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 Conjugate gradient (CG) methods are among the most efficient numerical methods 

for solving unconstrained optimization problems. This is due to their simplicty and  

less computational cost in solving large-scale nonlinear problems. In this paper, 

we proposed some spectral CG methods using the classical CG search direction. 

The proposed methods are applied to real-life problems in regression analysis. 

Their convergence proof was establised under exact line search. Numerical results 

has shown that the proposed methods are efficient and promising.  
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1. Introduction 

The spectral CG methods are among the most efficient 

variant of CG methods designed to solve large-scale 

problems. The methods possess the global convergent 

properties in addition to the sufficient descent 

condition.  Moreso, the spectral CG methods are less 

expensive and  requires less storage location. Some 

outstanding features of the spectral CG method are their 

simplicity in algebraic processes and development of 

computer codes [1]. Spectral CG method is formulated 

by combining the CG search direction and a scalar 

spectral parameter to form a new search direction. 

Birgin and Martinez [2], introduced a spectral CG 

method using standard secant equation [3].   

 

Consider the following minimization problem. 

 

𝑚𝑖𝑛 𝑓(𝑥), 𝑥 ∈ 𝑅𝑛                                 (1) 

 

where 𝑓: 𝑅𝑛  → 𝑅 is continuous and differentiable, g𝑘 

is the gradient of 𝑓(𝑥) and the vector 𝑥0 ∈ 𝑅𝑛 is known 

as the initial point. The CG method are iterative scheme 

of the form 

 

  𝑥𝑘+1 = 𝑥𝑘 + 𝛾𝑘𝑑𝑘  ,       𝑘 = 0,1,2,3,4, …           (2) 

where the vector 𝑥𝑘 is the current iterate,  𝑥𝑘+1 is the 

new iteration point, and 𝛾𝑘 > 0 is the step-dimension 

obtained by the line search method defined as 

 

𝛾𝑘 =  𝑎𝑟𝑔 min
𝛾>0

𝑓(𝑥𝑘 + 𝛾𝑑𝑘)                                (3) 

 

also, 𝑑𝑘 is the classical search direction given as  

 

𝑑𝑘 =  {
−g𝑘 ,                          𝑖𝑓 𝑘 = 0
−g𝑘 + 𝛽𝑘𝑑𝑘−1,       𝑖𝑓 𝑘 ≥ 1

                 (4) 

 

g𝑘 = ∇𝑓(𝑥), is the gradient and the parameter 𝛽𝑘 ∈ 𝑅 

is the CG coefficient that characterizes different CG 

methods. Some known CG coefficients are the Polak-

Ribiére-Polyak (PRP) and Wei-Yao-Liu (WYL) 

methods with formulas as follows.  

 

𝛽𝑘
𝑃𝑅𝑃 =  

g𝑘
𝑇(g𝑘 − g𝑘−1)

‖g𝑘−1‖2
                                      (5) 

 

𝛽𝑘
𝑊𝑌𝐿 =  

g𝑘
𝑇 (g𝑘 −

‖g𝑘‖
‖g𝑘−1‖

g𝑘−1)

‖g𝑘−1‖2
≤  

2‖g𝑘‖2

‖g𝑘−1‖2
          (6) 

 

where g𝑘 and g𝑘−1 are gradient vectors at points  𝑥𝑘 , 

𝑥𝑘−1 respectively, and ‖. ‖ represent the Euclidian 

norm. The PRP method is regarded as the best CG 

method due to its rapid convergence. However, its 

convergence analysis for nonlinear function is 
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uncertain [12]. For further references on the CG and 

spectral CG methods, please refer to [4-14, 20, 26].  

 

In this paper, the spectral PRP and spectral WYL CG 

methods are presented without the secant equation. 

Their performance is verified using the least square and 

trend line methods in regression analysis. The 

regression analysis is an important tool for the analysis 

of statistical data utilized in the field of economics, 

engineering, sciences and many more [15]. The 

analysis is use for forecasting and to comprehend the 

relation between dependent and independent variables 

in real life applications. The dependent variable is 

denoted by 𝑦 and independent is denoted by 𝑥𝑗 for 𝑗 =

1,2,3 … … . , 𝑛, 𝑛 > 0, and 𝑒 is an integer constant in the 

error term. The model is defined by 

 

𝑦 = 𝑙(𝑥𝑗 + 𝑒), 𝑓𝑜𝑟 𝑥𝑗 = 𝑥1, 𝑥2 … . 𝑥𝑛         (7) 

 

and generalized as follows 

 

𝑦 = 𝑢0 + 𝑢1𝑥1 + 𝑢2𝑥2+. . . … . 𝑢𝑛𝑥𝑛 + 𝑒           (8) 

 

where 𝑢0, 𝑢1, 𝑢2, … … . . , 𝑢𝑛 are the parameters for the 

regression analysis. The values of the parameters are 

estimate by using the nonlinear least square method 

defined by  

 

min 𝐸(𝑢) = ∑(𝑦𝑖 − 𝑢0 + 𝑦1𝑥𝑗1 + 𝑦2𝑥𝑗2+. . 𝑦𝑛𝑥𝑗𝑛)2

𝑛

𝑗=1

     (9) 

 

where 𝑦𝑖 is the estimated data of  𝑗𝑡ℎ response and 

𝑥𝑗1, 𝑥𝑗2, . . . … , 𝑥𝑗𝑛  are 𝑛 data evaluation of the response 

variables [16]. The formula for predicting data in 

regression analysis is derive from calculating the 

relative error. However, the error is obtained by 

comparing the approximate value and actual value as 

described below  

 

Relative error = |
Exact Value−Approximate Value

Exact Value
|     (10)             

 

The least square determines the best approximation 

models by comparing the total least square errors. The 

error is defined as 

 

𝐸𝑗 = (𝑢0 + 𝑢1𝑥) − 𝑦𝑗  

 

The strategy of fitting the best line through the data 

would minimize the sum of the residual error squares 

for the data available. This problem is similar to the 

minimization problem in unconstrained optimization 

[17]. Thus, we employ the spectral PRP and WYL CG 

parameter to obtain the solution of the given 

unconstrained optimization problem. 

2. Derivation of spectral CG methods 

Spectral CG method was introduce by [2] with 

direction defined as  𝑑𝑘 = −𝜑𝑘 g𝑘 + 𝛽𝑘𝑠𝑘−1, where 

𝑠𝑘−1 = 𝛾𝑘−1𝑑𝑘−1  and 𝜑𝑘 is a spectral scalar parameter. 

Motivated by the procedure of [5], we proposed the 

following search direction  

 

𝑑𝑘 =  {
 −g𝑘 ,                                      𝑖𝑓 𝑘 = 0

−𝜑𝑘g𝑘 + 𝛽𝑘
𝑃𝑅𝑃𝑑𝑘−1,          𝑖𝑓 𝑘 ≥ 1

      (11) 

 

𝑑𝑘 =  {
−g𝑘 ,                                      𝑖𝑓 𝑘 = 0

−
1

∅𝑘
g𝑘 + 𝛽𝑘

𝑊𝑌𝐿𝑑𝑘−1,         𝑖𝑓 𝑘 ≥ 1
      (12)  

 

From(11), 𝑑𝑘 = −𝜑𝑘g𝑘 + 𝛽𝑘
𝑃𝑅𝑃𝑑𝑘−1    →                 

𝑑𝑘 − 𝛽𝑘
𝑃𝑅𝑃𝑑𝑘−1  = −𝜑𝑘g𝑘. Also,  𝑑𝑘 = −g𝑘,  then 

substituting equation (5) we have,   

 

𝜑𝑘 = 1 − 
g𝑘

𝑇𝑑𝑘−1

g𝑘−1
𝑇 𝑑𝑘−1

                                   (13) 

 

From equation (12),  𝑑𝑘 = −
1

∅𝑘
g𝑘 + 𝛽𝑘

𝑊𝑌𝐿𝑑𝑘−1 which 

is rewritten as 𝑑𝑘 − 𝛽𝑘
𝑊𝑌𝐿𝑑𝑘−1 = −

1

∅𝑘
g𝑘. This 

implies  
1

∅𝑘
=

𝑑𝑘

−g𝑘
+

𝛽𝑘
𝑊𝑌𝐿𝑑𝑘−1

g𝑘
. Substituting (6) in the 

equation, we have 

 

∅𝑘 = (1 −  
2g𝑘

𝑇𝑑𝑘−1

g𝑘−1
𝑇 𝑑𝑘−1

)
−1

                             (14)  

    

Recall that the orthogonality of gradients  g𝑘
𝑇g𝑘−1 = 0 

and thus, 𝜑𝑘 and ∅𝑘 are the new spectral parameters 

computed by exact line search procedure. 

 

Algorithm 1.1 (Spectral CG method) 

 

Step 1: Given a starting point 𝑥0 ∈ 𝑅𝑛 set 𝑘 = 0 

Step 2: Compute 𝛽𝑘 
by (5) and (6) 

Step 3: Compute 𝑑𝑘 by (11) and (12). If ‖g𝑘‖ = 0,  

then stop. 

Step 4: Compute 𝛾𝑘 by (3). 

Step 5: Update the new point by the recurrence  

expression (2). 

Step 6: If 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘) and ‖g𝑘‖ < 𝜀 then 

        stop, otherwise go to step 1 with 𝑘 = 𝑘 + 1. 

 

3. The global convergence analysis of spectral CG 

methods 

The Sufficient descent condition ensures that global 

convergence of iterative procedures or algorithm is 

achieved. Therefore, all CG methods must satisfy the 

following. 

 

g𝑘
𝑇𝑑𝑘 ≤ −𝐶‖g𝑘‖2     𝑓𝑜𝑟 𝑘 ≥ 0 𝑎𝑛𝑑 𝐶 > 0       (15) 

 

 
Theorem 1.1 Suppose a CG method with search 

direction (11) , (12) and  𝛽𝑘
𝑃𝑅𝑃, 𝛽𝑘

𝑊𝑌𝐿given by 

equation (5), (6), then condition (15) holds for 
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all 𝑘 ≥ 0. 

 

Proof. With 𝛽𝑘
𝑃𝑅𝑃 , we proceed by induction, 

since  g0
𝑇𝑑0 = −‖g0‖2, the condition (15) satisfied 

as 𝑘 = 0. Now we assume it is true for 𝑘 ≥ 0. Also, the 

inequality (15) as well hold.  

 

From the search direction (11) multiply both sides by 

g𝑘+1
𝑇  and substitute parameter (13) gives 

 

g𝑘+1
𝑇 𝑑𝑘+1 = − (1 − 

g𝑘
𝑇𝑑𝑘−1

g𝑘−1
𝑇 𝑑𝑘−1

) ‖g𝑘+1‖2

+ 𝛽𝑘
𝑃𝑅𝑃g𝑘+1

𝑇 𝑑𝑘 

 

It is known from the conjugacy conditions g𝑘+1
𝑇 𝑑𝑘 = 0. 

Hence for constant 𝐶 = 1 condition (15) is true for 

 𝑘 + 1. ∎  
 

Proof. With 𝛽𝑘
𝑊𝑌𝐿 , also by induction, since  g0

𝑇𝑑0 =
−‖g0‖2, the condition (15) satisfied as 𝑘 = 0. Now we 

assume it is true for 𝑘 ≥ 0.  

Also, the inequality (15)  hold true, from the search 

direction (12) multiply both sides of the equation by 

g𝑘+1
𝑇  and substitute (14) gives 

 

g𝑘+1
𝑇 𝑑𝑘+1 = − (1 − 

g𝑘
𝑇𝑑𝑘−1

g𝑘−1
𝑇 𝑑𝑘−1

) ‖g𝑘+1‖2

+ 𝛽𝑘
𝑊𝑌𝐿g𝑘+1

𝑇 𝑑𝑘 

 

Therefore, from the conjugacy conditions  g𝑘+1
𝑇 𝑑𝑘 = 0. 

Hence for constant 𝐶 = 1 condition (15) hold for 

 𝑘 + 1. ∎  

 

The following assumptions are needed for the 

convergence analysis of the CG method.  

 

Assumptions 1.1 (i) A level set Ω = {𝑥 ∈ 𝑅𝑛 ∣ 𝑓(𝑥) ≤
𝑓(𝑥0)} is bounded, the function 𝑓 is continuously 

differentiable in a neighborhood 𝑁 of the level set Ω 

and 𝑥0 is a starting point. 

(ii) 𝑔(𝑥) is Lipschitz continuous in 𝑁 that is ∃ a 

constant 𝐿 > 0, such that  ‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ 

for any 𝑥, 𝑦 ∈ 𝑁. 

  

Lemma 1.1 Suppose Assumption 1.1 hold and consider 

any recurrence expression (2) with search direction 

(11) and  (12), 𝛾𝑘 computed using (3). Then 

Zoutendijk condition (16) holds. 

 

∑
(g𝐾

𝑇 𝑑𝑘)2

‖𝑑𝑘‖2

∞

𝑘=0

< ∞                                                 (16) 

 

 

Proof: The proof of this Lemma is given in [18]. 

 

Theorem 1.2 Suppose Assumptions 1.1 hold, for any 

CG sequence  {𝑥𝑘}, {𝑑𝑘} be given as spectral PRP, 

spectral WYL CG methods, 𝛾𝑘 determined by equation 

(3) and 𝛽𝑘 in equation (5) and  (6). Then  

 

lim
𝑘→∞

‖g𝑘‖ = 0                              (17) 

 

Proof. With 𝛽𝑘
𝑃𝑅𝑃 , from the search direction 

(11), square both sides of equation, 

 

(𝑑𝑘+1 + 𝜑𝑘g𝑘+1)2 = (𝛽𝑘
𝑃𝑅𝑃𝑑𝑘)2  

      ‖𝑑𝑘+1‖2 = (𝛽𝑘
𝑃𝑅𝑃)2‖𝑑𝑘‖2 − 2𝜑𝑘g𝑘+1

𝑇 𝑑𝑘+1

− 𝜑𝑘
2‖g𝑘+1‖2                               (18) 

 

Substituting (5) into (18) and recall that 

g𝑘+1
𝑇 𝑑𝑘+1 = −𝐶‖g𝑘+1‖2, rewrite equation (18) 

as 

 ‖𝑑𝑘+1‖2 =
‖g𝑘+1‖4

‖g𝑘‖4
‖𝑑𝑘‖2     

                           −‖g𝑘+1‖2(𝜑𝑘
2 − 2𝐶𝜑𝑘)               (19) 

 

Multiply both sides of equation (19) by  
‖g𝑘+1‖2

‖𝑑𝑘+1‖2 , 

we get 

‖𝑑𝑘+1‖2‖g𝑘+1‖2

‖𝑑𝑘+1‖2
=

‖g𝑘+1‖4

‖𝑑𝑘+1‖2
((2𝐶𝜑𝑘 − 𝜑𝑘

2)

+
‖g𝑘‖4

‖g𝑘−1‖4
‖𝑑𝑘‖2)         (20) 

 

From the theorem 1.1 the value of the constant 

𝐶 = 1 therefore, substituting equation (13) in 

(20) and note that from the conjugacy 

conditions  g𝑘+1
𝑇 𝑑𝑘 = 0 we have, 

 
‖𝑑𝑘+1‖2‖g𝑘+1‖2

‖𝑑𝑘+1‖2
≤

‖g𝑘+1‖4

‖𝑑𝑘+1‖2
                             (21) 

 

Thus, from the Lemma 1.1 above. It implies that 

Theorem 1.2 does not hold true, then lim
𝑘→∞

(g𝑘+1
𝑇 𝑑𝑘+1)

2

‖𝑑𝑘+1‖2 =

∞ and from equation (21) this is true ∞ ≤
‖g𝑘+1‖4

‖𝑑𝑘+1‖2. So 

Theorem 1.2 is true for a sufficient large 𝑘. ∎ 

 
Proof. With 𝛽𝑘

𝑊𝑌𝐿 , from the search direction 

equation (12), square both sides we have, 

(𝑑𝑘+1 +
1

∅𝑘

g𝑘+1)
2

= (𝛽𝑘
𝑊𝑌𝐿𝑑𝑘)2  

       ‖𝑑𝑘+1‖2 = (𝛽𝑘
𝑊𝑌𝐿)2‖𝑑𝑘‖2 −

2

∅𝑘

g𝑘+1
𝑇 𝑑𝑘+1

−
1

∅2
‖g𝑘+1‖2                               (22) 

 

Substituting equation (6) into (22) and recall that 

g𝑘+1
𝑇 𝑑𝑘+1 = −𝐶‖g𝑘+1‖2, rewrite (22) as 

 

‖𝑑𝑘+1‖2 =
4‖g𝑘+1‖4

‖g𝑘‖4
‖𝑑𝑘‖2 +

2𝐶

∅𝑘

‖g𝑘+1‖2

−
1

∅𝑘
2

‖g𝑘+1‖2                           (23) 
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Multiply both sides of  (23) by  
‖g𝑘+1‖2

‖𝑑𝑘+1‖2 , we get 

 

‖𝑑𝑘+1‖2‖g𝑘+1‖2

‖𝑑𝑘+1‖2
=

‖g𝑘+1‖4

‖𝑑𝑘+1‖2
((

2𝐶

∅𝑘

−
1

∅𝑘
2)

+
4‖g𝑘+1‖2

‖g𝑘‖4
‖𝑑𝑘‖2)                  (24) 

From the theorem 1.1 the value of the constant 𝐶 = 1 

therefore, substituting (14) in (24) and note that from 

the conjugacy conditions  g𝑘+1
𝑇 𝑑𝑘 = 0 we equally 

have, 

‖𝑑𝑘+1‖2‖g𝑘+1‖2

‖𝑑𝑘+1‖2
=

‖g𝑘+1‖4

‖𝑑𝑘+1‖2
(1 +

4‖g𝑘+1‖2

‖g𝑘‖4
‖𝑑𝑘‖2) 

‖𝑑𝑘+1‖2‖g𝑘+1‖2

‖𝑑𝑘+1‖2
≤

‖g𝑘+1‖4

‖𝑑𝑘+1‖2
                                  (25) 

 

Thus, from the Lemma 1.1 above. It implies that 

Theorem 1.2 does not hold true, then lim
𝑘→∞

(g𝑘+1
𝑇 𝑑𝑘+1)

2

‖𝑑𝑘+1‖2 =

∞ and from equation (25) this is true ∞ ≤
‖g𝑘+1‖4

‖𝑑𝑘+1‖2. So, 

Theorem 1.2 is true for a sufficient large 𝑘. ∎ 

 

4. Description of the real life application 

In this section, the detailed description of the real-life 

problem considered are in Table 1. These problems 

were obtained from [19]. The approximate function for 

the nonlinear least square method is formed as follows 

 

𝑓(𝑥) = −0.05690476𝑥2  +  0.68404762𝑥 
+  0.13285714 

 

Thus, the function 𝑓(𝑥) is use to approximate the value 

of 𝑦 based on value of 𝑥, that is, the rate of drug abuse 

within the city from year 2009 to 2016. The least square 

method can easily be transformed into unconstrained 

minimization problems as follows  

 

min
𝑥∈𝑅𝑛

𝑓(𝑥) = ∑((𝑢0 + 𝑢1𝑥𝑗 + 𝑢2𝑥𝑗
2) − 𝑦𝑗)2

𝑛

𝑗=1

      (26) 

 

The data set in Table 1 shows the rate of drug abuse 

among the youth with aged 18 to 25 in Kano city, 

Nigeria for the years 2009-2017. The statistical data 

was obtained yearly by the National Drug Law 

enforcement agency (NDLEA), Kano. From the Table 

1, the 𝑥-variable represent the year of the operation 

while the 𝑦-variable represent the rate of drug abuse 

among the youth in the city. For the data fitting, only 

the data from 2009 to 2016 is been considered. The data 

for the year 2017 is reserved for the error analysis.  

Table 1. Rate of Drug Abuse in Kano City for the Year 

2009 to 2017 in Percentage 

 

Number of 

Data (𝑥) Years 

Rate of Drug Abuse 
(𝑦)% 

1 2009 0.78 

2 2010 1.35 

3 2011 1.59 

4 2012 1.88 

5 2013 1.95 

6 2014 2.46 

7 2015 2.26 

8 2016 1.81 

9 2017 1.83 

 

Let the number of data 𝑥𝑗 be the number of years and 

the value 𝑦𝑗 be the rate of drug abuse in percentages. 

Then, the data from 2009 to 2016 are utilized to 

formulate the nonlinear quadratic model for the least 

square method and the corresponding test function of 

unconstrained optimization problem. From the above 

problem, observation reveals that the data 𝑥𝑗  and the 

value of 𝑦𝑗 have parabolic relations with the regression 

function defined by (26) and the regression parameters 

𝑢0, 𝑢1and 𝑢2.  

 

min
𝑥∈𝑅2

∑ 𝐸𝑗
2

𝑛

𝑗=1

= ∑((𝑢0 + 𝑢1𝑥 + 𝑢2𝑥2) − 𝑦𝑗)2

𝑛

𝑗=1

   (27) 

 

Similar transformation of the above least squares 

problem using the data from Table 1 for nonlinear 

quadratic unconstrained minimization model is  

 
𝑓(𝑢0, 𝑢1, 𝑢2) = (8𝑢0 + 36𝑢1 + 204𝑢2 − 14.08)2          (28) 

 

Equation (28) is similar to equation (27). Therefore, 

expanding (28) we have 

 

𝑓(𝑢0, 𝑢1, 𝑢2) = 64𝑢0
2 +  1296𝑢1

2 + 41616𝑢2
2 

+576𝑢0𝑢1 + 3264𝑢0𝑢2 + 14688𝑢1𝑢2 − 225.28𝑢0

− 1013.76𝑢1 − 5744.64𝑢2

+ 198.2464                                    (29) 

 

However, the data for 2017 is excluded from the 

unconstrained optimization function so that it could be 

used to compute the relative errors of the predicted 

data. Therefore, the proposed spectral PRP and WYL 

CG methods are applied to solve the test function using 

exact line search technique. Table 2 and Table 3 shows 

the test results for the spectral PRP, spectral HS, 

spectral WYL and MSCG methods for some selected 

initial point. 
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Table 2. Numerical Results for SPRP, SWYL, MSCG and 

SHS Methods based on CPU Time. 

 

 

Initial value 

           CPU Time 

SPRP SWYL MSCG SHS 

 

 

(-5,-5,-5) 41.3119 49.5704 14.6685 0.00063 

(-1,0,-1) 41.3443 44.2581 4.19763 0 

(11,11,11) 

(-2,-2,-2) 

97.317 

41.3556 

103.905 

50.5668 

5.58880 

4.55623 

0 

0 

Table 3. Numerical Results for SPRP, SWYL, MSCG and 

SHS Methods based on Number of Iterations. 

 

To avoid computing the values of 𝑢0, 𝑢1, 𝑢2 using 

matrix inverse, we employ the Spectral PRP, Spectral 

WYL, SHS and MSCG using four initial points as 

presented in the Table 2 and Table 3. The iteration is 

terminated if the number of iterations exceed 10000 or 

if the method fails to solve a test problem and denoted 

the point of failure as ‘NaN’. The approximation 

functions of the spectral CG methods is given in Table 

4. 

 

Table 4. Approximation Functions for Different Initial Point 

Initial values Methods Approximate Function 

 
SPRP 𝑦 = 0.5243𝑥2 + 31.9303𝑥 − 5 

(-5, -5, -5) SWYL 𝑦 = 0.5243𝑥2 + 31.9303𝑥 − 5 

 
MSCG NaN 

 
SHS NaN 

 
SPRP 𝑦 = 0.2142975𝑥2 + 6.6407718𝑥 − 1 

(-1, 0,-1) SWYL 𝑦 = 0.2142975𝑥2 + 6.6407718𝑥 − 1 

 
MSCG NaN 

 
SHS NaN 

 
SPRP 𝑦 = −0.7754𝑥2 − 69.2073𝑥 + 11 

(11, 11,11) SWYL 𝑦 = −0.7754𝑥2 − 69.2073𝑥 + 11 

 
MSCG NaN 

 
SHS NaN 

 
SPRP 𝑦 = 0.27574716𝑥2 + 12.96824𝑥 − 2 

(-2, -2,-2) SWYL 𝑦 = 0.27574716𝑥2 + 12.96824𝑥 − 2 

 
MSCG NaN 

 
SHS NaN 

4.1. Trend line method  

The rate of drug abuse in Kano city, Nigeria is 

estimated using the least square method and the 

proposed spectral CG methods. The tread line is plotted 

based on the original data from Table 1 using Microsoft 

Excel software. The equation for the trend line is in the 

form of nonlinear quadratic equation. Based on the 

actual data, the index of drug abuse denoted by 𝑦 is 

represented in the 𝑦-axis. The 𝑥-axis represent the year 

and denoted by 𝑥.  

 
Figure 1. Nonlinear Quadratic Trend Line for Rate of  

Drug Abuse in Kano City 

The functions of trend line and least square methods are 

compared with approximation functions obtained from 

the Spectral CG methods presented in Table 4.  

5. Numerical result 

Algorithm 1.1 have been tested on some benchmark 

problems and its performance are compared with 

RSPRP method [10], Wei-Yao-Liu (WYL) method 

[23], and Polak-Ribierre-Polyak (PRP) method [24] 

respectively. The comparisons are based on CPU time 

and number of iterations. The stopping criteria used is  

‖g𝑘‖ < 𝜀 where 𝜀 = 10−6  as suggested by Hillstrom 

[21].  

The set of standard test functions are considered from 

[1] and utilised with four different initial values. The 

codes are written on MatlabR2015 subroutine 

programming and run on an Intel® Core™ i5-3317U 

(1.7GHz with 4 GB (RAM)).  

Table 5 and 6 presents the list of standard test problems 

with dimensions and initial points used to test the 

efficiency of the proposed spectral CG methods. The 

numerical performance of the proposed algorithms is 

presented in Figures 1.2 - 1.5 based on a number of 

iterations and CPU time. The maximum value of the 

percentage of probability 𝑃𝑠(𝑡) and the solver that 

reached the solution point foremost are regarded as the 

best performing CG methods for unconstrained 

optimization problems [25, 27]. 

 

 

 

y = -0.05690476x2 + 0.68404762x + 
0.13285714

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10
R

at
e

Year

Rate of Drug Abuse 

 

            Initial value 

             Number of Iteration 

SPRP SWYL MSCG SHS 

 

 

(-5,-5,-5) 10000 10000 2 0 

(-1,0,-1) 10000 1000 3 NaN 

(11,11,11) 

(-2,-2,-2) 

1000 

1000 

1000 

1000 

2 

2 

NaN 

NaN 
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Table 5. Standard Test Problems functions for Figure 2 and 

Figure 3 

Functions Dimensions Initial Points 

Trecanni 2 (3,3), (7,7), (11,11),  

(15,15) 
Zettl 2 (10,10), (25,25), (100,100),  

(-100,-100) 
Leon 2 (4,4), (-4,-4), (10,10), (-

10,-10) 
Quartic 4 (-3,-3), (5,-5), (15,15), (-

20,-20) 
Wood 4 (3,3), (-3,-3),(14,14),(-14,-

14) 
Hager 4 (2, 2), (10,10), (-10,-

10),(15,15) 
Fletcher  100 (13,13), 

(25,25),(40,40),(49,49) 
Raydan 100 (2,2), (6,6), (8,8), (10,10) 

Gen. Quartic 1000,10000, 

50000,100000 

(3,3), (5,5), (15,15), (-20,-

20) 

Freud. & Roth 4,10,100,500, 

1000,10000, 

50000,100000 

10000,100000 

(2,2), (5,5), (7,7), (-21,-21) 

White and Holst 10,100,1000 
 

(4,4), (-4,-4), (9,9), (-9,-9) 

Shallow 100,1000, 

10000 

(100,100), (200,200), 

 (300,300), (400,400) 

Rosenbrock 2,4,10,100,1000, 

10000,50000, 

100000 

(13,13), (25,25), 

(40,40), (49,49) 

 

Figure 2. Performance outline based on the number of 

iterations 

 

 

From the results obtained, the SPRP and SWYL CG 

methods are able to solve the standard benchmark 

problems as compared to the existing methods used in 

the analysis. Similarly, the data for 2017 are estimated 

using the nonlinear unconstrained optimization model 

in Table 4. and the relative error for each model using 

equation (10) is presented in Table 7. 
 

 

 

 

Table 6. Standard Test Problems functions for Figure 4 and 

Figure 5 
Functions Dimensions Initial Points 

Trecanni 2 (5,5), (8,8), (-11,-11),  (-15,-15) 

Leon 2 (4,4), (-4,-4), (6,6), (-10,-10) 

Extended Penalty 2,4,10,50 (2,2), (-2,-2), (5,5), (-5,-5) 

Power 2,4,50,100 (5,5), (-5,-5), (100,100),(-100,-100) 

Quadratic QF1 10,100,1000, 

10000 

(5,5), (-5,-5), (100,100),(-100,-100) 

Ext. Quadratic 

Penalty QP1 

10,100 (5,5), (-5,-5),  (8,8), (-8,-8) 

Ext. Quadratic 

Penalty QP2 

10,100 (2,2), (6,6), (8,8), (10,10) 

Himmelblau 10000 (2,2), (-2,-2), (25,25), (-25,-25) 

Freud. & Roth 2,4,10,100,1000, 

10000 

(7,7), (11,11), (13,13), (25,25) 

White and Holst 2,4,10,100,1000, 

10000 

(2,2), (5,5), (9,9), (-9,-9) 

Shallow 2,4,10,100,1000, 

10000 

(100,100), (200,200), 

 (400,400), (500,500) 

Rosenbrock 2,4,10,100,1000, 

10000 

(5,5), (13,13),  

(20,20), (40,40) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 3. Performance outline based on CPU 

time 
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Figure 4. Performance outline based on the number of 

iterations 
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Figure 5. Performance outline based on CPU time 

 

 
Table 7. Estimation Point and Relative Errors for 2017 Data 

Models Estimation Point Relative Error 

SPRP 1.130602014195 0.3821846916967 

SWYL 1.130602014195 0.3821846916967 

MSCG NaN NaN 

SHS NaN NaN 

Least Square 0.1686095216 0.907863649398907 

Trend line 0.1686095216 0.907863649398907 

 

The efficiency of each method is measure by equation 

(9). All the computations are carried out using 

Microsoft Excel 2016 and MATLAB 2015a subroutine 

programme. The model with the smallest relative error 

is considered the best model that estimate the rate of 

drug abuse in Kano city for the year 2017. 

6. Conclusion 

This paper focuses on the application of the spectral CG 

methods for unconstrained optimization. The proposed 

methods are compared with the classical WYL, PRP, 

least square and Trend line methods. The sum of 

relative error for the proposed spectral CG methods are 

computed based on four categories of initial values and 

three set of real numbers for nonlinear quadratic model. 

From the Table 7, the average relative error for the 

predicted data against the actual data 1.83 are 

calculated. The relative error for the data generated 

from nonlinear quadratic models of spectral PRP and 

spectral WYL methods are smaller compared to the 

least square and trend line models, which is around 

0.3821846916967. The smallest relative error signifies 

the success of the spectral CG methods.  
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