j = 1, 2.

Moreover, the optimal controls v∗i ( for i = 1, 2, 3)
are given by

v∗1(t) = min

(
1,max

(
0,

(λ2 − λ1)λS

NA1

))
v∗2(t) = min

(
1,max

(
0,

(λ3 − λ4) δ1I

A2

))
v∗3(t) = min

(
1,max

(
0,

(λ5 − λ4) γ2T

A3

)) (12)

Proof. The existence of the optimal control is ob-
tained from Fleming and Rishel [52] (see Corol-
lary 4.1). The adjoint equations and transversal-
ity conditions can be obtained by using Pontrya-
gin’s Maximum Principle with delay in the state
and control variables [51] such that



λ̇1 = −∂H(t)

∂S(t)
λ1 (tf ) = 0

λ̇2 = −∂H(t)

∂E(t)
− χ[0,tf−τ1](t)

[
∂H(t)

∂Eτ1

]
t=t+τ1

λ2 (tf ) = 1

λ̇3 = −∂H(t)

∂I(t)
λ3 (tf ) = 1

λ̇4 = −∂H(t)

∂T (t)
− χ[0,tf−τ2](t)

[
∂H(t)

∂Tτ2

]
t=t+τ2

λ4 (tf ) = 0

λ̇5 = −∂H(t)

∂L(t)
λ5 (tf ) = 1

The optimal controls v∗i ( for i = 1, 2, 3) can be
solved from the optimality conditions

∂H

∂vi
= 0 ( for i = 1, 2, 3) (13)

with further simplification of (13) and special at-
tention on the bounds of controls as defined in U ,
we obtain (12). �

5. Numerical simulation

In this section, we present the numerical solu-
tion of the optimality system which is a two-
point boundary value problem, with separated
boundary conditions at times t0 = 0 and tf . We
use an iterative method based on a combination
of forward and backward difference approxima-
tion, which converges when a tolerance criterion
is reached.

Taking into account the nature of the optimal con-
trol problem with time delays, we extend the iter-
ative Forward-Backward Sweep Method (FBSM)
in [53,54] to our delayed optimality system.

First, we consider a step size h > 0, τ =
max(τ1, τ2) and (m,n) ∈ N2 with τ = mh and
tf − t0 = nh. Then, we consider m knots to left
of t0 and right of tf and we obtain the following
partition
t−m = −τ < . . . < t−1 < t0 = 0 < t1 < . . . <
tn = tf < tn+1 < . . . < tn+m
with ti = t0 − ih (−m ≤ i ≤ n+m).

Next, approximations in term of nodal points
of the state variables, the adjoint variables and
the controls are given by the vectors X =
(Si, Ei, Ii, Ti, Li), λ = (λ1i , λ

2
i , λ

3
i , λ

4
i , λ

5
i ) and V =

(v1i , v
2
i , v

3
i ) respectively.

The numerical resolution process is summarized
in the following algorithm:
Step 1

• Initialization on the left for state vari-
ables. For i = −m, . . . , 0, do
Si = S0, Ei = E0, Ii = I0, Ti = T0, Li =
L0

• Initialization on the right for adjoint vari-
ables. For i = n, . . . , n+m, do
λ1i = 0, λ2i = 1, λ3i = 1, λ4i = 0, λ5i = 1
• Make initial guess for the controls
v10, v

2
0, v

3
0.

Step 2 For i = 0, . . . , n− 1,

• Solving the state system forward in time
using the stored value for X and V .
• Solving the adjoint system backward in

time using the stored value for the con-
trols and the state variable.

Step 3 Updating the controls using the formula
(12).
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Step 4 Testing the convergence : If the difference
of values of these variables in this iteration and
the last iteration is sufficiently small, output the
obtained current values as solutions. If the dif-
ference is not considerably small, return to Step
2.

Note that as reported in [55], the risk of devel-
oping the disease subsequently is much higher in
the 5 years following infection. So, for our simula-
tions we fixed the total control period with tf = 5
years.

All simulations are performed using Matlab. The
initial values are taken as

N = 1 000 000; S0 = 800 000; E0 = 140 000;
I0 = 20 000; T0 = 10 000; L0 = 10 000.

The parameter values are given in Table 1 and are
expressed per year. These values are chosen to en-
sure that the reproduction number R0 is greater
than 1. Therefore, the disease will spread in the
population, and we can show the effectiveness of
our control strategies.

Table 1. Parameters descrip-
tion and values

Parameter Description Value References
µ Natural death rate 1/70 [22]
Λ Recruitment rate µN assumed
β1, β2, β3 Transmission rates 4, 0.5, 3 assumed
k Progression rate from E to I 0.1 [56]
dI TB induced death rate in I 0.083 assumed
dT TB induced death rate in T 0.0227 [57]
dL TB induced death rate in L 0.071 assumed
δ1 Progression rate from I to T 0.3 assumed
δ2 Progression rate from I to L 0.5 assumed
γ1 Progression rate from L to T 0.2 [57]
γ2 Progression rate from T to L 0.298 assumed
α1 Recovery rate of L 0.25 [58]
α2 Recovery rate of T 0.53 [59]

Firstly, let us explore the effect of time delays on
the dynamics of the system (7) without controls.
It is well known that a proportion of people in-
fected with TB bacteria develops active tubercu-
losis within a finite time, the latent period τ1 is
the range of 1 − 3 years [44]. Also, the current
standard treatment for active TB consist of tak-
ing antibiotics for at least six to nine months [45],
so we have considered two values of τ2 (τ2 = 0.5
or 0.75 year).

In Figure 2, we present the evolution of the com-
partments E, I and L using different values of
the time delay τ1 and fixing the value of τ2 at
0.5 year. We observe that introducing time de-
lays into our model can have a profound effect on
the number of the infected; the smaller the time
delay is, the higher the number of infected indi-
viduals in E, I and L. Note that for the case
where τ2 is set to 0.75 year and τ1 is changing we
obtained the same results as in Figure 2, which

can be explained by the small difference between
τ2 = 0.5year and τ2 = 0.75 year.

In the case where τ1 is fixed (e.g τ1 = 1 year) and
τ2 varies, we see in Figure 3 that we obtain the
same solution for E, I and L, due to the small
variation in τ2. However, the difference when
varying τ2 is seen in the number of the treated
people and a slight difference is observed at the
end of the period (see Figure 3 (d)).

Moreover, it is shown from the Figures 2 and 3
that the number of exposed, infectious and lost
individuals increased significantly with and with-
out time delays. So, there is a real need to find
an effective strategy to control the spread of TB.
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Figure 2. Number of E, I and L in-
dividuals when v1 = v2 = v3 = 0 ,
τ2 = 0.5 year and time delay τ1 takes
different values.
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Figure 3. Number of E, I, L and T
individuals when v1 = v2 = v3 = 0 ,
τ1 = 1 year and time delay τ2 takes
two different values.

In the rest of this section, let us chose τ1 = 1
year and τ2 = 0.5 year, and investigate the ef-
fectiveness of control strategies to achieve several
objectives.

Objective 1: Preventing susceptible indi-
viduals from becoming infectious individu-
als.

Given the major role of contact in transmitting
TB between susceptible and infectious people and
the importance of prevention programs in limit-
ing the number of new cases, we propose an opti-
mal strategy based on the control v1. Recall that
v1 represents any measurement that can reduce
contact between susceptible and infectious indi-
viduals, such as awareness programs, distancing,
or isolation. In Figure 4, we depict the evolution
of the infected individuals in E, I and L com-
partments over time in the uncontrolled case and
when the control v1 is implemented alone. We ob-
serve that the number of infected in E, I and L
rose dramatically over the given period when no
control is exerted. While, in the presence of the
preventing control v1, we can see that the number
of individuals decreases sharply, and shows a de-
cline of 74%, 66% and 47% for E, I and L respec-
tively in the final year, compared to no-control
case.
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Figure 4. Number of E, I and L
with control v1 and without control.
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Objective 2: Encouraging detection and
therapeutic programs.
To achieve this goal, we propose the control v2
which includes screening and any other effort that
facilitates access to therapeutic programs. Figure
5 displays the optimal solution of T , E, I and
L when only the control v2 is considered. Com-
pared to the uncontrolled case, there is a steady
increase in the number of patients under treat-
ment. Over the control period, the average num-
ber of T increases by 14%. It is interesting to
note that the use of v2 alone also has an impact
on the improvement of the results obtained for
E, I and L, there is a reduction by 6%, 23%
and 16% at the end of the period, respectively.
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Figure 5. Number of T , E, I and L
with control v2 and without control.

Objective 3: Offering support and follow-
up for patients under treatment.
It should be remembered that in some countries,
especially in Sub-Saharan Africa, some infectious
cases that were detected are lost during the diag-
nosis process or after having started their treat-
ment for financial, cultural and psychological rea-
sons. To deal with this situation, we propose an
optimal control strategy using the control v3 that
represents measurements which can prevent the
loss phenomenon (like financial support and mon-
itoring). Figure 6 shows that the control v3 re-
duces the number of L and I by 16% and 10%
respectively at the end of the period. While its
impact on reducing the number of exposed indi-
viduals is minimal (3%).
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Figure 6. Number of E, I and L
with control v3 and without control.

Figure 7 represents the optimal controls when
each one is used alone. In this figure we can see
that full effort on v1 is applied during almost the
entire control period. The control v2 is also fully
used but only for the first 2.5 years and then de-
creased smoothly. We also observe that the con-
trol v3 is the least used.
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Figure 7. Controls v1(t), v2(t) and
v3(t) when each one is used alone.

At this point, it can be concluded that in terms
of reducing E, I and L simultaneously, the pre-
vention control v1 is the most efficient when only
one control is used. However, combining controls
is potentially more effective than using any one
alone. Different combinations of optimal controls
and strategies (v1 with v2, v2 with v3, . . .) can be
used to achieve other objectives depending on the
particularity of the disease in each country.

Table 2. Total infected E+ I +L at
the end of the period when different
interventions are combined

Controls E + I + L(tf ) Reduction (%)
v1, v2 134 221 73
v1, v3 136 044 72
v2, v3 416 072 16
v1, v2, v3 129 592 74

Let us now find the most effective combinations
among the three controls. In Table 2 we present
the number of infected individuals E+I+L at the
end of the given period, when different interven-
tions are combined. According to these results,
the most efficient choices are those including the
prevention control v1, namely (v1, v2, v3), (v1, v2),
and (v1, v3). While (v2, v3) is less efficient than
the other strategies.

As an illustrative example, we depict in Figure
8 the evolution of E, I and L when the three
controls are implemented. There is a clear im-
provement in the results obtained. In the final
year, the number of individuals in E, I and L
are reduced by 75%, 71% and 60%, respectively.
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Figure 8. Number of E, I and L
with controls v1, v2, v3 and without
control.

Overall, the numerical results under various in-
terventions show that the prevention control v1 is
the most useful control. If we have to choose a
strategy based on a combination of controls, then
this one must include v1 which contributes posi-
tively to the improvement of the final results.

6. Conclusion

The work presented here contributes to the grow-
ing literature on applying control techniques to
epidemiology. Our contribution consists of formu-
lating and solving an optimal control based on a
more realistic SEIR model for TB, which includes
time delays, three infectious compartments and
three controls.

It is well known that TB’s symptoms appear
awhile after infection and patients must follow a

therapeutic protocol for a certain time. Thus, in-
volving delays representing the latent period and
the treatment duration in our model is of partic-
ular importance in TB’s dynamics modelling; it
allows having more complicated dynamics and a
more consistent model with the real situation.

Although some patients are diagnosed and
treated, it turns out that others, despite be-
ing screened, are lost to follow-up for cultural,
socio-economic and health system-related rea-
sons. Thus, instead of considering a single com-
partment which groups all the infectious patients,
it is more appropriate to divide the infectious peo-
ple into three categories, namely, undiagnosed in-
fectious, diagnosed patients who are under treat-
ment, and finally, diagnosed patients who are lost
to follow-up. Such a classification best reflects
the role of screening and treatment and the im-
portance of the loss to follow-up phenomena and
provides a better understanding of TB transmis-
sion.

To control the spread of TB, three different con-
trol strategies were considered, namely, preven-
tion efforts (v1) (like awareness program and iso-
lation), detection efforts (v2) and efforts that pre-
vent the failure of treatment (v3) (e.g. financial
support and monitoring). By introducing these
controls in our model, we aim to achieve three
objectives:

• Preventing susceptible individuals from
becoming infectious individuals.
• Encouraging detection and therapeutic

programs.
• Offering support and follow-up for pa-

tients under treatment.

It should be noted here that the control system
for TB with delays, which we propose in this
paper, can easily be adapted for other diseases
that were previously modelled using the standard
SEIR model.

Using the next-generation matrix method, we got
the expression of the basic reproduction number
R0 with controls. The sensitivity analysis of R0

with respect to the terms of the control shows
that the v1 plays an important role in TB con-
trol. In other words, we found that an increase of
v1 resulted in a decrease in R0 regardless of sys-
tem parameters; while the impact of v2 and v3 on
the R0 increase or decrease is depending on the
values taken by the other system parameters.

To better understand the impact of delays on our
system without control, we proposed numerical
simulations by setting τ1 and changing τ2 and vice
versa. We found that τ1 has more influence on the
dynamics of our model whereas the impact of τ2 is
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limited to a slight change in the number of people
who are under treatment, this is due to the little
difference that exists between the two values of τ2
that we considered (0.5 year and 0.75 year). Also,
we found that the smaller the τ1 and τ2 values are,
the higher the number of infected people is.

The main concern of this study is to investigate
the impact of the proposed strategies on reduc-
ing the number of infected people. For this pur-
pose, we have designed an optimal control prob-
lem in which we seek to minimize the number of
exposed E, undetected I and lost individuals L as
well as the cost associated to the implementation
of the control measures. To investigate the ef-
fectiveness of the control strategies, several cases
associated with the three control strategies were
considered. Single control and different combina-
tions were compared in this paper.

Numerical results show that when only one con-
trol is to be applied, the best choice is the preven-
tion control. This control that reduces contact
between susceptible and infectious people has a
great effect on the number of individuals in E,
I and L compartment. In contrast, if we use v2
or v3 alone, we observe that despite there is a
decline in the number of people in I and L com-
partment, their effect on reducing the number of
exposed individuals is minimal. When a combi-
nation of controls is to be employed, our results
suggest that it should include the control v1. In
this case, the reduction of E + I + L at the final
time tf range from 72 to 73%.

For future work, it would be interesting to ex-
tend the structure of our model by incorporating
age effect and/or spatial diffusion, and observe
how this can affect the optimal dynamics of our
model. In addition, we intend to propose a di-
rect method to find optimal control based on the
viability theory.
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