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The analytical solution of the longitudinal wave equation in the MEE circular
rod is analyzed by the powerful sine-Gordon expansion method. Sine - Gordon
expansion is based on the well-known wave transformation and sine - Gordon
equation. In the longitudinal wave equation in mathematical physics, the trans-
verse Poisson MEE circular rod is caused by the dispersion. Some solutions
with complex, hyperbolic and trigonometric functions have been successfully
implemented. Numerical simulations of all solutions are given by selecting the
appropriate parameter values. The physical meaning of the analytical solution
explaining some practical physical problems is given.
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1. Introduction

Innovative analytical new solutions for non-linear
evolution equations (NEEs) has very important
role in area of non-linear physics. Non-linear evo-
lution equations are often used to state complex
models that appear in different areas of non-linear
science, such as biological sciences, quantum me-
chanics, and plasma physics. Recently, differ-
ent analytical techniques have been invested to
search new types of solutions. NLEs such as the

new general algebra method [1], the tan(F (ξ)
2 )-

expansion method [2], the extended tanh method
[3], the jacobi elliptic function method [4], the
homogeneous balance method [5], the generalized

Kudryashov method [6], the generalized (G
′

/G)
method [7], the extended homoclinic test function
method [8], the improved Bernoulli sub-equation
function method [9], the improved exp (−Φ(ξ))-
expansion function method [10] and so on. In
general, many more analytical techniques have
been designed and used in obtaining analytical
solutions of different NLEs [11–22]. Authors of

[23–28] obtained new lump and interaction for
some of models in which arise in applied sciences.
Moreover, Manafian and co-authors [29, 30] used
the analytical methods for getting to exact solu-
tions.

The powerful sine-Gordon expansion method
(SGEM) [31, 32] was used to find some new so-
lution methods to the longitudinal wave equation
of the magneto-electro-elastic (MEE) circular rod
[33] in this study. The longitudinal wave equation
of the MEE circular rod is developed by [33], the
longitudinal wave equation is a dispersion equa-
tion caused by the transverse Poisson’s effect in
MEE circular rod, developed from [34];

utt − q2uxx −
(q

2
u2 + putt

)

xx
= 0, (1)

where p is the dispersion parameter and q is
the linear longitudinal wave velocity of the MEE
circular rod which depend on material proper-
ties and rod geometry [34]. Different analytical
methods have been put in place to find solutions
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to the longitudinal wave equation in magneto-
electro-elastic MEE circular rod, like the im-
proved (G

′

/G)-expansion method [35], the func-
tional variable method [36],the ansatz method
[37], etc.

2. The SGEM

The general cases of SGEM was given in this sec-
tion,

Take into account the following sine-Gordon equa-
tion [38], [39]:

uxx − utt = n2sin(u). (2)

where u = u(x, t) and n ∈ R \ {0}.
Using the wave transformation u = u(x, t) =
U(β), β = α(x − kt) on Eq. (2), following non-
linear ordinary differential equation (NODE) was
gotten as:

U
′′

=
n2

α2(1− k2)
sin(U), (3)

as U = U(β), the amplitude of the traveling wave
is β and k is the speed of the traveling wave. To
integrate the equation (3), we get the following
equation:

[

(U

2

)′
]2

=
n2

α2(1− k2)
sin2

(U

2

)

+Q, (4)

as the integral constant is Q .

Set Q = 0, φ(β) = U
2 and b2 = n2

α2(1−k2)
in Eq.

(4), gives:

φ
′

= bsin(φ), (5)

inserting b = 1 into Eq. (5), produces:

φ
′

= sin(φ), (6)

simplifying Eq. (6), creates the following two im-
portant equations;

sin(φ) = sin(φ(β)) =
2deβ

d2e2β + 1

∣

∣

∣

∣

∣

d=1

= sech(β),

(7)

cos(φ) = cos(φ(β)) =
d2e2β − 1

d2e2β + 1

∣

∣

∣

∣

∣

d=1

= tanh(β),

(8)

as the integral constant is d .

For the given non-linear partial differential equa-
tion Eq. (9);

P (u, uux, u
2ut, . . .), (9)

its solution in the form as;

U(β) =
m
∑

i=1

tanhi−1(β)
[

Bisech(β)+Aitanh(β)
]

+A0.

(10)

Equation (10) may be given according to Eq. (7)
and (8) as;

U(φ) =

m
∑

i=1

cosi−1(φ)
[

Bisin(φ) +Aicos(φ)
]

+A0.

(11)

m is determined by balancing the highest power
non-linear term and the highest derivative in the
transformed NODE. Taking each summation of
the coefficients of sini(w)cosj(w), 0 ≤ i, j ≤ m
to be zero, produces a set of equations. This set
of equation is solved with the symbolic computa-
tional computational software, yields the values
of the coefficients Ai, Bi, µ and c. Eventually,
inserting the produced values of these coefficients
into Eq. (10) accompanied by the value of m,
gives the fresh travelling wave solutions to Eq.
(9).

3. Applications

The SGEM is used in searching the fresh solu-
tions to Eq. (1) in this section. Considering Eq.
(1), the following NODE was gotten by using the
wave transformation; u = U(β), β = µ(−kt+ x);

2pk2µ2U
′′ − 2(k2 − c20)U + c20U

2 = 0, (12)

p is non-zero constant and we get m = 2 by bal-
ancing U

′′

and U2 in Eq. (12).
Using Eq. (11) together with the value m = 2, we
get the following equation;

U(φ) = B1sin(φ) +A1cos(φ) +B2cos(φ)sin(φ)

+A2cos
2(φ) +A0, (13)

differentiating Eq. (13) twice, we get:



On the new wave behavior of the Magneto-Electro-Elastic(MEE) circular rod longitudinal wave equation 3

U
′′

(φ) = B1cos
2(φ)sin(φ)−B1sin

3(φ)

− 2A1sin
2(φ)cos(φ) +B2cos

3(φ)sin(φ)

− 5B2sin
3(φ)cos(φ)− 4A2cos

2(φ)sin2(φ)

+ 2A2sin
4(φ),

(14)

Setting Eq. (13) and (15) to Eq. (12), gener-
ating trigonometric equations. After replacing
the trigonometric constants in the trigonomet-
ric equation, a set of algebraic equations is col-
lected by setting each sum of the coefficients of
the trigonometric functions of the same power to
zero. The set of equations is solved with assis-
tance of symbolic mathematical softwares; to get
coefficient values for different cases. We insert
coefficient values for each case into the Eq. (10)
with a value of m = 2, this gives us a new solution
Eq. (1).

Case-1:

A0 = 4(1 +
k2

q2
), A1 = 0, B1 = 0, A2 = −6(1− k2

q2
),

B2 = −6i+
6ik2

q2
, p =

1

k2µ2
(k2 − q2).

Case-2:

A0 = 4− 4

1 + pµ2
, A1 = 0, B1 = 0,

A2 = −6 +
6

1 + pµ2
, B2 =

6pµ2(pµ2 − 1)

p2µ4 − 1
i,

q = −k
√

1 + pµ2.

Case-3:

A0 = −6 +
6k2

q2
, A1 = 0, B1 = 0, A2 = 6− 6k2

q2
,

B2 = 6i(1− k2

q2
), µ = − 1

k
√
p

√

(k2 − q2).

Case-4:

A0 = 1 +
k2

q2
, A1 = 0, B1 = 0, A2 = −3(1− k2

q2
),

B2 = 0, p =
k2 − q2

4k2µ2
.

Case-5:

A0 = 1− 1

4pµ2 + 1
, A1 = 0, B1 = 0,

A2 = −3 +
3

4pµ2 + 1
, B2 = 0, q = k

√

4pµ2 + 1.

Case-6:

A0 = 1− k2

q2
, A1 = 0, B1 = 0, A2 = 3(

k2

q2
− 1),

B2 = 0, µ =
1

2k
√
p

√

(k2 − q2)i.

Solutions:
(1). The following solution is gotten by with case
1;

u1(x, t) =
6(k2 − q2)

q2
(1 + i sech[µ(x− kt)]

× tanh[µ(x− kt)]− tanh[(−kt+ x)µ]2)
(15)

Figure 1. The 3D shape for the
imaginary part of Eq. (15) with the
values k = 2, c0 = 1, µ = 3, −3 <
x < 3, −5 < t < 5 and t = 0 for the
graphic of 2D.
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Figure 2. The 3D shape for the real
part of Eq. (15) with the values
k = 2, c0 = 1, µ = 3, −3 < x < 3,
−5 < t < 5 and t = 0 for the graphic
of 2D.

(2). The following solution is gotten by with case
2;

u2(x, t) = 4− 4

1 + pµ2
+ (6ipµ2(−1 + pµ2)).

.
sech[(−kt+ x)µ] tanh[−kt+ x)µ]

−1 + p2µ4

+ (−6 +
6

1 + p2µ2
) tanh[(−kt+ x)µ]2.

(16)

Figure 3. The 2D and 3D shape for
the imaginary and real part of Eq.
(16) with the values k = 2, p = 1,
µ = 3, −5 < x < 8, 0 < t < 2 and
t = 0 for the graphics of 2D.

(3). The following solution is gotten by with case
3;

u3(x, t) =
6

q2
(q2 − k2)(−1− i sech[

1

k
√
p
(
√

k2 − q2)

× (x− kt)] tanh[
1

k
√
p
(
√

k2 − q2)(x− kt)]+

+ tanh[
1

k
√
p
(
√

k2 − q2)(x− kt)]2).

(17)
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Figure 4. The 2D and 3D shape for
the imaginary and real part of Eq.
(17) with the values k = 2, p = 1,
c0 = 1, −5 < x < 5, 0 < t < 2 and
t = 0 for the graphics of 2D.

(4). The following solution is gotten by with case
4;

u4(x, t) =
k2 − q2

q2
(2− 3 tanh[(−kt+ x)µ]2) (18)

Figure 5. The 2D and 3D shape for
the Eq. (18) with the values k =
0.005, µ = 3, c0 = 1, −1 < x < 1,
0 < t < 2 and t = 0 for the graphic of
2D.

(5). The following solution is gotten by with case
5;

u5(x, t) =
4pµ2

1 + 4pµ2
(1− 3 tanh[µ(x− kt)]2) (19)

Figure 6. The 2D and 3D shape for
the Eq. (19) with the values k = 0.5,
µ = 3, p = 1, −0.5 < x < 1, 0 < t < 2
and t = 0.7 for the graphic of 2D.

(6). The following solution is gotten by with case
6;

u6(x, t) =
k2 − q2

q2
(−1−3 tan[

√

k2 − q2

2k
√
p

(x−kt)]2).

(20)
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Figure 7. The 2D and 3D shape for
the Eq. (20) with the values k = 2,
c0 = 1, p = 1, −0.5 < x < 1,
0 < t < 2 and t = 0.7 for the graphic
of 2D.

4. Results and Discussion

In [33] the improved exp(−Φ(ξ))-expansion func-
tion method is used in the solution of the
magneto-electro-elastic circular rod longitudinal
wave equation and the solution of different hy-
perbolic function forms is obtained. Secondly,
the well-known improvement (G

′

/G)-expansion
method [35] has been used for this equation and
some precise hyperbolic and trigonometric func-
tions are obtained. We observe that our results
are new, but have the same solution structure.
When compared with the existing, the results ob-
tained by using these two methods. On the other
hand, we observe that in the numerical simula-
tions of the solutions we presented; Figure 1, Fig-
ure 2 and Figure 7 are singular soliton surfaces,
Figure 3 is solit off surface, Figures 4-6 are soli-
ton surfaces. We observe that some solutions in
this study have important physical significance,
such as the emergence of hyperbolic tangents in
the calculation of magnetic moments and relative
velocities, the emergence of hyperbolic secant in
the profile of a laminar jet [40].

5. Conclusions

In this study, by utilizing the sine-Gordon exten-
sion method with the help of symbolic mathemat-
ical software, we investigated the solution of the
magneto-electro-elastic circular rod longitudinal
wave equation. We obtain some new solutions for
complex hyperbolic and trigonometric functions.
All solutions obtained in this study validate wave
equations in magneto-electro-elastic circular rod
and we examine this using the same procedure as
symbolic mathematical software. We performed
numerical simulations of all the solutions obtained
in this paper. We observed that our results may
be helpful in detecting transverse Poissons effect
magneto-electro-elastic circular rod. The Sine-
Gordon extension method is a powerful and ef-
ficient mathematical tool that can be used with
the help of symbolic mathematical software to ex-
plore different non-linear methods arising in dif-
ferent fields of non-linear science.
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