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In this study we will investigate generalized regularized long wave (GRLW)
equation numerically. The GRLW equation is a highly nonlinear partial dif-
ferential equation. We use finite difference approach for time derivatives and
linearize the nonlinear equation. Then for space discretization we use delta-
shaped basis functions which are relatively few studied basis functions. By
doing so we obtain a linear system of equations whose solution is used for con-
structing numerical solution of the GRLW equation. To see efficiency of the
proposed method four classic test problems namely the motion of a single soli-
tary wave, interaction of two solitary waves, interaction of three solitary waves
and Maxwellian initial condition are solved. Further, invariants are calculated.
The results of numerical simulations are compared with exact solutions if avail-
able and with finite difference, finite element and some collocation methods.
The comparison indicates that the proposed method is favorable and gives
accurate results.
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1. Introduction

Consider following generalized equation

ut + αux + ǫ (up)x − µuxxt − γuxx = 0, (1)

−∞ < x < ∞, t > 0

in which t is time, x is spatial variable and u is
the amplitude, and α ≥ 0, ǫ ≥ 0, µ ≥ 0, γ ≥ 0,
p ≥ 2. The Eq. (1) presents a lot of mathematical
models according to the values of α, ǫ, µ, γ [1] for
instance :

• if α = 0, ǫ = 0, µ = 0, γ 6= 0 then Eq. (1)
corresponds to heat equation,

• if α 6= 0, ǫ = 0, µ = 0, γ = 0 then Eq. (1)
corresponds to wave equation,

• if α = 0, ǫ 6= 0, µ = 0, γ 6= 0, p = 2 then
Eq. (1) corresponds to viscous Burgers’
equation,

• if α = 1, ǫ 6= 0, µ 6= 0, γ = 0, p = 2 then
Eq. (1) corresponds regularized long wave
(RLW) equation,

• if α = 1, ǫ 6= 0, µ 6= 0, γ = 0, p > 2 then
Eq. (1) corresponds generalized regular-
ized long wave (GRLW) equation.

In this paper, we will study GRLW equation nu-
merically. The GRLW equation was first pro-
posed by Peregrine [2, 3] for description of an
undular bore and then by Benjamin et al. [4]
GRLW equation suggested as a model for long
waves with small amplitudes on the surface of wa-
ter in a channel. Since the GRLW equation can
be a model for a lot of real life phenomena such
as plasma waves [5] and shallow water waves [2]
it is crucial to develop efficient methods for solv-
ing this equation. Since analytical solutions of
the GRLW equation are available only for limited
initial and boundary conditions it is inevitable for
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looking at numerical methods. Due to highly non-
linear structure of the GRLW equation, develop-
ing efficient numerical methods for this equation
also is a challenging work.

GRLW equation includes RLW and modified
RLW equation for certain values of p. There are
a vast of studies related to both RLW and modi-
fied RLW equations, see for example [6–14] and
references therein. On the other hand for the
GRLW equation literature is not so rich. But,
nevertheless there are some studies related to
the GRLW equation. For example, the GRLW
equation has been solved using Sinc-collocation
method [16], Wang et al. [17] used a meshless
method for the GRLW equation, element-free kp-
Ritz method has been used by Guo et al. [18] for
solving the GRLW equation, Kang et al. [19] used
a second-order Fourier pseudospectral method for
the GRLW equation, compact finite difference
method and finite difference method have been
used in [20, 21], respectively. Roshan [22], used
a Petrov-Galerkin method for the GRLW equa-
tion. B-spline finite element method has been
used in [23], a collocation method with cubic B-
splines is used in [6], Karakoc and Zeybek [24]
used septic B-spline collocation method, more re-
cently local momentum-preserving algorithms [25]
are developed for the GRLW equation.

We will investigate numerical solution of the
GRLW equation given in following form;

ut + ux + p(p+ 1)upux − µuxxt = 0, a ≤ x ≤ b
(2)

with Dirichlet boundary conditions u(a, t) =
u(b, t) = 0 by employing finite difference and
delta-shaped basis functions.

The paper is organized as follows. In Section 2, a
brief information about delta-shaped basis func-
tions is given. In section 3, time discretization
with finite difference and space discretization with
delta-shaped basis functions are described. The
results of numerical simulations are presented in
Section 4. Finally, the paper is concluded in Sec-
tion 5.

2. Delta-shaped basis functions

Delta-shaped basis functions (DBFs) have been
derived by Reutskiy [26] from Fourier series of
Dirac-delta function and were used for simulat-
ing a set of scattered data in both regular and
irregular domains successfully. Since then DBFs
have been used in some studies for numerical solu-
tion of partial differential equations. For instance,
DBFs are used for solving Helmholtz-type equa-
tions in [27, 28], Hon and Yang used DBFs for

default barrier model [29], one-dimensional Ste-
fan problems are solved by DBFs [30], numeri-
cal solution of the Schrödinger equations are ob-
tained by using DBFs [31], DBFs are used for
solving ill-posed nonhomogeneous elliptic bound-
ary value problems [32], recently a pseudo spec-
tral method based on DBFs is developed in [33]
for solving modified Burgers equation. We briefly
introduce delta-shaped basis functions, in the se-
quel [29, 31]. Consider following Sturm-Liouville
eigenvalue problem

{

−d2φ
dx2 = λφ, x ∈ (−1, 1),

φ(−1) = φ(1) = 0.

Let (φn(x), λn) be a solution to the above Sturm-
Liouville eigenvalue problem. Clearly, φn(x) =

sin
(

nπ x+1
2

)

, λn =
(

nπ
2

)2
and further

∫ 1

−1
φm(x)φn(x)dx = δmn =

{

1, m = n,

0, m 6= n.

That means, eigenfunctions {φn(x)}
∞

n=1 form an
orthogonal system on interval [−1, 1] and further-
more Dirac’s delta function can be expressed as
follows

δ(x− ξ) =
∞
∑

n=1

φn(ξ)φn(x). (3)

The series in Eq. (3), can be used with some regu-
larization techniques [30] to derive smooth delta-
shaped function IM,χ(x, ξ). Otherwise the series
in Eq. (3) diverges at any point in the interval
[−1, 1] [26]. Here we consider Riesz regularization
approach and thus the regularized delta-shaped
functions are in the following form

IM,χ(x, ξ) =
M
∑

n=1

(

1−
n2

(M + 1)2

)χ

φn(ξ)φn(x).

(4)

The parameters M and χ may be think of as
shape parameters since they form the properties
of delta-shaped functions. The parameter M is
responsible for scaling, as M increases the sup-
port of basis function decreases. This can be seen
in left column of Fig. 1. The parameter χ respon-
sible for regularizing, if χ = 0 i.e. when there is
no regularization, basis function shows oscillat-
ing behavior on its support. On the other hand
if χ increases basis function gets smoother. We
show this situation in right column of Fig. 1. We
should note that choosing optimal values of shape
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Figure 1. Effect of M and χ with center ξ = 0 on delta-shaped functions.

parameters for delta-shaped functions is still an
open problem.

3. Solution method for GRLW

equation

In this section, we describe time discretization
and space discretization for the GRLW equation.
We start with time discretization.

3.1. Time discretization by finite

differences

We take GRLW equation as

ut + ux + ǫupux − µuxxt = 0, a ≤ x ≤ b, t > 0
(5)

with initial condition
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u(x, 0) = f(x),

and boundary conditions

u(a, t) = g1(t), u(b, t) = g2(t), t ≥ 0, (6)

where ǫ = p(p + 1) > 0, µ > 0 and f(x),g1(t)
and g2(t) are prescribed functions. We use for-
ward Euler formula for time derivatives and uti-
lize θ−weighted (0 ≤ θ ≤ 1) scheme between time
levels j and j + 1 as

uj+1 − uj

∆t
+ θ

[

(ux)
j+1 + ǫ (upux)

j+1
]

+(1− θ)
[

(ux)
j + ǫ (upux)

j
]

(7)

−
µ

∆t

(

(uxx)
j+1 − (uxx)

j
)

= 0

where ∆t is time step size and tj+1 = tj + ∆t,
uj+1 = u(x, tj+1). Following [16], the nonlinear

term (upux)
j+1 can be linearized as

(upux)
j+1

≃ (upux)
j
+∆t

[

(up
t )

j
uj
x + (up)

j
(uxt)

j
]

+O(∆t2)

= (upux)
j

+∆t

[

(up)
j+1

− (up)
j

∆t
uj
x + (up)

j u
j+1
x − uj

x

∆t

]

+O(∆t2)

≃ (up)
j
uj+1
x + p

(

up−1
)j

uj
xu

j+1 − p (up)
j
uj
x.

(8)

Now by plugging Eq. (8) into the Eq. (7) we
obtain time discretized scheme as follows [16].

uj+1

+∆tθ
[

uj+1
x + ǫ

(

(up)j uj+1
x + p

(

up−1
)j

ujxu
j+1
)]

−µ (uxx)
j+1

= uj +∆t
[

ǫ ((p+ 1)θ − 1) (up)j ujx − (1− θ)ujx

]

−µ (uxx)
j

(9)

In numerical calculations we select θ = 1
2 which

corresponds famous Crank-Nicolson approach.

3.2. Space discretization with DBFs

Let us assume the solution u(x) can be approxi-
mated by the linear combination of DBFs as fol-
lows

uj+1(x) =
N
∑

i=1

λj+1
i IM,χ(x, ξi). (10)

Then first and second order derivatives can be
found simply as

d

dx
uj+1(x) =

N
∑

i=1

λj+1
i

d

dx
IM,χ(x, ξi), (11)

d2

dx2
uj+1(x) =

N
∑

i=1

λj+1
i

d2

dx2
IM,χ(x, ξi), (12)

Substituting Eqs. (10)-(12) into the Eq. (9) we
obtain

N
∑

i=1

λj+1
i

(

IM,χ(x, ξi) + ∆tθ

[

d

dx
IM,χ(x, ξi)

+ǫ

(

(up)j
d

dx
IM,χ(x, ξi) + p

(

up−1
)j

ujxIM,χ(x, ξi)

)]

−µ
d2

dx2
IM,χ(x, ξi)

)

= ∆t
[

ǫ ((p+ 1)θ − 1) (up)j ujx − (1− θ)ujx

]

+uj − µ (uxx)
j

(13)

Discretizing Eq. (13) at collocation points a =
x1 < x2 < ... < xN = b and imposing boundary
conditions (6) we can obtain a linear system of
equations with size of N×N whose solution gives
expansion coefficients λi. Then by using these
coefficients in the (10) numerical solution can be
found for each time step. The centers ξi are dif-
ferent from collocation points but for convenience
we take ξi same as collocation points. For starting
simulation, right hand side of the Eq. (13) must
be calculated from initial condition.

We also should note that IM,χ(x, ξ) vanishes near
the boundaries x = ±1. Thus centers and col-
location points should not be near the boundary
in [−1, 1]. To overcome this issue, as pointed out
in [26], considered partial differential equations
should be redefined in subdomain [−0.5, 0.5] by
some scaling and transformation operations.

4. Numerical experiments

To indicate the performance of the proposed
method we will use the error norms L2 and L∞

defined by
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L2 =

∥

∥

∥

∥

uexacti − unumi

∥

∥

∥

∥

2

≃

(

∆x

N
∑

i=1

∣

∣uexacti − unumi

∣

∣

2

)1/2

L∞ =

∥

∥

∥

∥

uexacti − unumi

∥

∥

∥

∥

∞

≃ max
i

∣

∣uexacti − unumi

∣

∣

and invariants [23]:

• Conservation of mass

I1 =

∫ b

a
udx = ∆x

N
∑

i=1

ui,

• Conservation of momentum

I2 =

∫ b

a

(

u2 + µu2x
)

dx

= ∆x
N
∑

i=1

[

(ui)
2 + µ ((ux)i)

2
]

,

• Conservation of energy

I3 =

∫ b

a

(

u4 − µu2x
)

dx = ∆x

N
∑

i=1

(

u4i − µ ((ux)i)
2
)

.

Further, we calculate the convergence orders by
the following formulae

C1 =
log
(

L∞,2(2∆t,N)
L∞,2(∆t,N)

)

log 2
, C2 =

log
(

L∞,2(∆t,N)
L∞,2(∆t,2N)

)

log 2
.

We denote absolute differences of I1, I2, I3 be-
tween initial time t = 0 and final time t = t− final
as |∆Ii| = |It−final

i − It−initial
i |, i = 1, 2, 3. In all

numerical simulations we choose θ = 0.5 and we
take M = 2N +100, χ = M/40 for single solitary
wave problem, M = 2N + 300, χ = M/100 for
interaction of two-three solitary waves problem
and M = 5N + 100, χ = M/100 for Maxwellian
problem. Numerical calculations have been done
in Python environment [34, 35] with a desktop
computer (Linux OS, NumPy version 1.15.1, Intel
i7-8750H, 8GB RAM). Graphical outputs in this
study were generated by Matplotlib package [36].

4.1. Single solitary wave motion

We investigate motion of single solitary given as

u(x, 0) = p

√

c(p+ 2)

2p
sech2

(

p

2

√

c

µ(c+ 1)
(x− x0)

)

.

To this end, we calculate the error norms L2, L∞

and the invariants I1, I2, I3 for constant values
of x0 = 40, µ = 1, 0 ≤ x ≤ 100 and for various

values of ∆t, c, p, N . Firstly, to see convergence
of the present method in space we fix ∆t = 0.0001
and we increase number of collocation points, ob-
tained results are reported in Table 1. As it can
be seen from the table by increasing number of
collocation points the errors decrease. Later, we
set N = 400 and decrease time step size to see
convergence in temporal variable. Obtained re-
sults are given in Table 2 where one can see that
by halving the time step size the errors decrease
and convergence orders are about two which is
theoretical convergence order of Crank-Nicolson
method.

In Table 3, for N = 100, c = 0.1, ∆t = 0.05
and p = 2, 3 the error norms are given at dif-
ferent final times with CPU times taken during
simulation. Accuracy of the results can be seen
from the table. Table 4 indicates variation in the
invariants for N = 400, ∆t = 0.1, c = 0.1 and
p = 2, 3 at different final times. From the table
one can conclude that the proposed method can
conserve invariants quite good.

In Tables 5 and 6 the invariants and errors are
calculated and compared with ones of septic B-
spline collocation method [24] for ∆t = 0.01,
µ = 1,p = 4, c = 0.3 and N = 250 (in case
of the present method), h = 0.1 (in case of the
method of [24]). Absolute differences of I1, I2, I3
between initial time t = 0 and final time t = 10
are approximately 2e − 07, 2e − 06, 2e − 06, re-
spectively for the method of [24] while these differ-
ences are approximately 2e−07, 4e−07, 1.2e−06,
respectively for the present method. In Table 7,
a comprehensive comparison between B-spline fi-
nite element [23], cubic B-spline collocation [6],
Petrov-Galerkin [22], septic B-spline collocation
[24] methods and the present method is given for
p = 2, 3, 4. For present method we take N = 250
while for the other methods space step size h is
taken as 0.2 and 0.1. From the table it is clearly
seen that for p = 3 lowest errors are obtained by
the present method and for p = 2, 4 lowest errors
are obtained by the method of [24]. Finally in
Table 8 a comparison with compact finite differ-
ence [20] is given for ∆t = c = 0.1 where accuracy
of the present method is obvious.

In Figs. 2 and 3, motion of single solitary waves
are given for p = 3, c = 1.2 and p = 4, c = 4/3,
respectively. It can be seen that at t = 0 the
solitary wave is located at x0 = 40 and as time
goes the single solitary wave moves rightward with
constant speed and with almost invariable ampli-
tude.
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Table 1. Error norms and convergence orders for c = 4/3, p = 4 and increasing values of N
at t = 0.1.

N L2 L∞ C2 for L2 C2 for L∞

40 7.154182e-01 4.146875e-01 - -
80 1.528925e-01 1.253767e-01 2.2263 1.7258
160 1.141233e-03 8.628014e-04 7.0658 7.1830
320 1.912428e-05 2.386172e-05 5.8990 5.1763

Table 2. Error norms and convergence orders for c = 4/3, p = 4 and decreasing values of ∆t
at t = 1.

∆t L2 L∞ C1 for L2 C1 for L∞

1/10 5.540555e-02 3.539277e-02 - -
1/20 1.409159e-02 9.028174e-03 1.9752 2.0136
1/40 3.494540e-03 2.234878e-03 2.0117 2.0142
1/80 8.792614e-04 5.534720e-04 1.9907 2.0136

Table 3. Error norms and CPU times for N = 100, c = 0.1, ∆t = 0.05, x0 = 40 on 0 ≤ x ≤ 100
at different times.

p = 2 p = 3
Time L2 L∞ L2 L∞ CPU time
t = 2 1.396342e-05 5.698786e-06 3.618557e-05 1.747289e-05 0.03
t = 4 2.732318e-05 1.146938e-05 7.126962e-05 3.143534e-05 0.04
t = 6 4.059471e-05 1.720380e-05 1.060434e-04 4.661107e-05 0.04
t = 8 5.360908e-05 2.260812e-05 1.401759e-04 6.109345e-05 0.05
t = 10 6.632761e-05 2.753908e-05 1.736471e-04 7.520650e-05 0.06

Table 4. Invariants on 0 ≤ x ≤ 100 for N = 400, ∆t = 0.1, c = 0.1 at different final times.

p = 2 p = 3 CPU time
t I1 I2 I3 I1 I2 I3
0 3.294918 0.683426 0.024121 4.062584 1.133875 0.092900 0.00
2 3.294919 0.683426 0.024121 4.062584 1.133874 0.092899 0.33
4 3.294920 0.683426 0.024121 4.062585 1.133873 0.092899 0.38
6 3.294919 0.683425 0.024121 4.062585 1.133872 0.092898 0.42
8 3.294919 0.683425 0.024121 4.062584 1.133871 0.092896 0.48
10 3.294918 0.683425 0.024121 4.062583 1.133871 0.092895 0.53

Table 5. Invariants and their comparison on 0 ≤ x ≤ 100 for N = 250, ∆t = 0.01, µ = 1,p = 4,
c = 0.3

[24] (second) Present [24] (second) Present [24] (second) Present
t I1 I1 I2 I2 I3 I3
0 3.7592865 3.7592300 1.7300239 1.7300029 0.2894189 0.2894090
2 3.7592865 3.7592300 1.7300244 1.7300028 0.2894183 0.2894091
4 3.7592865 3.7592299 1.7300250 1.7300027 0.2894178 0.2894097
6 3.7592864 3.7592299 1.7300254 1.7300026 0.2894174 0.2894100
8 3.7592864 3.7592299 1.7300256 1.7300025 0.2894171 0.2894101
10 3.7592863 3.7592298 1.7300259 1.7300024 0.2894169 0.2894102

4.2. The interaction of two solitary waves

In this subsection, we examine interaction of two
solitary waves, namely we consider the Eq. (2)
with following initial condition

u(x, 0) =

2
∑

i=1

p

√

ci(p+ 2)

2p
sech2

(

p

2

√

ci
µ(ci + 1)

(x− xi)

)
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Table 6. Invariants and their comparison on 0 ≤ x ≤ 100 for N = 250, ∆t = 0.01, µ = 1,p = 4,
c = 0.3

[24] (first) [24] (second) Present [24] (first) [24] (second) Present
t L2 × 104 L2 × 104 L2 × 104 L∞ × 104 L∞ × 104 L∞ × 104

2 0.25417530 0.19937853 0.2803098 0.13193138 0.09833776 0.1510377
4 0.50867400 0.39600506 0.5629237 0.25511505 0.19527926 0.2957829
6 0.76378746 0.59159317 0.8494472 0.37848569 0.29108460 0.4345260
8 1.01967310 0.78622772 1.1406822 0.50227119 0.38611041 0.5756090
10 1.27628477 0.98004530 1.4373113 0.62645346 0.48083798 0.7138410

Table 7. Comparison of the results on 0 ≤ x ≤ 100 for µ = 1 at t = 10.

p = 2, c = 1 p = 3, c = 0.3 p = 4, c = 0.3

∆t = 0.025, h = 0.2 ∆t = 0.01, h = 0.1 ∆t = 0.01, h = 0.1

I1 Present method, N = 250 4.44288292 3.67755181 3.75922990

Collocation+PA-CN (cubic) [23] 4.44000000 - -

Collocation-CN (cubic) [23] 4.44200000 - -

Collocation (cubic) [6] 4.44288000 - -

Petrov–Galerkin (quintic) [22] 4.44288000 3.67755000 3.75923000

Collocation (septic) [24] 4.44286610 3.67760690 3.75928630

Present method, N = 250 3.29978116 1.56574072 1.73000240

Collocation+PA-CN (cubic) [23] 3.29600000 - -

Collocation-CN (cubic) [23] 3.29900000 - -

Collocation (cubic) [6] 3.29983000 - -

I2 Petrov–Galerkin (quintic) [22] 3.29981000 1.56574000 1.72999000

Collocation (septic) [24] 3.29971510 1.56576200 1.73002590

Present method, N = 250 1.41416306 0.22683878 0.28941022

Collocation+PA-CN (cubic) [23] 1.41100000 - -

Collocation-CN (cubic) [23] 1.41300000 - -

I3 Collocation (cubic) [6] 1.41420000 - -

Petrov–Galerkin (quintic) [22] 1.41416000 0.22683700 0.28940600

Collocation (septic) [24] 1.41431220 0.22684460 0.28941690

Present method, N = 250 3.91431278 0.06900426 0.14368290

Collocation+PA-CN (cubic) [23] 20.30000000 - -

Collocation-CN (cubic) [23] 16.39000000 - -

L2 × 103 Collocation (cubic) [6] 9.30196000 - -

Petrov–Galerkin (quintic) [22] 3.00533000 0.07197600 0.12253900

Collocation (septic) [24] 2.57148152 0.07851367 0.09800453

Present method, N = 250 2.00191759 0.03304418 0.07169059

Collocation+PA-CN (cubic) [23] 11.20000000 - -

Collocation-CN (cubic) [23] 9.24000000 - -

L∞ × 103 Collocation (cubic) [6] 5.43718000 - -

Petrov–Galerkin (quintic) [22] 1.68749000 0.03772280 0.06620700

Collocation (septic) [24] 1.34021078 0.03650124 0.04808379

which describes propagation of two waves with
different amplitudes, one placed at x1 and the
other placed at x2.

First numerical simulation have been done with
the following values p = 2, c1 = 4, c2 = 1, x1 =
25, x2 = 55, ∆t = 0.025, µ = 1 on the inter-
val 0 ≤ x ≤ 250. The results obtained are re-
ported in Table 9 and are compared with Petrov-
Galerkin [22] and septic B-spline collocation [24]
methods.

From the table we can see that the invariants ob-
tained by the present method are compatible with
the ones of [22], [24]. In Fig. 4, interaction of the
solitary waves are depicted.

Second simulation have been done with p = 3,
c1 = 48/5, c2 = 6/5, x1 = 20, x2 = 50, ∆t = 0.01,
0 ≤ x ≤ 120 and µ = 1. The obtained results are
reported and compared with the results of [22]
and [24] in Table 10. Variations in the invari-
ants I1, I2, I3 are approximately 2.0e− 06, 0.111,
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Table 8. Comparison of the results on 0 ≤ x ≤ 100, µ = 1, x0 = 40 and ∆t = c = 0.1.

p = 1 p = 2

I1 I2 L2 L∞ I1 I2 L2 L∞

t = 2 [20], h = 0.1 1.989963 0.196378 0.013774 0.005403 3.29492 0.649425 0.039859 0.018973

Present, N = 250 1.989964 0.202616 0.000011 0.000004 3.294919 0.683426 0.000055 0.000023

t = 4 [20], h = 0.1 1.989964 0.197220 0.012347 0.004610 3.29492 0.653939 0.036136 0.015780

Present, N = 250 1.989965 0.202616 0.000022 0.000008 3.294920 0.683426 0.000109 0.000047

t = 6 [20], h = 0.1 1.989964 0.198076 0.010985 0.003841 3.29492 0.658616 0.032839 0.013296

Present, N = 250 1.989965 0.202616 0.000032 0.000012 3.294919 0.683425 0.000162 0.000070

t = 8 [20], h = 0.1 1.989963 0.198947 0.009737 0.003158 3.29492 0.663465 0.030230 0.011791

Present, N = 250 1.989964 0.202616 0.000043 0.000016 3.294919 0.683425 0.000214 0.000093

t = 10 [20], h = 0.1 1.989962 0.199832 0.008677 0.002656 3.29492 0.668494 0.028541 0.011065

Present, N = 250 1.989963 0.202616 0.000053 0.000020 3.294918 0.683425 0.000265 0.000113
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Figure 2. Motion of single solitary
wave at t = 0, 5, 10, 15 for N = 400,
∆t = 0.05 and p = 3.
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Figure 3. Motion of single solitary
wave at t = 0, 5, 10, 15 for N = 400,
∆t = 0.05 and p = 4.

Table 9. Comparison of the results for p = 2, c1 = 4, c2 = 1, x1 = 25, x2 = 55, ∆t = 0.025,
µ = 1 on 0 ≤ x ≤ 250 at different final times.

t = 0 t = 4 t = 8 t = 12 t = 16 t = 20

I1 Present method, N = 400 11.4676982 11.4677197 11.4676926 11.4676587 11.4676037 11.4674483

[24] Collocation (second), h = 0.2 11.4676542 11.4676484 11.466 884 9 11.4676777 11.4676555 11.4676452

[22] Petrov–Galerkin (quintic), h = 0.2 11.4677000 11.4677000 11.4677000 11.4677000 11.4677000 11.4677000

Present method, N = 400 14.6290652 14.6194206 14.6068263 14.6029824 14.5933673 14.5831979

I2 [24] Collocation (second), h = 0.2 14.6292089 14.6277880 14.1400014 14.6803731 14.6442435 14.6309639

[22] Petrov–Galerkin (quintic), h = 0.2 14.6286000 14.6292000 14.6229000 14.6299000 14.6295000 14.6299000

Present method, N = 400 22.8816460 22.8411085 22.7875495 22.7753681 22.7381963 22.6975609

[24] Collocation (second), h = 0.2 22.8803575 22.8817784 23.3695650 22.8291933 22.8653229 22.8786025

[22] Petrov–Galerkin (quintic), h = 0.2 22.8788000 22.8811000 22.8798000 22.8803000 22.8805000 22.8806000

0.45 respectively for the present method. Fig. 10
shows the interaction of the solitary waves.

4.3. The interaction of three solitary

waves

The Eq. (2) with initial condition

u(x, 0) =

3
∑

i=1

p

√

ci(p+ 2)

2p
sech2

(

p

2

√

ci
µ(ci + 1)

(x− xi)

)
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Figure 4. Interaction of two solitary waves for N = 400, p = 2, c1 = 4, c2 = 1, x1 = 25,
x2 = 55,∆t = 0.025, and µ = 1 at t = 0, 4, 8, 12, 16, 20.

Table 10. Comparison of the results for p = 3, c1 = 48/5, c2 = 6/5, x1 = 20, x2 = 50,
∆t = 0.01, µ = 1 on 0 ≤ x ≤ 120 at different final times.

t = 0 t = 2 t = 3 t = 4 t = 5 t = 6

I1 Present method, N = 400 9.6907416 9.6907408 9.6907405 9.6907403 9.6907398 9.6907396

[24] Collocation (second), h = 0.1 9.6907772 9.6881175 9.6850972 9.6860154 9.6847993 9.6834620

[22] Petrov–Galerkin (quintic), h = 0.1 9.6907500 9.6907400 9.6907400 9.6907400 9.6907400 9.6907400

Present method, N = 400 12.9443811 12.9034856 12.8814687 12.8721151 12.8526253 12.8331028

I2 [24] Collocation (second), h = 0.1 12.9443914 12.9390629 12.3046064 12.9703128 13.0538036 13.0027533

[22] Petrov–Galerkin (quintic), h = 0.1 12.9444000 12.9452000 12.9379000 12.9453000 12.9457000 12.9454000

Present method, N = 400 17.0187240 16.8733431 17.5959108 16.7459006 16.5917866 16.5602450

I3 [24] Collocation (second), h = 0.1 17.0186758 17.0240043 17.6584608 16.9927544 16.9092637 16.9603139

[22] Petrov–Galerkin (quintic), h = 0.1 17.0184000 16.9835000 17.0591000 16.9261000 16.8781000 16.9113000

is considered in this subsection. The above initial
condition describes movement of three solitary
waves with different amplitudes in same direction.
For numerical simulation, we choose 0 ≤ x ≤ 100,
µ = 1,c1 = 0.6, c2 = 0.3, c3 = 0.15,x1 = 15,
x2 = 35, x3 = 60 and different values of ∆t and
p. In Table 11, we calculate the invariants for
N = 400, p = 2, ∆t = 0.1 and compare the results
with compact finite difference method [20]. In the
same table we give absolute difference of the in-
variants approximately, between initial time t = 0
and final time t = 10 where it can be seen that the
present method conserves invariants better than
the method of [20]. In Tables 12, 13 the invari-
ants and their changes are given for N = 400,
∆t = 0.05 and p = 3, 4 respectively. From these
tables we can conclude that the present method
can conserve invariants successfully. Finally the

interaction of three solitary waves are shown in
Figs. 6 and 7.

4.4. Maxwellian inital condition

Finally, in this subsection we consider the Eq.(2)
with

u(x, 0) = e−(x
2), −20 ≤ x ≤ 60

Maxwellian initial condition. In this case, it is
known that solution depends on µ [15,21]. Let us
assume µc be some critical value. If µ ≫ µc then
the solution shows rapidly oscillating behavior
without breaking up into solitons. When µ < µc

the solution forms solitons based on the value of
µ. Lastly if µ = µc a leading soliton with oscillat-
ing tail occurs. We perform numerical simulations
for various values of µ = 0.1, 0.05 0.025, 0.01. In
first simulation we consider the case p = 3. We
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Figure 5. Interaction of two solitary waves for N = 400, p = 3, c1 = 48/5, c2 = 6/5, x1 = 20,
x2 = 50, ∆t = 0.025, and µ = 1 at t = 0, 4, 8, 12, 16, 20.

Table 11. Invariants and their changes for p = 2 and ∆t = 0.1.

[20], h = 0.1 Present, N = 400
t I1 I2 I3 I1 I2 I3
0 10.9245 4.4191 0.740798 10.9245437 4.4191243 0.7407977
2 10.9245 3.8743 0.505953 10.9246354 4.4190394 0.7407469
4 10.9246 4.0302 0.573556 10.9246419 4.4189527 0.7406946
6 10.9245 4.2342 0.669611 10.9246165 4.4188661 0.7406418
8 10.9245 4.5023 0.812142 10.9245872 4.4187793 0.7405883
10 10.9244 4.8697 1.039870 10.9245403 4.4186918 0.7405338
|∆Ii| → 1.0e-04 0.45060 0.29907 3.4e-06 4.325e-04 2.639e-04

Table 12. Invariants and their changes for p = 3, N = 400 and ∆t = 0.05.

t I1 I2 I3 CPU time
0 11.1945795 4.8882472 0.7971747 0.00
2 11.1946512 4.8881944 0.7972071 0.25
4 11.1946551 4.8881413 0.7972680 0.34
6 11.1946323 4.8880883 0.7973291 0.43
8 11.1946040 4.8880352 0.7974067 0.51
10 11.1945561 4.8879819 0.7975176 0.60
|∆Ii| → 9.5100e-05 2.6530e-04 3.4290e-04

Table 13. Invariants and their changes for p = 4, N = 400 and ∆t = 0.05.

t I1 I2 I3 CPU time
0 11.4706872 5.3297106 0.9191609 0.00
2 11.4707529 5.3295569 0.9192072 0.25
4 11.4707560 5.3294031 0.9193171 0.35
6 11.4707341 5.3292498 0.9194077 0.42
8 11.4707057 5.3290969 0.9195143 0.51
10 11.4706562 5.3289442 0.9196717 0.61
|∆Ii| → 3.1000e-05 7.6640e-04 5.1080e-04

takeN = 400, ∆t = 0.005 for the present method. We give changes in the invariants and their com-
parison with results of septic B-spline collocation
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Figure 6. Interaction of three solitary
waves for p = 3, N = 400, µ = 1,c1 =
0.6, c2 = 0.3, c3 = 0.15,x1 = 15, x2 =
35 and x3 = 60 at t = 0, 2, 4, 6, 8, 10.
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Figure 7. Interaction of three solitary
waves for p = 4, N = 400, µ = 1,c1 =
0.6, c2 = 0.3, c3 = 0.15,x1 = 15, x2 =
35 and x3 = 60 at t = 0, 2, 4, 6, 8, 10.

Table 14. Invariants and their comparison for p = 3, N = 400, ∆t = 0.005 and different values of µ.

p = 3

Present [24] Present [24] Present [24]

t I1 I1 I2 I2 I3 I3

µ = 0.1 0 1.772454 1.772453 1.378646 1.378645 0.760896 0.760895

2 1.772766 1.772452 1.379399 1.548191 0.607357 0.591349

4 1.772561 1.772451 1.378142 1.546329 0.604010 0.593211

6 1.772610 1.772449 1.378273 1.545540 0.603203 0.594000

|∆I1| → 0.000156 4.0e-06 |∆I2| → 0.000373 0.166895 |∆I3| → 0.157693 0.166895

µ = 0.05 0 1.772454 1.772453 1.315980 1.315979 0.823561 0.823561

2 1.772215 1.772376 1.312421 1.514843 0.639867 0.624697

4 1.772022 1.772272 1.311619 1.514131 0.639441 0.625409

6 1.773135 1.772168 1.317028 1.513035 0.648906 0.626505

|∆I1| → 0.000681 0.000285 |∆I2| → 0.001048 0.197056 |∆I3| → 0.174655 0.197056

µ = 0.025 0 1.772454 1.772453 1.284647 1.284646 0.854894 0.854894

2 1.782801 1.768943 1.332664 1.502469 0.815844 0.637071

4 1.774529 1.764956 1.302657 1.501801 0.754045 0.637740

6 1.754215 1.761477 1.222551 1.498994 0.589541 0.640546

|∆I1| → 0.018239 0.010976 |∆I2| → 0.062096 0.214348 |∆I3| → 0.265353 0.214348

µ = 0.01 0 1.772454 1.772453 1.265847 1.265847 0.873694 0.873693

2 1.733125 1.720433 1.172092 1.456451 0.616309 0.683090

4 1.711463 1.706008 1.120066 1.450265 0.541076 0.689276

6 1.731412 1.700567 1.196719 1.451593 0.733945 0.687947

|∆I1| → 0.041042 0.071886 |∆I2| → 0.069128 0.185746 |∆I3| → 0.139749 0.185746

method in Table 14. Further, for p = 4 the results
obtained are reported in Table 15.

Graphics of numerical solutions for various values
of parameter µ are given in Figs. 8 and 9. Break-
ing of solitons can be observed from the Figs. 8
and 9.

5. Conclusion

In this paper, delta-shaped functions combined
with the finite difference and a linearization ap-
proach are used for numerically solving general-
ized regularized long wave equation.

The present method has been tested on four clas-
sic problems and its accuracy has been assessed
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Table 15. Invariants and their comparison for p = 4, N = 400, ∆t = 0.005 and different values of µ

p = 4

Present [24] Present [24] Present [24]

t I1 I1 I2 I2 I3 I3

µ = 0.1 0 1.772454 1.772453 1.378646 1.378645 0.760896 0.760895

2 1.772594 1.772110 1.376700 1.591837 0.474657 0.547703

4 1.772315 1.771702 1.375158 1.588948 0.467131 0.550592

6 1.774090 1.771297 1.381579 1.587779 0.469617 0.551761

|∆I1| → 0.001636 0.001156 |∆I2| → 0.002933 0.209134 |∆I3| → 0.291279 0.209134

µ = 0.05 0 1.772454 1.772453 1.315980 1.315979 0.823561 0.823561

2 1.765624 1.753662 1.293771 1.535874 0.512686 0.603666

4 1.772599 1.741625 1.321959 1.528679 0.551366 0.610862

6 1.755506 1.733910 1.265309 1.523490 0.481081 0.616050

|∆I1| → 0.016948 0.038543 |∆I2| → 0.05067 0.207511 |∆I3| → 0.342480 0.207511

µ = 0.025 0 1.772454 1.772453 1.284647 1.284646 0.854894 0.854894

2 1.789069 1.693029 1.355683 1.482414 0.739884 0.657126

4 1.711672 1.682425 1.133213 1.476250 0.412816 0.663290

6 1.714808 1.674869 1.141655 1.468703 0.409811 0.670837

|∆I1| → 0.057646 0.0975840 |∆I2| → 0.142992 0.184057 |∆I3| → 0.445083 0.184057

µ = 0.01 0 1.772454 1.772453 1.265847 1.265847 0.873694 0.873693

2 1.825320 1.651315 1.464030 1.437490 1.304239 0.702051

4 1.750123 1.644999 1.261045 1.439995 0.843022 0.699545

6 1.761501 1.633634 1.294508 1.431710 0.929302 0.707830

|∆I1| → 0.010953 0.138819 |∆I2| → 0.028661 0.165863 |∆I3| → 0.055608 0.165863
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Figure 8. Numerical solution for p = 3, N = 400, ∆t = 0.005 and different values of µ at t = 6.

by comparing calculated error norms L2, L∞

and invariants I1, I2, I3 with exact values and
with finite element, finite difference and colloca-
tion methods. It is seen that from calculations
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Figure 9. Numerical solution for p = 4, N = 400, ∆t = 0.005 and different values of µ at t = 6.

the invariants are almost constant during numer-
ical simulations and error norms are satisfactorily
good even in less collocation points. The perfor-
mance of the present method indicates that the
present method is competitive with existing meth-
ods such as finite element method, finite difference
and collocation methods. Furthermore, the per-
formance of the present method encourages us to
use the method for other nonlinear partial differ-
ential equations that have applications in various
engineering and scientific fields.
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