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 One of the most significant problems in fuzzy set theory is solving fuzzy nonlinear 

equations. Numerous researches have been done on numerical methods for solving 

these problems, but numerical investigation indicates that most of the methods are 

computationally expensive due to computing and storage of Jacobian or 

approximate Jacobian at every iteration. This paper presents the Shamanskii 

algorithm, a variant of Newton method for solving nonlinear equation with fuzzy 

variables. The algorithm begins with Newton’s step at first iteration, followed by 

several Chord steps thereby reducing the high cost of Jacobian or approximate 

Jacobian evaluation during the iteration process. The fuzzy coefficients of the 

nonlinear systems are parameterized before applying the proposed algorithm to 

obtain their solutions. Preliminary results of some benchmark problems and 

comparisons with existing methods show that the proposed method is promising. 
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1. Introduction 

Nonlinear systems have played important role in 

solving problems arising from numerous areas of 

application which include, engineering, medicine, 

social sciences.  However, the parameters of these 

systems are often in the form of fuzzy numbers (FN). 

Thus, the result rely on solutions of fuzzy equation [1]. 

The notion of fuzzy numbers (FN) was first presented 

by Zadeh [2]. Some standard analytical procedures of 

Buckley and Qu [3], [4], are only suitable for the linear 

and quadratic case of nonlinear equations. For any 

equations of the form; 

(1). 𝑎𝑦3 + 𝑏𝑦2 + 𝑐𝑦 − 𝑑 = 𝑒 
(2). 𝑎𝑒𝑦 + 𝑏 = 𝑑 

where 𝑦, 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are fuzzy numbers. Because 

the standard analytical techniques are unable to solve 

fuzzy nonlinear equations (FNE), numerical methods to 

obtain the solution of the problems are important. At 

this point, two propensity are seemingly visible. Firstly, 

we witness augmenting classical and existing 

numerical approaches, which are often well 

established, by applying them to obtain the solution of 

FNE. The aim is to provide the existing methods with 

insight and new functionalities of the subsequent 

system. Secondly, this is the focus of recent researches, 

by looking at the trend of real treatment of previous 

 

 problems, we can substantially reformulate thereby 

coming up with new solution methods in a fully 

innovative fashion for solving fuzzy nonlinear 

equations.  

Most numerical methods considered requires the 

computation and storage of either Jacobian or 

approximate Jacobian at every iteration. For example, 

after parameterizing the fuzzy quantities, Newton’s 

approach [1] was employed to solve the corresponding 

FNE.  Newton’s method is known to convergence 

rapidly when starting with an initial guess that is chosen 

near the solution point [5]. The disadvantage of this 

scheme is computing and inverting of the Jacobian at 

each step of the iteration. Likewise, Quasi Newton’s 

technique [8] was applied to obtain the root of FNE. 

This technique requires the storage of approximate 

Jacobian at every iteration. Also, the Chord Newton’s 

method [6] was proposed for computing the root of dual 

FNE. However, the Chord technique also needs the 

computation of Jacobian either at first iteration or after 

few iterations. Recently, Regula Falsi method [7] was 

applied to solve FNE. This technique is the simplest 

and the most reliable one among bracketing approaches 

for finding the root of nonlinear equations. However, it 

has a poor rate of convergence due to lack of derivative 

information.  
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To overcome some of these drawbacks, Shamanskii 

method [8] was applied to obtain the solution of FNE. 

This scheme starts by computing the first iterates using 

the Newton step, and subsequently, computes the 

Chord steps in other iterations. The reason is to reduce 

the cost of computing the Jacobian at all iteration, just 

like in other numerical methods. Also, for nonsingular 

Jacobian and the initial points chosen near the solution 

point, then, the proposed Shamanskii scheme will 

converge q-superlinearly [9]. 
 

The remaining part of this article will contain the 

following. In the next section, we present preliminary 

discussions on fuzzy operations. Section 3 describes the 

derivation process of Shamanskii scheme for solution 

of nonlinear equation. In section 4, we present the 

proposed Shamanskii method for solution of FNE. 

Results of some examples are presented in section 5. 

Finally, concluded in section 6. 

2. Preliminaries 

Some useful results are defined as below. 

 

Definition 2.1. A fuzzy number can be defined as a set 

ℎ:ℝ → 𝐼 = [0,1] satisfying the below criteria [10] 

 

1. ℎ is upper semi-continuous 

2. ℎ(𝑥) = 0 outside some interval [𝑐, 𝑑] 
3. there exist 𝑎, 𝑏 ∈ ℝ such that 𝑐 ≤ 𝑎 ≤ 𝑏 ≤ 𝑑 and 

     3.1 ℎ(𝑥) is increasing monotonically on  [𝑐, 𝑎] 
     3.2 ℎ(𝑥) is decreasing monotonically on [𝑏, 𝑑] 
     3.3 ℎ(𝑥) = 1, 𝑎 ≤ 𝑥 ≤ 𝑏 

 

In the rest of the paper, we shall use the symbol 𝐸 to 

denote the set of all fuzzy numbers whose parametric 

form is defined in [10, 11]. 

 

Definition 2.2. ℎ:ℝ → 𝐼 = [0,1] in parametric form 

refer to the pair (ℎ, ℎ) of ℎ(∝), ℎ(∝), 0 ≤∝≤ 1 

satisfying [10, 12], 

 

(1) ℎ(∝)  is an increasing left continuous function that 

is monotonically bounded. 

 (2) ℎ(∝) is a decreasing right continuous function that 

is monotonically bounded. 

 (3) ℎ(∝) ≤ ℎ(∝), 0 ≤∝≤ 1. 

 

Definition 2.3. A classical Fuzzy number ℎ refers to the 

Triangular number ℎ = (𝑎, 𝑏, 𝑐) given as follows 

ℎ(𝑥) =  

{
 
 

 
 (𝑥 − 𝑎)

(𝑐 − 𝑎)
, 𝑎 ≤ 𝑥 ≤ 𝑐,

(𝑥 − 𝑏)

(𝑐 − 𝑏)
, 𝑐 ≤ 𝑥 ≤ 𝑏,

    

 

with ℎ(𝑥) known as the membership function and 𝑐 ≠
𝑎, 𝑐 ≠ 𝑏 [1], [9]. This function can be written in its 

parameterized form as follows 

 

  ℎ(∝) = 𝑏 + (𝑐 − 𝑏) ∝,   
ℎ(∝) = 𝑎 + (𝑐 − 𝑎) ∝. 

 

Assume 𝑇𝐹(ℝ) denotes the set of all trapezoidal fuzzy 

number. The operation of scalar multiplication and 

addition can be extended to fuzzy number using the 

extension principle given below [1].  

 

Let ℎ = (ℎ, ℎ), 𝑔 = (𝑔, 𝑔), with 𝑘 > 0, the addition 

(𝑢 + 𝑣) and multiplication by scalar 𝑘 are defined as 

 

( 𝑔 + ℎ)(∝) =  𝑔(∝) + ℎ(∝), 

(𝑔 + ℎ) (∝) = 𝑔(∝) + ℎ(∝),  

( 𝑘𝑔)(∝) =  𝑘𝑔(∝), 

(𝑘𝑔)(∝) = 𝑘𝑔(∝). 

 

For more references on properties of fuzzy set, please 

refer to [13, 14]. 

3. Shamanskii method for nonlinear equations 

Consider the following nonlinear equation 

 

                         𝐹(𝑥) = 0                                              (1) 

 

Systems of the form (1) are often solved by Newton’s 

type methods. Starting with an initial guess 𝑥𝑐, we 

obtain the new iterate say 𝑥+, by computing 𝐹(𝑥𝑐). 
Then check the stopping criteria either to terminate or 

proceed with the iteration. If one is to proceed, then one 

must compute and factored the Jacobian matrix  𝐹′(𝑥𝑐)  
to enable one to compute the step as the solution of 

𝐹′(𝑥𝑐)𝑠 = −𝐹(𝑥𝑐).  
 

Newton’s method updates the new iterate as  

 

                     𝑥+ = 𝑥𝑐 − 𝐹′(𝑥𝑐)
−1𝐹(𝑥𝑐)                          (2) 

 

which will converge quadratically to 𝑥∗ if the starting 

guess 𝑥𝑐 is suitably chosen close to 𝑥∗and 𝐹′(𝑥∗)  is 

nonsingular [15]. However, computing and storage of 

the Jacobian at every iteration are very expensive and 

time-consuming. A variation of this method that almost 

entirely overcame the drawback of this method is the 

Chord method which only computes 𝐹′(𝑥0). The 

iterates are defined as follows.  

 

                          𝑥+ = 𝑥𝑐 − 𝐹′(𝑥0)
−1𝐹(𝑥𝑐)                  (3) 

 

In the case of a finite-dimensional problem, the 

Jacobian matrix would be factored only once and 

thereby reducing the computational cost of each 

iteration. This degrades the convergence rate to linear 

[15, 16]. In fact, if the 𝑥0 is chosen close to 𝑥∗and 

𝐹′(𝑥∗)    is nonsingular, then for some constant 𝐾𝑐 > 0, 

we have 

 

              ‖𝑥𝑛+1 − 𝑥
∗‖ ≤ 𝐾𝑐‖𝑥0 − 𝑥

∗‖‖𝑥𝑛 − 𝑥
∗‖       (4)
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This, however, improves the convergence rate as the 

initial guess increase. Motivated by the idea, a method 

due originally to Shamanski [8] that lies between 

Chord-Newton and Newton’s methods was proposed 

and has been analyzed in [16]. The Shamanskii method 

moves through an intermediate sequence says 

{𝑊𝑘,𝑝}𝑝=1
𝑚

, that is, one Newton’s iterate and subsequent 

iterates are computed using the Chord steps [9], [17]. 

The convergence analysis of the considered 

Shamanskii scheme has been established.  

 

Theorem 1 [18]. Suppose 𝐹: 𝐷 ⊂ 𝑅𝑛 → 𝑅𝑛 conform to 

hypotheses 𝐻1(2), 𝐻2, and 𝐻3. Then, the solution 

point 𝑥∗ is referred to the attraction point of the 

Shamanskii process defined in (7) with at least 𝑚+ 1 order 

of convergence. 

4. Shamanskii method (SM) for solving fuzzy 

nonlinear equations 

Consider the following: 

                            𝐹(𝑥) = 𝑐                                       (5)                   

Starting with an initial approximation 𝑥0, the 

Shamanskii scheme uses the multiple pseudo-Newton 

approaches as described below.  

𝑥
𝑘+

1
2
= 𝑥𝑘 − 𝐹′(𝑥𝑘)

−1𝐹(𝑥𝑘)   

𝑥𝑘+1 = 𝑥𝑘+1
2
− 𝐹′(𝑥𝑘)

−1𝐹(𝑥
𝑘+

1
2
) 

 

  

Parameterizing the fuzzy equation (5), we have; 

  

            {
𝐹 (𝑥, 𝑥, 𝑟) =  𝑐(𝑟),

𝐹(𝑥, 𝑥, 𝑟) =   𝑐(𝑟).
     0 ≤ 𝑟 ≤ 1                (6)          

                

To obtain the solution of the above equation, we 

generate sequence {𝑥𝑘} that converge to the solution 

points 𝑥∗ via the Algorithm 1 below. 

 

Algorithm 1: Shamanskii algorithm for FNE  

Step 1: Given the FNE in parameterized form 

Step 2: Obtain  𝐹(𝑥𝑘) and 𝐹(𝑥
𝑘+

1

2

) 

Step 3: Compute 𝑥
𝑘+

1

2

= 𝑥𝑘 − 𝐹′(𝑥𝑘)
−1𝐹(𝑥𝑘) 

Step 4: Set 𝑥𝑘+1 = 𝑥
𝑘+

1

2

− 𝐹′(𝑥𝑘)
−1𝐹(𝑥

𝑘+
1

2

) 

Step 5: Update 𝑥𝑘+1 = 

 

𝑥𝑘 − 𝐹′(𝑥𝑘)
−1[𝐹(𝑥𝑘) + 𝐹(𝑥𝑘 − 𝐹′(𝑥𝑘)

−1𝐹(𝑥𝑘))] 

 

Step 6: Continue the process with the next 𝑘 until 

tolerance conditions 𝜖 ≤ 10−4 are achieved. 

Note that for 𝑚 = 1, the method reduces to the 

Newton’s method, while for 𝑚 = ∞, we have chord 

method [3]. 

 

 

 

Remark 

The sequence {𝑥𝑘 , �̅�𝑘}𝑘=0
∞

converges to (𝜆, 𝜆̅, ) iff ∀𝑟 ∈

[0,1]  

                           lim
𝑘→∞

(𝑥(𝑟)) = 𝜆(𝑟)                        (7)                   

and  

                          lim
𝑘→∞

(�̅�(𝑟)) = 𝜆̅(𝑟).                                 (8)  

 

5. Numerical results 

This section presents results to illustrates the 

Shamanskii method based on number of iterations for 

FNE. Results of three examples show the efficiency of 

the proposed method. All algorithm is coded on 

MATLAB 7.0 (R2013) subroutine programming. The 

CPU processor used was Intel® corei5-2410M. The 

problems considered are from [1], [19], [20].   

 

Example 1. Consider the FNE 

 

(4,6,8)𝑥2 + (2,3,4)𝑥 − (8,12,16) = (5,6,7)  
 

Without loss of generality (WLOG), let 𝑥 be positive, 

we define the parameterized equations as follows. 

 

(4 + 2𝑟)𝑥2(𝑟) + (2 + 𝑟)𝑥(𝑟) − (3 + 3𝑟) 

(8 − 2𝑟)𝑥
2
(𝑟) + (4 − 𝑟)𝑥(𝑟) − (9 − 3𝑟) 

For the initial point, we compute for  𝑟 = 0 and 𝑟 = 1. 

For 𝑟 = 0, we have 

 

4𝑥2(0) + 2𝑥(0) = 3

8𝑥
2
(0) + 4𝑥(0) = 9

  

 

and for  𝑟 = 1 

    
6𝑥2(1) + 3𝑥(1) = 6,

6𝑥
2
(1) + 3𝑥(1) = 6

 

 

Thus, 𝑥(0) = 0.6514, 𝑥(0) = 0.8397, and 𝑥(1) =

 𝑥(1) = 0.7808, which are near to the exact solution. 

Therefore, we set as 𝑥0 = (0.6,0.8,0.9).  The desired 

results obtained by the proposed method and other 

existing methods used for comparison are given in 

Table 1. With an error less than 10−4, we obtain.  

 
Table 1. Performance Comparison for Problem 1 

Methods Number of 

Iterations 

Newton’s Method 2 

Chord Method 4 

Shamanskii Method 3 

 

See Figure 1 for details description of the solution. 
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Figure 1. Solution of Shamanskii method for Problem 1 

 

Example 2. Consider the FNE 

 

(3,3,4,5)𝑥2 + (1,2,3) = (1,1,2,3)  
 

WLOG, let 𝑥 be positive, we define the parameterized 

equations as follows 

 

(3 + 𝑟)𝑥2(𝑟) + (1 + 𝑟)𝑥(𝑟) = (1 + 𝑟) 

(5 − 𝑟)𝑥
2
(𝑟) + (3 − 𝑟)𝑥(𝑟) = (3 − 𝑟) 

For the starting point, we solve the above equations for   

 

𝑟 = 0, which gives 

      

3𝑥2(0) + 𝑥(0) − 1 = 0

5𝑥
2
(0) + 𝑥(0) − 3 = 0

  

 

and for  𝑟 = 1 

    
4𝑥2(1) + 2𝑥(1) − 2 = 0,

4𝑥
2
(1) + 2𝑥(1) − 2 = 0

 

 

Thus, we have 𝑥(0) = 0.4343, 𝑥(0) = 0.5307, and 

𝑥(1) =  𝑥(1) = 0.5000, which is near the solution. 

Hence, to demonstrate the efficiency of the method, we 

defined a new initial point 𝑥0 = (0.4,0.5,0.6). The 

desired results obtained by the proposed method and 

other existing methods used for comparison are given 

in Table 2. With an error less than 10−4, we obtain.  

 
Table 2. Performance Comparison for Problem 2 

Methods Number of 

Iterations 

Newton’s Method 2 

Chord Method 4 

Shamanskii Method 2 

 

See Figure 2 for details of the solution. 

 
Figure 2. Solution of Shamanskii method for Problem 2. 

 

Example 3.  

Suppose an establishment wishes to invest around one 

million dollars (𝐾 = 1, 0.2, 0.2) at interest rate 𝑅 so 

that after one calendar year they would be likely to 

withdraw approximately 250,000 dollars (𝑆1 =
0.25, 0.02, 0.05) and after the second year, the 

amount that is left will accrue to about 900,000 

dollars (𝑆2 = 0.9, 0.3, 0.3). Find the rate 𝑅 so 

that A can enough to cover about 𝑆1 and 𝑆2. The 

rate 𝑅 will be a FN with its support in [0, 1]. 
 

Solution. 

At the end of the first year, the amount in the 

corporation’s account would be  

𝐾 + 𝐾𝑅 

Also, after withdrawing the amount 𝑆1, the amount at 

the beginning of the second year would be 

𝐾 − 𝑆1 + 𝐴𝑅 

 

At the end of the second year, the accrued amount is  

 
[(𝐾 − 𝑆1) + 𝐾𝑅] + [(𝐾 − 𝑆1) + 𝐾𝑅]𝑅 

which can be rewritten as 

𝐾𝑅2 + 𝐵𝑅 + 𝐷, 
where 𝐵 = 2𝐾 − 𝑆1 and 𝐷 = 𝐾 − 𝑆1. Thus, 

 

𝐾𝑅2 + 𝐾𝑅 + 𝐷 = 𝑆2, 
via substitution, we get 

 

(1, 0.2, 0.2)𝑅2 + (1.75, 0.45, 0.45)𝑅 

+(0.75, 0.25, 0.25) = (0.9, 0.3, 0.3) 
 

Suppose 𝑅 is positive, without loss of generality, the 

above equations are transformed into its parametric 

form as follows 
(0.8 + 0.2𝑟)𝑅2(𝑟) + (1.3 + 0.45𝑟)𝑅(𝑟)

− (0.1 +  0.05𝑟) = 0 

(1.2 − 0.2𝑟)�̅�2(𝑟) + (2.2 − 0.45𝑟)�̅�(𝑟)
− (0.2 −  0.05𝑟) = 0 

 

For the starting point, we compute for 𝑟 = 0 and 𝑟 = 1.  

For 𝑟 = 0 

{
0.8𝑅2(0) + 1.3𝑅(0) − 0.1 = 0.

1.2�̅�2(0) + 2.2�̅�(0) − 0.2 = 0.
 

0.65 0.7 0.75 0.8 0.85
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

x1

x2

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

x1

x2
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and for 𝑟 = 1 

{
𝑅2(1) + 1.75𝑅(1) − 0.15 = 0.

�̅�2(1) + 1.75�̅�(1) − 0.15 = 0.
 

 

Thus, we have 𝑅(0) = 0.07359, �̅�(0) = 0.08680, and 

𝑅(1) = �̅�(1) = 0.08188. Suppose 𝑅 is negative, we 

have 𝑅(0) = −1.69859, �̅�(0) = −1.92013. By 

definition, 𝑅(𝑟) ≤ �̅�(𝑟), ∀𝑟 ∈ [0,1]. This has shown 

that negative root of the solution does not exist. For the 

initial guess, we consider the fuzzy number. 

 

𝑅 = (𝑅(0), 𝑅(1)�̅�(0)) 

= (0.07359, 0.08188, 0.08680) 
 

Thus, the starting point is 𝑥0 = (0.07359, 0.08680). 
The desired results obtained by the proposed method 

and other Newton-type methods are given in Table 3. 

With an error less than 10−4, we obtain.  

 
Table 3. Performance Comparison for Problem 3 

Methods Number of 

Iterations 

Newton’s Method 3 

Chord Method 4 

Shamanskii Method 3 

 

For detailed exact solution of problem 3, please refer to 

Table 4 and Figure 3. 

 

Table 4. Solution of Problem 3 for (𝑥𝑛(𝑟), 𝑥𝑛(𝑟)) 

𝑟 𝑥𝑛(𝑟) 𝑥𝑛(𝑟) 

0 0.0735904299 0.0867995482 

0.1 0.0746678539 0.0863997233 

0.2 0.0756758682 0.0859829574 

0.3 0.0766209975 0.0857378114 

0.4 0.0775089705 0.0850940961 

0.5 0.0783448379 0.0846194916 

0.6 0.0791330704 0.0841229037 

0.7 0.0798776402 0.0836027651 

0.8 0.0805820880 0.0830573558 

0.9 0.0812495809 0.0824847832 

1.0 0.0818829605 0.0818829605 

 

 

 
Figure 3. Solution of Shamanskii method for Problem 3. 

 

 

6. Conclusion and recommendations 

Recently, numerous studies have been done on 

computationally efficient numerical algorithms for the 

solution of FNE. Most of these methods are Newton-

type methods that require the computation and storage 

of Jacobian or approximate Jacobian matrix at each 

iteration which are usually challenging and time-

consuming. This paper observes the behavior of 

existing numerical algorithms for solving different 

fuzzy nonlinear problems and further, proposed the 

Shamanskii approach to overcome these drawbacks. 

The Shamanskii algorithm starts by computing 

Newton’s step, followed by several Chord steps.  The 

technique was able to save a lot of the computational 

burdens of the Jacobian matrix at every iteration. 
Preliminary results presented show that the proposed 

method is very competitive when compared to the 

classical Newton and Chord methods with superlinear 

convergence rate. This implies that the proposed 

method can be used as an alternative for solution of 

fuzzy nonlinear equations.  

Recent studies focus on application of conjugate 

gradient method to real-life situation [21]. This 

approach can also be extended to solve fuzzy nonlinear 

equations.  

Acknowledgments 

The authors would like to extend their appreciations to 

all anonymous reviewers for their valuable suggestions 

and comments. 

References 

[1] Abbasbandy, S., & Asady, B. (2004). Newton 

Method for solving fuzzy nonlinear equations. 

Applied Mathematics and Computation, 159, 349 – 

356. 

[2] Zadeh, L.A. (1965). Fuzzy sets. Information and 

Control 8, 338-353. 

[3] Buckley J.J., & Qu Y.  (1991). Solving fuzzy 

equations: a new solution concept” Fuzzy Set and 

Systems, 39, 291- 301.  

[4] Buckley J.J., & Qu Y. (1990). Solving linear and 

quadratic fuzzy equations. Fuzzy Sets and Systems 

38, 43 - 59.  

[5] Chong, E. K. P., & Zak, S. H. (2013). An 

introduction to optimization, Wiley series in discrete 

mathematics and optimization. 

[6] Waziri M.Y., & Moyi A. (2016). An alternative 

approach for solving dual fuzzy nonlinear equations. 

International Journal of Fuzzy Systems, 18, 103 – 

107.  

[7] Sulaiman, I. M, Mamat, M, Waziri, M. Y, Fadhilah, 

A, & Kamfa, U. K. (2016). Regula Falsi Method for 

Solving Fuzzy Nonlinear Equation. Far East 

Journal of Math Sci 100(6), 873-884. 

[8] Shamanskii, V.E. (1967). “A modification of 

Newton's method” Ukrain. Mat. Zh. 19, 133-138. 

[9] Kelley C. T. (1995). Iterative Methods for Linear 

and Nonlinear Equations. SIAM, Philadelphia. 

0.072 0.074 0.076 0.078 0.08 0.082 0.084 0.086 0.088
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



29                       I. M.  Sulaiman, M. Mamat, P. L. Ghazali  / IJOCTA, Vol.11, No.1, pp.24-29 (2021) 

[10] Dubois, D., & Prade, H. (1980). Fuzzy Sets and 

Systems. Theory and Application, Academic Press, 

New York, NY, USA. 

[11] Goetschel, R., & Voxman, J.W.  (1986). Elementary 

fuzzy calculus,” Fuzzy set and Systems, 18, 31-43. 

[12] Zimmermann H. J. (1991).  Fuzzy Set Theory and its 

Applications. Third ed., Kluwer Academic, Norwell, 

MA. 

[13] Hulya, G. C. (2018). On the exact and the 

approximate solutions of second-order fuzzy initial 

value problems with constant coefficients. Malaya 

Journal of Matematik, 6(1), 61-68. 

[14] Hulya, G. C. (2019). Comparisons of the exact and 

the approximate solutions of second-order fuzzy 

linear boundary value problems. Miskolc 

Mathematical Note, 20(2), 823–837. 

[15] Kelley C. T. (1986). A Shamanskii-Like 

Acceleration Scheme for Nonlinear Equations at 

Singular Roots. Mathematics of Computation, 47, 

609-623. 

[16] Traub, J. F. (1964). Iterative Methods for the 

Solution of Equations. Prentice Hall, Englewood 

Cliffs, NJ. 

[17] Sulaiman, I..M. (2018). New iterative methods for 

solving fuzzy and dual fuzzy nonlinear equations. 

PhD Thesis. Universiti Sultan Zainal Abidin, 

Malaysia 

[18] Kchouk B, & Dussault J. (2013). The Chebyshev–

Shamanskii Method for Solving Systems of 

Nonlinear Equations. J Optim Theory Appl 157. 

148–167. 

[19] Amirah, R., Lazim, M., & Mamat, M.  (2010). 

Broyden’s method for solving Fuzzy nonlinear 

equations. Advances in fuzzy system, Article ID 

763270, 6 pages. 

[20] Otadi, M., & Mosleh, M. (2011). Solution of 

fuzzy equations by adomian decomposition 

Method. Soft Computes. 15: 187-192. 
[21] Sulaiman, I. M. Yakubu, A. U. & Mamat, M.  

(2020). Application of Spectral Conjugate Gradient 

Methods for Solving Unconstrained Optimization 

Problems. An International Journal of Optimization 

and Control: Theories & Applications. (Accepted 

Manuscript). 

 

 
Ibrahim Sulaiman Mohammed is currently a post-doctoral 

researcher at Faculty of informatics and computing, 

Universiti Sultan Zainal Abidin (UniSZA), Malaysia from 

2019 till date. He obtained his PhD from UniSZA in 2018 

specializing in the field of fuzzy systems. His research interest 

includes Numerical research, Fuzzy nonlinear systems, 

unconstrained optimization. 

 http://orcid.org/0000-0001-5246-6636  

 
Mustafa Mamat is currently a Professor of Computational 

and Applied Mathematics at Universiti Sultan Zainal Abidin 

(UniSZA), Malaysia since 2013. He obtained his PhD from 

UMT in 2007 specialization in optimization field. To date, he 

has successfully supervised more than 70 postgraduate 

students and published more than 260 research papers in 

various international journals and conferences. His research 

interest includes unconstrained optimization such as 

conjugate gradient methods and chaotic systems. Currently, 

he is the Editor in Chief for Malaysian Journal of Computing 

and Applied Mathematics (a UniSZA journal in applied 

science) and an editor for Indonesian Journal of Science and 

Technology.  

 https://orcid.org/0000-0002-4802-3733  

 
Puspa Liza Ghazali is currently an Associate Professor of 

Business and Management at Universiti Sultan Zainal Abidin 

(UniSZA), Malaysia since 2018. She obtained her PhD from 

Universiti Malaysia Terengganu (UMT) in 2013 

specialization in Financial Mathematics. Her research 

interest includes Financial Mathematics, Islamic Insurance, 

Insurance, Mathematical Science, Statistical Modelling and 

optimization.  Currently, she is the one of the Editorial Board 

in Journal of Management Theory and Practice (a UniSZA 

journal in Management). 

 https://orcid.org/0000-0002-4039-1865   

 

 

 

 
An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr) 

 

 
 

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of the 

copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, 

so long as the original authors and source are credited. To see the complete license contents, please visit 

http://creativecommons.org/licenses/by/4.0/.  

http://orcid.org/0000-0001-5246-6636
https://orcid.org/0000-0002-4802-3733
https://orcid.org/0000-0002-4039-1865
http://ijocta.balikesir.edu.tr/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

