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 This study considers a make-to-stock production system with multiple identical 

parallel servers, fixed production start-up costs and lost sales. Processing times are 

assumed to be two-phase Coxian random variables that allows us to model the 

systems having rework or remanufacturing operations. First, the dynamic 

programming formulation is developed and the structure of the optimal production 

policy is characterized. Due to the highly dynamic nature of the optimal policy, as 

a second contribution we propose an easy-to-apply production policy. The 

proposed policy makes use of the dynamic state information and controlled by 

only two parameters. We test the performance of the proposed policy at several 

instances and reveal that it is near optimal. We also assess the value of dynamic 

state information in general by comparing the proposed policy with the well-

known static inventory position based policy. 
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1. Introduction 

In a make-to-stock production system, there is always 

a tradeoff between excess inventory, shortages and 

production costs. Production control is the main tool 

handling this tradeoff and providing cost effective 

operation. In general, in a make-to-stock environment, 

optimal production control requires starting production 

at the right time and producing with the optimum 

number of channels (servers, lines, or machines) to 

provide sufficient amount of products.  

Production policy strategies use the information of 

inventory status to trigger the production when the 

inventory status drops below certain threshold levels. 

Here, inventory status refers a function of the state 

variables that keep track of the required system 

information such as inventory level, number of 

outstanding production orders and their ages. The form 

of the optimal inventory status function would change 

from system to system but it is still unknown even for 

most of the basic make-to-stock production settings. 

Therefore, most of the studies in the literature, which 

consider only a single server, assumes that inventory 

status equals inventory level. There are limited number 

of studies on multi-server production-inventory 

systems but they only provide partial characterization 

of the optimal policy without any discussion on the 

performances of the static, which should take inventory 

status as inventory position, or alternative dynamic 

policies. 

In real life production-inventory systems, due to the 

nature of the environment and its technology, 

production times might have zero, moderate or high 

variance. Furthermore, such systems might have 

rework/inspection or remanufacturing operations. In 

order to deal with such real life systems, we assume 

phase-type, in specific two-phase Coxian production 

times. A busy server (worker or machine) might be 

either at the first phase (main operation) or at the 

second phase (inspection/rework) at any given time. A 

two-phase Coxian random variable has independent 

exponential phases and there is a certain visiting 

probability from phase-one to phase-two. Hence, we 

can create different systems at the boundaries of the 

visiting probability: when it is set to zero, processing 

time distribution becomes exponential (which is a 

typical assumption in the literature), when it is set to 

one, we can mimic the two-phase general Erlang 

processing times. Different values of this probability 

and production rates of phases correspond to systems 

with different rework characteristics and processing 

time moments. The representation of a production 

channel feeding the inventory after a two-phase Coxian 

processing time is shown in Figure 1. Coxian 

production times assumption would also help us to 

assess the value of dynamic state information, i.e. 

current status of production. 

 
Figure 1. Representation of a Cox-2 production server 

http://www.ams.org/msc/msc2010.html
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We charge fixed production (start-up) cost for 

activating servers, holding cost for each unit of 

inventory and lost sale cost for each unsatisfied 

demand. The studies that consider fixed costs in the 

literature are assuming only a single server. To the best 

of our knowledge, our study is the first considering 

multiple parallel production servers and fixed start-up 

cost at the same time in make-to-stock control 

environment. There is no study in the literature 

characterizing the optimal production policy for multi-

server systems. For single server backordering systems, 

it is known that the optimal production policy is a two-

critical-number policy. In this study, we aim to 

characterize the optimal production policy for lost sales 

multi-server systems with fixed production cost and 

propose easy to apply alternatives. 

We provide the literature review in Section 2. Dynamic 

programming formulation of the problem is given in 

Section 3. In Section 4, we numerically characterize the 

optimal production policy. In Section 5, we propose an 

alternative production policy and evaluate its 

performance. Section 6 concludes the paper and 

provides future research directions. 

2. Literature review  

In this chapter, we review the production and inventory 

control literature in the make-to-stock environment. 

This problem is first attacked by considering the 

systems having single production channel and single 

customer/demand class. Analyses are mostly based on 

queueing theory techniques. Interestingly, the early 

studies consider the fixed startup or shut-down costs. 

More recent studies extend the literature by considering 

multiple production channels without fixed costs. 

Another common feature of the recent studies is the 

Markovian structure that enables them to develop 

Markov Decision Process (MDP) formulation for the 

control of make-to-stock systems.  

Gavish and Graves [1] is the first to study the 

production-inventory problem assuming single 

channel, fixed and deterministic production times, 

independent Exponential inter-demand-arrival times, 

and backorders. They modeled the problem as an 

𝑀/𝐷/1 make-to-stock queue in the infinite horizon 

under the time-average cost criterion. This first study is 

actually the extension of Heyman [2] and Sobel [3] to 

the make-to-stock production environment. In [2] and 

[3], 𝑀/𝐺/1 and 𝐺/𝐺/1 queueing systems are studied, 

respectively, operating with server start-up and 

shutdown costs, and unit service and queue-time costs. 

For both of the settings, it is shown that the optimal 

policy is a two critical number policy denoted by (𝑆, 𝑠) 

and (𝑀, 𝑚) in [2] and [3], respectively. If the queue 

length is less than or equal to 𝑚 (or s), service is not 

provided until queue length increases to 𝑀 (or S). 

Service is triggered when the queue length is M and 

continued until it drops to m again. Although the 

analyses of [2] and [3] are specific for the queueing 

environment, we believe that their setting covers the 

production control for make-to-order systems. The 

optimal policy structure, which is a two critical number 

policy, is preserved in the make-to-stock production 

environment setting of [1]. However, the control 

parameters of the policy are defined on the inventory 

level: start production when the inventory level hits to 

the lower control level and continue until it hits to the 

upper control level. For different settings where two 

critical number policy is still optimal, see [4] and [5]. 

Researchers apply different techniques for the analysis 

of the two critical number policy. For example, Lee and 

Srinivasan [6] considers 𝑀/𝐺/1 make-to-stock queue 

with backordering and propose a renewal analysis in 

order to calculate expected cost. For compound Poisson 

demand extension of this study see [7]. 

Recent studies mostly apply MDP techniques for the 

settings having Markovian structure. This stream of 

literature usually assumes no fixed production/setup 

cost. In addition, production is triggered by a single 

server except Bulut and Fadıloğlu [8]. Ha [9] is the first 

that uses MDP techniques in problem modeling. [9] 

addresses 𝑀/𝑀/1 make-to-stock queue with multiple 

demand classes and lost sales, and shows that base-

stock is optimal production control policy. For 

backordering case, see [10]. [8] extends the setting by 

assuming multiple parallel exponential servers and 

optimal policy is defined as state-dependent base-stock. 

Ha [11] proves that work storage level is optimal 

production policy for 𝑀/𝐸𝑘/1 make-to-stock queue. 

Gayon et al. [12] differs from [11] with the 

backordering assumption. However, in our study, 

preserving the Markovian structure, we consider 

multiple parallel production servers allowing reworks 

and fixed start-up costs at the same time. Interested 

readers are also directed to the study [13] that considers 

the control of hybrid make-to-stock/make-to-order 

systems. 

3. Dynamic programming formulation 

We consider a production system including s many 

identical parallel servers each having two production 

phases in order to produce a single type of product. 

Processing times are assumed to be two-phase Coxian 

random variables where each phase is exponentially 

distributed with rates 𝜇1 and 𝜇2, respectively. 

Production is started at phase-one, then items are either 

processed at second phase with a certain probability 𝛽, 

or leave the system without passing second stage with 

probability 1 − 𝛽 (Figure 1). Visiting probability 𝛽 

facilitates us to work on more general systems than the 

ones having exponential processing times, which is a 

classical assumption in the literature. We model the 

system as 𝑀/𝐶𝑜𝑥2/𝑠 make-to-stock queue with fixed 

start-up costs and lost sales. In the terminology of 

production-inventory control literature, the classical 

Kendall Lee queueing notation is used for the models 

of make-to-stock systems. However, the meaning of the 

queuing notation is slightly different in the make-to-

stock environment. In our case, 𝑀 denotes Markovian 
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inter-demand arrival times but the arrived demands do 

not enter a queue and trigger a production order. 

Instead, they are either directly satisfied from the 

inventory or lost, and immediately leave the system. 

The second entry in the notation, which is "𝐶𝑜𝑥2" in our 

case, is for the production time distribution. The 

inventory is replenished using 𝑠 many available 

production channels according to a production policy 

in anticipation of the future demand arrivals. That is, 

Coxian-2 is not the “service” time of each demand 

arrival; it is the replenishment lead-time of any 

production order triggered according to the policy. 

Customer demands arrive according to a stationary 

Poisson process with rate 𝜆. Lost sale cost 𝑐 is incurred 

for each unsatisfied demand. Fixed start-up cost of 

activating a server is 𝐾, inventory holding cost is ℎ and 

discount rate is denoted by 𝛼.  

System state is defined with three variables to keep 

track of the events. Let 𝑥𝑖(𝑡), 𝑖 ∈ {1,2}, be the number 

of active servers at 𝑖𝑡ℎ phase and 𝑥3(𝑡) be the inventory 

level at time 𝑡. Then the system state space is 

𝑆𝑆 = {
(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) | ∑ 𝑥𝑖(𝑡)2

𝑖=1 ≤ 𝑠,

 𝑥𝑖(𝑡) ∈ 𝑍+ ∪ {0}, 𝑖 = 1,2,3
}  (1) 

Through the Markovian property, decision can be made 

in either at a phase completion or a demand arrival. For 

this reason, system state definition 

(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) is used regardless of time 

dimension. Since the original problem is a production-

inventory control problem in continuous time, we 

obtain the discrete time equivalent of this problem via 

uniformization technique ([14]). The uniform transition 

rate is defined as 𝜈 = λ + 𝑠(𝜇1 + 𝜇2). In our model, 

production is controlled by the decision variable 𝑢 ∈
{𝑥1, … , 𝑠 − 𝑥2}, which is the number of busy servers at 

phase-1 (at the first stage of the production process). 

Model only controls the number of active servers at 

stage-one because whenever production is triggered on 

a server, it starts from stage-one. The production 

control variable is upper bounded by number of servers 

that are not at stage-two and lower bounded by number 

of active servers at phase-one since order cancellation 

is not allowed. Based on the above definitions, optimal 

cost-to-go function 𝐽 is given by

𝐽(𝑥1, 𝑥2, 𝑥3) =
1

𝜈 + 𝛼
min

𝑥1≤𝑢≤𝑠−𝑥2

{ℎ𝑥3 + 𝐾(𝑢 − 𝑥1) 

+𝑢𝜇1𝛽𝐽(𝑢 − 1, 𝑥2 + 1, 𝑥3)  

+𝑢𝜇1(1 − 𝛽)𝑚𝑖𝑛{𝐽(𝑢 − 1, 𝑥2, 𝑥3 + 1), 𝐽(𝑢, 𝑥2, 𝑥3 + 1)}  

+𝑥2𝜇2𝑚𝑖𝑛{𝐽(𝑢, 𝑥2 − 1, 𝑥3 + 1), 𝐽(𝑢 + 1, 𝑥2 − 1, 𝑥3 + 1)}  

+(𝑠(𝜇1 + 𝜇2) − 𝑢𝜇1 − 𝑥2𝜇2)𝐽(𝑢, 𝑥2, 𝑥3) + 𝜆𝐿(𝑢, 𝑥2, 𝑥3)}  (2) 

where 𝐿 is the lost sales operator expressed by 

𝐿(𝑥1, 𝑥2, 𝑥3) = {
𝐽(𝑥1, 𝑥2, 𝑥3 − 1), 𝑥3 > 0

𝑐 + 𝐽(𝑥1, 𝑥2, 0), 𝑥3 = 0
  (3) 

We aim to identify how many production servers 

should be active/busy at any given state to minimize the 

expected discounted system cost. The minimization 

operation defined with rate 𝑢𝜇1(1 − 𝛽) corresponds to 

the decision at the time of production completion at 

phase-one: it decides whether to continue production 

on the server that has just finished processing at the first 

phase and replenished inventory. The next optimizer, 

recalled with rate 𝑥2𝜇2, is to decide whether to continue 

production on the server that has just finished 

processing at the second phase and replenished 

inventory. One should note that if fixed production cost 

is zero, these two continuation operators are redundant 

because the system can reactivate any server with zero 

cost whenever needed.  

The term (𝑠(𝜇1 + 𝜇2) − 𝑢𝜇1 − 𝑥2𝜇2)𝐽(𝑢, 𝑥2, 𝑥3) is 

necessary for the fictitious self-transitions due to the 

uniformization. In equation (3), the operator 𝐿 

corresponds to the transitions triggered by demand 

arrivals: if there is inventory on-hand, it is decreased by 

one, otherwise lost sales cost is incurred and state 

remains the same. 

 

 

4. Characterization of the optimal policy 

In this section, we provide a numerical characterization 

of the optimal production policy under average system 

cost. Since the system dynamics can be very clearly 

expressed with discounted cost DPs, we developed our 

formulation accordingly. However, we conduct 

numerical studies under average system cost criteria in 

order to make the performance measure independent of 

the initial state and the discount factor. We apply the 

value iteration algorithm to the system defined by 

equations (2) and (3) with discount rate 𝛼 = 0. Average 

system cost is calculated as the convergent value of the 

ratio of the optimal cost-to-go function value and the 

number of iterations. 

Gavish and Graves [4] shows that two-critical-number 

policy is optimal for backordering 𝑀/𝐺/1 make-to-

stock systems with fixed start-up cost. This policy 

dictates that production should be triggered when the 

inventory level drops to the lower control level (𝐼∗) and 

it should be continued until the inventory level reaches 

to the upper control level (𝐼∗∗). In Section 4.1, we 

numerically show that this optimal policy structure is 

also preserved for lost sales 𝑀/𝐶𝑜𝑥2/1 systems. On the 
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other hand, the numerical studies in Section 4.2 

illustrates the dynamic nature of the optimal policy for 

multi-server systems. 

4.1. Single server systems 

Single server cases are relatively easy to handle 

because at any state production decision 𝑢 is either 0 or 

1. For the numerical study, we first define a base case 

as [𝜇1, 𝜇2, 𝛽, ℎ, λ, c] = [3.25, 1.75, 0.15, 3, 6, 3]. In this 

subsection, we set 𝑠 = 1 and provide the results while 

we are changing 𝐾 or 𝜆. We first assume 𝐾 = 0 and 

represent the optimal production decisions in Table 1. 

Rows are for the first two state variables, which are 

𝑥1 = the number of active servers at stage-one and 

𝑥2 = the number of active servers at stage-two. The 

columns are for the last state variable, 𝑥3 = the 

inventory level. The numbers at the intersection of the 

row and the column axes represent the corresponding 

optimal decision. 

Table 1. Optimal production policy: s=1, K=0 

𝑢∗(𝑥1, 𝑥2, 𝑥3) 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5 6 

[0, 0] 1 1 1 1 0 0 0 

[1, 0] 1 1 1 1 1 1 1 

[0, 1] 0 0 0 0 0 0 0 

The optimal decision at state (𝑥1, 𝑥2, 𝑥3), denoted by 

𝑢∗(𝑥1, 𝑥2, 𝑥3), is the optimal number of busy servers at 

phase-1 as explained in Section 3. For instance, 

𝑢∗(0, 0, 0) = 1 implies that the server, which is 

currently idle, should be activated if the inventory level 

is zero. Since 𝐾 = 0 and continuation decisions are 

redundant, Table 1 fully characterizes the optimal 

policy. For single server systems the decision is trivial 

at states (1,0, 𝑥3) and (0,1, 𝑥3). At such states the 

server is already busy (there is no idle server to 

activate) and the decision is automatically 𝑥1. Hence, 

control is only for the states of (0,0, 𝑥3) type. Table 1, 

which is an example case for our extensive numerical 

study, shows that the optimal production policy is of 

base stock type: it is optimal to produce below the 

maximum inventory level (base stock level) and not to 

produce otherwise. For the setting considered in the 

table, optimal base stock level, 𝐵𝑆∗,  is 4. 

However, when there is fixed start-up cost optimal 

production policy cannot be described with a single 

parameter as Gavish and Graves [4] shows for single-

server backordering systems. As exemplified in Table 

2, our numerical studies depict that two-critical-

number policy is optimal also for lost sales systems. In 

the 𝑢∗part of the table, it is seen that production is 

started when inventory level drops to 2. When 𝐾 > 0, 

in addition to the number of active servers decision, the 

continuation decisions are also required and provided 

in 𝑐1
∗ and 𝑐2

∗ parts of Table 2. Referring to the DP model 

of Section 3, we define 𝑐1
∗ and 𝑐2

∗ as follows: 𝑐1
∗ = 1 if 

𝑚𝑖𝑛{𝐽(𝑢 − 1, 𝑥2, 𝑥3 + 1), 𝐽(𝑢, 𝑥2, 𝑥3 + 1)} =

𝐽(𝑢, 𝑥2, 𝑥3 + 1), i.e.  it is optimal to immediately start 

new production at stage-1 when the whole production 

process has completed after stage-1 (without visiting 

stage-2). Similarly, 𝑐2
∗ = 1 if 𝑚𝑖𝑛{𝐽(𝑢, 𝑥2 − 1, 𝑥3 +

1), 𝐽(𝑢 + 1, 𝑥2 − 1, 𝑥3 + 1)} = 𝐽(𝑢 + 1, 𝑥2 − 1, 𝑥3 +
1) corresponding to the event where the production 

process has completed after stage-2 and it is optimal to 

immediately start new production on stage-1 of the 

process. Otherwise, the server that has just finished 

processing is turned-off and, 𝑐1
∗ and 𝑐2

∗ are set to zero. 

By definition, 𝑐1
∗(𝑥1, 𝑥2, 𝑥3) and 𝑐2

∗(𝑥1, 𝑥2, 𝑥3) are 

relevant only when 𝑥1 > 0 and 𝑥2 > 0, respectively. 

Otherwise continuation decisions are not applicable 

(NA). As seen from Table 2, 𝑐1
∗(1,0, 𝑥3) = 𝑐2

∗(0,1, 𝑥3) 

for all inventory levels 𝑥3. This holds because there is 

only one available server and the inventory level just 

after production completion would be the same 

independent of the last stage visited. If it is optimal to 

continue production on the server, then the new process 

is going to start at stage-1 in any case.  

For the setting considered in Table 2 the parameters of 

the two-critical-number policy are (𝐼∗, 𝐼∗∗) = (2, 6) 

where 𝐼∗ is the production trigger level and 𝐼∗∗ is the 

maximum inventory level that the system reaches. 

Table 2. Optimal production decisions, s=1, K=2 

𝑢∗(𝑥1, 𝑥2, 𝑥3) 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5 6 

[0, 0] 1 1 1 0 0 0 0 

[1, 0] 1 1 1 1 1 1 1 

[0, 1] 0 0 0 0 0 0 0 

𝑐1
∗(𝑥1, 𝑥2, 𝑥3) 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5 6 

[0, 0] NA NA NA NA NA NA NA 

[1, 0] 1 1 1 1 1 1 0 

[0, 1] NA NA NA NA NA NA NA 

𝑐2
∗(𝑥1, 𝑥2, 𝑥3) 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5 6 

[0, 0] NA NA NA NA NA NA NA 

[1, 0] NA NA NA NA NA NA NA 

[0, 1] 1 1 1 1 1 1 0 

After the characterization of the optimal policy we next 

show in Table 3 how the optimal policy parameters 

react to changes in traffic intensity and production start-

up cost. We change the demand rate while keeping 

Coxian processing time parameters constant to obtain 

settings with different traffic intensity (𝜌). The effect 

of Coxian parameters is discussed in Section 5.  

Table 3 reveals that the optimal policy parameters are 

non-decreasing in 𝜌. At lower 𝜌 values system prefers 

not to produce at all. That is, the optimal values of the 

policy parameters are all zero and corresponding 

average system cost equals 𝜆𝑐. On the other hand, it is 

optimal to produce at some inventory levels beyond 
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certain traffic intensity and thus 𝐵𝑆∗ and the vector  
(𝐼∗, 𝐼∗∗) are not zero for 𝐾 = 0 and 𝐾 > 0 cases, 

respectively. When 𝐾 > 0, as the traffic getting heavier 

the increase in 𝐼∗∗ is more pronounced than the increase 

in 𝐼∗ because the system needs to hold more inventory 

to meet the increasing demand. For fixed 𝜌, a similar 

behavior is observed as the start-up cost 𝐾 increases: in 

order to decrease the frequency of production start-up 

(so the total fixed cost) and to continue with the 

activated server as much as possible, the gap between 

the maximum inventory level and the production 

trigger point, 𝐼∗∗ − 𝐼∗, is getting wider. 

Table 3. Optimal policy parameters, 𝑠 = 1 

  𝐾 = 0 𝐾 = 1 𝐾 = 2 𝐾 = 3 

λ 𝝆 AC 𝐵𝑆∗ AC 𝐼∗ 𝐼∗∗ AC 𝐼∗ 𝐼∗∗ AC 𝐼∗ 𝐼∗∗ 

0.50 0.29 1.50 0 1.50 0 0 1.50 0 0 1.50 0 0 

0.75 0.43 2.25 0 2.25 0 0 2.25 0 0 2.25 0 0 

1.00 0.58 3.00 1 3.00 0 0 3.00 0 0 3.00 0 0 

1.50 0.86 3.70 1 4.50 0 1 4.50 0 0 4.50 0 0 

2.00 1.15 4.61 1 5.21 0 2 5.56 0 2 5.86 0 3 

2.50 1.44 5.66 1 6.06 0 2 6.29 0 3 6.46 0 3 

3.00 1.73 6.66 2 6.95 0 3 7.11 0 3 7.19 0 4 

3.50 2.01 7.73 2 7.94 1 4 8.00 1 4 8.05 0 5 

4.00 2.30 8.90 2 8.99 1 4 9.02 1 5 9.04 1 5 

4.2. Multi-server systems 

Although the structure of the optimal production policy 

is known for single server make-to-stock systems, it has 

not yet been fully characterized for multiple server 

systems. To the best of our knowledge, the only study 

addressing the production control of multi-server 

systems is Bulut and Fadıloğlu [8] and they only 

provide partial characterization of the policy for the 

𝑀/𝑀/𝑠 case without fixed cost. In this section, we 

provide numerical analyses to describe the structure of 

the optimal policy for the 𝑀/𝐶𝑜𝑥2/𝑠 make-to-stock 

systems with fixed cost for the first time in the 

literature. Single server assumption relatively 

eliminates the complexity because for such cases the 

decision is 0-1 for all inventory levels: whether to 

activate the only available server or not. However, 

when 𝑠 > 1, the controller should decide how many 

servers should be active at any system state. 

Furthermore, this decision would be dependent on the 

status of the ongoing production, i.e. to the stage/phase 

information of the active servers.  

Recalling the base case, we first set 𝑠 = 3 and 𝐾 = 0 

and provide the optimal decisions in Table 4(a). Similar 

to the single-server case, 𝑢∗ matrix is enough to 

describe the optimal policy when the production start-

up cost is zero. We separate the decision matrix into 

four layers where each layer corresponds to a particular 

total number of active servers. In general, if there are 𝑠 

available servers, there would be (𝑠 + 1) layers. For the 

setting presented in Table 4(a), we list our observations 

on the structure of the optimal policy below: 

i. Since all the available servers are busy at the bottom 

layer, i.e. 𝑥1 + 𝑥2 = 𝑠 = 3, and order cancellation 

cost is practically infinite, the optimal decision is 

trivial at all states of the bottom layer: 

𝑢∗(𝑥1, 𝑥2, 𝑥3) = 𝑥1. 

ii. Production decisions are non-increasing in 

inventory level 𝑥3, because shortage risk is reduced 

by increasing inventory. 

iii. Unlike the classical static policies, which are based 

on either inventory level or inventory position (e.g. 

base stock), unit increase in inventory level does not 

always end up with unit decrease in the optimal 

number of active servers at phase-one, e.g. 

𝑢∗(0,0,1) = 2 but 𝑢∗(0,0,2) = 0. 

iv. In addition to (iii), there is a second level of 

dynamicity in the structure of the optimal policy; 

decisions are dependent on the status of ongoing 

production. One would expect that as the number of 

completed production stages increases, the total 

number of active servers decreases or remains the 

same. This is true for the processing time random 

variables having increasing failure rate (IFR) such 

as Erlangian production times. For such settings, as 

the number of completed stages increases 

remaining time to replenish the inventory 

stochastically decreases. However, for the case 

considered in Table 4(a), Coxian production time 

random variable has the parameters (𝜇1, 𝜇2, 𝛽) =
(3.25,1.75,0.15) and more channels are needed if 

the item being processed visits stage-2. Since stage-

1 is much faster than stage-2 and probability of 

visiting stage-2 is small, expected time to 

production completion is smaller when the current 

production is at stage-1 compared to the case where 

it is at stage-2. In order to make it clearer, let us 

consider the states (1,0,1) and (0,1,1) of Table 

4(a): the inventory level is the same for both of the 

states but the (only) active server is at stage-1 in the 

first state and at stage-2 in the second. As seen from 

the table, 𝑢∗(1,0,1) = 𝑢∗(0,1,1) = 2 and the 

transitions are to (2,0,1) and (2,1,1) from (1,0,1) 

and (0,1,1), respectively. Before the decisions, both 

states have the same number of active servers, 

which is one, but after the transitions state (2,1,1) 

has one more active server than (2,0,1). 

We increase 𝜇2 from 1.75 to 7.5 in Table 4(b) and 

observe completely different production decisions 

for the states (1,0,1) and (0,1,1): 𝑢∗(1,0,1) = 2,  

𝑢∗(0,1,1) = 0 an the transitions are to (2,0,1) and 

(0,1,1) from (1,0,1) and (0,1,1), respectively  That 

is, this time it is optimal to have more active servers 

when the current production is at phase-1.  

v. With its three parameters Coxian production time 

random variable has the flexibility to obtain 

increasing and decreasing failure rate (IFR or DFR) 
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settings and, we show in Table 4 (a) and (b) that the 

structure of the optimal policy changes accordingly. 

Table 4. Optimal production decisions s=3, K=0 

(a) DFR, (b) IFR 

(a) 𝑢∗ 𝑥3  (b) 𝑢∗ 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5  (𝑥1, 𝑥2) 0 1 2 3 4 5 

[0, 0] 3 2 0 0 0 0  [0, 0] 3 2 0 0 0 0 

[1, 0] 3 2 1 1 1 1  [1, 0] 3 2 1 1 1 1 

[0, 1] 2 2 0 0 0 0  [0, 1] 2 0 0 0 0 0 

[2, 0] 3 2 2 2 2 2  [2, 0] 3 2 2 2 2 2 

[1, 1] 2 2 1 1 1 1  [1, 1] 2 1 1 1 1 1 

[0, 2] 1 1 0 0 0 0  [0, 2] 1 0 0 0 0 0 

[3, 0] 3 3 3 3 3 3  [3, 0] 3 3 3 3 3 3 

[2, 1] 2 2 2 2 2 2  [2, 1] 2 2 2 2 2 2 

[1, 2] 1 1 1 1 1 1  [1, 2] 1 1 1 1 1 1 

[0, 3] 0 0 0 0 0 0  [0, 3] 0 0 0 0 0 0 

Fixed production cost adds more complexity to the 

structure of the optimal policy. To reveal this, one can 

compare Table 4(a) and Table 5 where the only 

difference is the value of the start-up cost 𝐾. When 

fixed cost is larger optimal policy tends to activate less 

servers at all the states. Specifically, fixed cost prevents 

activating all the available servers even there is no 

inventory on hand. On the other hand, the optimal 

policy balance the holding and shortage trade-off 

mostly with the continuation decisions 𝑐1
∗ and 𝑐2

∗; 

production continues with the previously activated 

servers for some time. However, continuation decisions 

are also state dependent and are not only determined by 

the total number of active servers.  As opposed to the 

single-server case shown in Table 2, there exists a, b 

and 𝑥3 values such that 𝑐1
∗(𝑎, 𝑏, 𝑥3) ≠ 𝑐2

∗(𝑏, 𝑎, 𝑥3).  For 

instance, 𝑐1
∗(2,0,3) = 0 but 𝑐2

∗(0,2,3) = 1. This 

dynamic behavior of the optimal policy is due to the 

fact that any active server at stage-1 can replenish the 

inventory by two different realizations: with probability 
(1 − 𝛽) inventory is replenished directly from stage-1, 

but with probability 𝛽 stage-2 is visited and then the 

production is completed. On the other hand, any active 

server at stage-2 has only one possible realization path 

to replenish the inventory. Hence, when 𝑠 > 1, 

continuation decisions are coupled with the number of 

active servers decision and depending on the values of 

the Coxian parameters (𝜇1, 𝜇2, 𝛽), continuation 

decisions might be different even for the symmetric 

states at the same inventory level. 

Table 5. Optimal production decisions, s=3 and K=2 

𝑢∗ 𝑥3 𝑐1
∗ 𝑥3 𝑐2

∗ 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5 (𝑥1, 𝑥2) 0 1 2 3 4 5 (𝑥1, 𝑥2) 0 1 2 3 4 5 

[0, 0] 2 1 0 0 0 0 [0, 0] NA NA NA NA NA NA [0, 0] NA NA NA NA NA NA 

[1, 0] 2 1 1 1 1 1 [1, 0] 1 1 1 1 1 0 [1, 0] NA NA NA NA NA NA 

[0, 1] 1 0 0 0 0 0 [0, 1] NA NA NA NA NA NA [0, 1] 1 1 1 1 1 0 

[2, 0] 2 2 2 2 2 2 [2, 0] 1 1 1 0 0 0 [2, 0] NA NA NA NA NA NA 

[1, 1] 1 1 1 1 1 1 [1, 1] 1 1 1 1 0 0 [1, 1] 1 1 1 0 0 0 

[0, 2] 0 0 0 0 0 0 [0, 2] NA NA NA NA NA NA [0, 2] 1 1 1 1 0 0 

[3, 0] 3 3 3 3 3 3 [3, 0] 1 1 0 0 0 0 [3, 0] NA NA NA NA NA NA 

[2, 1] 2 2 2 2 2 2 [2, 1] 1 1 0 0 0 0 [2, 1] 1 1 0 0 0 0 

[1, 2] 1 1 1 1 1 1 [1, 2] 1 1 0 0 0 0 [1, 2] 1 1 0 0 0 0 

[0, 3] 0 0 0 0 0 0 [0, 3] NA NA NA NA NA NA [0, 3] 1 1 0 0 0 0 

 

As the discussion on tables 4(a), 4(b) and 5 exhibits, for 

the multi-server systems, optimal policy is highly 

dynamic/state-dependent and cannot be fully described 

with two static parameters such as inventory level or 

inventory position. The highly dynamic structure of the 

optimal policy would reduce its value for practitioners. 

In practice, controllers are mostly after easy-to-apply 

approximate policies. We therefore propose an 

alternative production policy that is controlled by two 

parameters and can quickly adapt itself to IFR and DFR 

cases. Next two sections are devoted to the introduction 

and performance evaluation of our policy. 

 

5. An alternative policy structure 

As we have discussed in Section 4, the values of the 

Coxian parameters directly affect the structure of the 

optimal policy. In order to first guarantee that our 

policy structure responds to the changes in input 

parameters (𝜇1, 𝜇2, 𝛽), we define 𝐸(1,0, 𝑥3) and 

𝐸(0,1, 𝑥3) as the expected remaining production times 

if the current production is on stage-1 and stage-2, 

respectively. Since the stages are memoryless, 

𝐸(1,0, 𝑥3) =
1

𝜇1
+ 𝛽

1

𝜇2
 and 𝐸(0,1, 𝑥3) =

1

𝜇2
. We aim to 

identify IFR and DFR cases by comparing these 

expected times to production completion. 𝐸(0,1, 𝑥3) <

𝐸(1,0, 𝑥3) or equivalently 𝑟 =
𝐸(0,1,𝑥3)

𝐸(1,0,𝑥3)
< 1 implies that 
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expected remaining production time decreases when 

stage-2 is visited. For such settings, since the 

probability of demand arrivals before inventory 

replenishment decreases, our policy should demotivate 

activating new servers when stage-2 is visited. 

Otherwise, we are in a DFR case and the policy should 

motivate (or at least should not demotivate) activating 

new servers when stage-2 is visited. 

Second, for the sake of applicability we aim to propose 

a policy structure that can be controlled by only two 

parameters. We stick to the notation used in Section 4: 

𝐼∗ and 𝐼∗∗ are the production trigger and the maximum 

levels, respectively. This two-critical-number policy is 

optimal for single-server settings and the parameters of 

the policy are defined in terms of inventory level.  So 

as to better capture the dynamic nature of the optimal 

policy of an 𝑀/𝐶𝑜𝑥2/𝑠 make-to-stock system, we 

define 𝐼∗ and 𝐼∗∗  in terms of a function of the system 

state vector referred as inventory status (IS). At any 

state (𝑥1, 𝑥2, 𝑥3), 

𝐼𝑆(𝑥1, 𝑥2, 𝑥3) = ∑ 𝑎𝑖𝑥𝑖
3
𝑖=1   (4) 

where 𝑎1, 𝑎2 and 𝑎3 are the weights of the number of 

active servers at stage-1, the number of active servers 

at stage-2 and inventory level, respectively. The above 

definition of inventory status allows us to trace a policy 

space including the classical inventory level (𝐼𝑆 = 𝐼𝐿 

when (𝑎1, 𝑎2, 𝑎3) = (0,0,1)) and inventory position 

(𝐼𝑆 = 𝐼𝑃 when (𝑎1, 𝑎2, 𝑎3) = (1,1,1)) based policies.  

Based on the above discussion, we propose the below 

policy structure that computes 𝑢(𝑥1, 𝑥2, 𝑥3) = the 

number of active/busy servers at stage-1, 𝑐1(𝑥1, 𝑥2, 𝑥3) 

= continuation decision for the server that has just 

finished stage-1 and replenished inventory, and  

𝑐2(𝑥1, 𝑥2, 𝑥3) = continuation decision for the server that 

has just finished stage-2 and replenished inventory.

𝑢(𝑥1, 𝑥2, 𝑥3) = {
⌊𝑚𝑖𝑛{(𝐼∗ + 1) − 𝐼𝑆(𝑥1, 𝑥2, 𝑥3)  + 𝑥1, (𝑠 − 𝑥2)}⌉, 𝐼𝑆 ≤ 𝐼∗

𝑥1                                     , 𝐼𝑆 > 𝐼∗  (5)

𝑐1(𝑥1, 𝑥2, 𝑥3) = {
1, 𝐼𝑆(𝑥1 − 1, 𝑥2, 𝑥3 + 1) < 𝐼∗∗

0, 𝐼𝑆(𝑥1 − 1, 𝑥2, 𝑥3 + 1) ≥ 𝐼∗∗  (6)

𝑐2(𝑥1, 𝑥2, 𝑥3) = {
1, 𝐼𝑆(𝑥1, 𝑥2 − 1, 𝑥3 + 1) < 𝐼∗∗

0, 𝐼𝑆(𝑥1, 𝑥2 − 1, 𝑥3 + 1) ≥ 𝐼∗∗  (7)

For the states whose inventory status is at or below the 

production trigger level 𝐼∗, the proposed policy tries to 

raise IS to (𝐼∗ + 1). This can only be achieved with  

(𝐼∗ + 1) − 𝐼𝑆(𝑥1, 𝑥2, 𝑥3) many new active servers at 

stage-1 additional to 𝑥1. However, as discussed in the 

dynamic programming formulation of Chapter 3, 

𝑢(𝑥1, 𝑥2, 𝑥3) is bounded above by (𝑠 − 𝑥2). In 

Equation (5), ⌊∙⌉ is to return the nearest integer for the 

calculated value as the number of active servers at 

stage-1. For the other states,  𝐼𝑆(𝑥1, 𝑥2, 𝑥3) > 𝐼∗ and we 

do no nothing: 𝑢(𝑥1, 𝑥2, 𝑥3) returns the current number 

of busy servers at stage-1. 

Continuation decisions of the policy are defined by (6) 

and (7), which are only applicable when 𝑥1 > 0 and 

𝑥2 > 0, respectively. The policy keeps the previously 

activated servers busy until target level 𝐼∗∗ is reached. 

In (6) and (7), decisions are given just after production 

completion (in 𝑐𝑖, 𝑥𝑖 is decreased by 1, i = 1,2) and 

inventory replenishment (𝑥3 is increased by 1).    

The above defined policy structure has three weight and 

two control parameters: (𝑎1, 𝑎2, 𝑎3) and (𝐼∗, 𝐼∗∗). First 

we develop the following approach to find the setting 

specific values of the weights (𝑎1, 𝑎2, 𝑎3): We structure 

our policy based on the relative values of  𝑎𝑖′s. Thereby, 

the degrees of freedom of finding the values of 𝑎𝑖′s is 

decreased to two. Without loss of generality, we set the 

value of an active server at stage-1 to 1, i.e., 

𝑎1 = 1  (8) 

Then, the weight of an on-hand inventory relative to the 

weight of an outstanding order at stage-1 is calculated 

as: 

𝑎3 =

1

𝜇1
+𝛽

1

𝜇2
1

𝜇1

=
𝛽𝜇1+𝜇2

𝜇2
  (9) 

where 
1

𝜇1
+ 𝛽

1

𝜇2
  and 

1

𝜇1
 are the expected time to 

complete the whole production and stage-1, 

respectively. That is, if an item at stage-1, which is 

going to spend (on the average) 
1

𝜇1
 time units to 

complete the stage, has the weight 𝑎1, then the relative 

weight of an item in the inventory, which has on the 

average spent 
1

𝜇1
+ 𝛽

1

𝜇2
 time units in the production 

facility, is  

1

𝜇1
+𝛽

1

𝜇2
1

𝜇1

 times 𝑎1. The weight of an item at 

stage-2, 𝑎2, on the other hand, is set to different values 

for IFR and DFR cases. As discussed in Section 4, 

depending on the values of Coxian parameters 
(𝜇1, 𝜇2, 𝛽) more active servers might be needed if the 

item being processed visits stage-2. Our policy 

structure gains this flexibility with 𝑎2. We let 

𝑎2 = {

𝑎1+𝑎3

2
, 𝑖𝑓 𝑟 =

𝐸(0,1,𝑥3)

𝐸(1,0,𝑥3)
< 1

0, 𝑖𝑓 𝑟 ≥ 1
  (10) 

The ratio 𝑟 =
𝐸(0,1,𝑥3)

𝐸(1,0,𝑥3)
 is less than 1 if the expected time 

to production completion decreases when stage-2 is 

visited. For such IFR cases, we set the weight of an 

outstanding order at stage-2 to the average of the 

weights of the items that are at stage-1 and in the 

inventory. In this way, for the IFR cases we obtain a 

weight structure satisfying 𝑎1 < 𝑎2 < 𝑎3.  

On the other hand, if the case is DFR, the weight is set 

to 0 in order to motivate the system to activate more 
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servers whenever the slower stage (stage-2) is visited. 

In this case, 𝑎2 < 𝑎1 < 𝑎3. 

One can prefer to select the “best” values of (𝑎1, 𝑎2, 𝑎3) 

using an optimization routine applied over the DP 

formulation. However,  the next section shows that the 

performance of the proposed structure under our 

intelligent guesses (8), (9) and (10) is very close to the 

optimal’s. That is, without undertaking the computation 

cost of any optimization algorithm, we obtain a very 

good approximation to the “ideal” weights by exploring 

the structure of the optimal policy (in Section 4) and 

selecting the values accordingly.       

On the other hand, it is hard to develop a similar 

intuition for the control levels (𝐼∗, 𝐼∗∗).  We therefore 

use our DP formulation (2) and (3) as the optimization 

routine: For given values of (𝐼∗, 𝐼∗∗) such that 𝐼∗ < 𝐼∗∗, 

DP is fed with the decision set of the proposed policy, 

(5), (6) and (7), and the value iteration algorithm is run 

to calculate the average system cost. We then search for 

the optimal values of the parameters in the integer 

domain. As the results presented in Section 6 show that 

optimizing (𝐼∗, 𝐼∗∗) in the integer space results in a 

well-performing near-optimal policy.   

It should be noted that 𝑎1 can also be set to any arbitrary 

positive value. In such cases, the values of 𝑎2, 𝑎3 and 

thus IS would also be changed relative to 𝑎1. Hence, the 

optimal values of (𝐼∗, 𝐼∗∗)  would be also altered/shifted 

in order to find the same cost minimizer 𝑢(𝑥1, 𝑥2, 𝑥3) 

values. That is, larger values of 𝑎𝑖 ′s would result in 

larger values of (𝐼∗, 𝐼∗∗) so as to find the same 𝑢 value.  

Although we obtain the results in a reasonable amount 

of time one can further fasten the routine if the search 

first visits the space around (𝐼∗∗ − 𝐼∗) = 𝐸𝑂𝑄.  The 

approximate value of the batching decision of the 

classical inventory systems would here help us to 

capture the effect of the fixed cost on the length of the 

non-production period. One should note that our make-

to-stock production-inventory environment is different 

than the classical inventory settings in terms of capacity 

(there are only s many servers) and one-at-a-time 

replenishment as the active servers complete 

production. A classical inventory system having 

stochastic lead-times that is controlled by lot-for-lot 

policy can be modeled using our approach only if s 

tends to infinity, which requires to guarantee an 

uncapacitated system.  

6. Performance evaluation of the proposed policy 

In this section we present the numerical study assessing 

the performance of the policy structure described by 

(5), (6) and (7). We test the performance of the structure 

with the (𝑎1, 𝑎2, 𝑎3) values given in (8), (9) and (10), 

which defines the specific policy that we propose. We 

also evaluate the performance of the inventory position 

based static policy (IP Policy) in order to quantify the 

value of dynamic state information. Our policy 

structure already has the flexibility to cover the IP 

Policy: in (4), we let (𝑎1, 𝑎2, 𝑎3) = (1,1,1) to obtain the 

inventory position as the sum of the on-hand inventory 

and the number of outstanding production orders (the 

number of items that are being processed).   

The main goal of this section is to reveal the effects of 

Coxian parameters (𝜇1, 𝜇2, 𝛽), the demand rate λ and 

the fixed cost K on the performances of the considered 

policies. The results of the numerical study are 

summarized in the tables provided at the end of the 

section. While changing the above mentioned 

parameters, without loss of generality we fix the values 

of the holding cost rate h and the unit lost sales cost c 

to 3. Each table includes five different instances with 

different traffic intensities (𝜌) ranging from 0.50 to 

1.50. For each instance, average costs of the optimal, 

proposed and IP policies, and their optimal control 

levels (𝐼∗, 𝐼∗∗) are reported. For the proposed and IP 

policies, the optimality gap, defined as the percent cost 

deviation from the optimal, is also provided.  

Table 6 shows the results when there are two parallel 

servers with no start-up costs and Coxian production 

times have decreasing failure rates (DFR). Our 

dynamic policy performs very well in the environment 

of Table 6. The optimality gap of the proposed policy 

is less than 0.5% at all the instances of the table. 

Furthermore, IP Policy is also a notable alternative of 

the optimal policy when the capacity is tight: when 

there are limited of number of servers or traffic 

intensity is high. As 𝜌 increases or equivalently as the 

capacity is getting tighter, more and more servers 

would be activated independent of the status of the 

production. That is, all the plausible policies, including 

the optimal one, utilize all the servers at higher traffic 

intensity values. This observation is valid not just for 

Table 6 but for all the tables of the chapter: The 

proposed policy is near optimal at all the traffic 

intensities of all the considered cases, and IP Policy is 

a second alternative for the highly utilized systems.     

Table 7 and Table 8 are the ‘positive fixed cost’ and 

‘more server’ extensions of Table 6, respectively.  

When the production startup cost 𝐾 is 0.5, the 

maximum optimality gap of the Proposed Policy is 

2.55% and of the IP Policy is 3.22%. Both maximums 

are observed at the same instance where 𝜌 = 0.5.  For 

the systems with higher server activation cost, the 

distance between the upper and lower control limits, 

which is (𝐼∗∗ − 𝐼∗), should be larger. That is, instead of 

activating servers at higher inventory levels it is more 

economical to increase 𝐼∗∗ in order to both postpone the 

production cycle and to continue production on the 

previously activated servers once it is started until 

reaching 𝐼∗∗ again. 

On the other hand, in Table 8, the number of available 

servers is higher (and fixed cost is zero) and the 

maximum deviations from the optimality are 3.21% 

and 6.89% for the Proposed and IP policies, 

respectively. However, for the Proposed Policy, the 

average of the five optimality gaps reported in the table 

is only 1.54%, which is the highest average among all 

the tables. Since the Proposed Policy makes use of the 
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dynamic production status information of all the 

servers, it outperforms the static IP policy as the 

number of available servers increases.    

Table 9 is for the IFR version of Table 8. The table 

shows that the optimality gap of the Proposed Policy is 

below 1% at all the instances. Although the 

performance of IP Policy is also improved from Table 

8 to Table 9, that improvement is not as significant as 

the improvement attained by the Proposed Policy.  

At all the tables from 6 to 9, the traffic intensity (𝜌) is 

increased by decreasing 𝜇1, the processing rate of 

stage-1. In order to eliminate any bias that can be due 

to this method, we reconsider the environment of Table 

8 where 𝑠 = 5 and 𝐾 = 0, and increase the traffic 

intensity by decreasing 𝜇2 this time. The results are 

reported in the last table, Table 10. The probability of a 

WIP item being at phase-2 increases as 𝜇2 decreases 

that sharpens the DFR nature of the production times. 

Due to this fact, the performance of our policy is better 

than Table 8 in Table 10. 

Table 6. Performances of the alternative policies: DFR cases with s=2 and K=0 

Table 7. Performances of the alternative policies with DFR distribution, s=2 and K=0.5 

   Optimal Policy  IP Policy  Proposed Policy 

 

 

# 

 

𝜌 
(𝜇1, 𝜇2, 𝛽) 

Average  

Cost  

 

Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

 

Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

1  0.5 (15, 0.5, 0.05) 8.82  9.12 (1, 5) 3.22  9.06 (1, 8) 2.55 

2 0.75 (6.65, 0.5, 0.05) 9.71  9.79 (1, 6) 0.80  9.72 (2, 6) 0.03 

3 1.00 (4.25, 0.5, 0.05) 10.24  10.28 (1, 6) 0.45  10.32 (1, 7) 0.80 

4 1.25 (3.15, 0.5, 0.05) 10.77  10.78 (1, 7) 0.16  10.80 (2, 8) 0.30 

5 1.50 (2.50, 0.5, 0.05) 11.20  11.21 (2, 7) 0.09  11.20 (2, 8) 0.02 

Table 8. Performances of the Alternative Policies with DFR distribution, s=5 and K=0 

   Optimal Policy  IP Policy  Proposed Policy 

 

# 

 

𝜌 (𝜇1, 𝜇2, 𝛽) 
Average  

Cost  

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

1  0.5 (2.79, 0.5, 0.05) 7.85  8.43 (3, 4) 6.89  7.96 (3, 4) 1.47 

2 0.75 (1.90, 0.5, 0.05) 8.47  8.92 (4, 7) 5.01  8.75 (3, 4) 3.21 

3 1.00 (1.35, 0.5, 0.05) 9.29  9.43 (4, 5) 1.47  9.38 (4, 5) 0.99 

4 1.25 (1.06, 0.5, 0.05) 9.97  10.09 (5, 8) 1.20  10.11 (5, 6) 1.37 

5 1.50 (0.87, 0.5, 0.05) 10.67  10.70 (5, 8) 0.32  10.74 (5, 8) 0.68 

Table 9. Performances of the Alternative Policies with IFR distribution, s=5 and K=0 

   Optimal Policy  IP Policy  Proposed Policy 

 

# 

 

𝜌 (𝜇1, 𝜇2, 𝛽) 
Average  

Cost  

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

1  0.5 (8.50, 2.65, 0.8) 7.97  8.33 (3, 6) 4.26  8.05 (7, 12) 0.99 

2 0.75 (3.90, 2.65, 0.8) 8.46  8.81 (3, 6) 3.93  8.52 (5, 9) 0.75 

3 1.00 (1.88, 2.65, 0.8) 9.27  9.40 (4, 7) 1.39  9.33 (6, 8) 0.62 

4 1.25 (1.35, 2.65, 0.8) 9.88  9.94 (5, 7) 0.58  9.91 (6, 7) 0.24 

5 1.50 (1.05, 2.65, 0.8) 10.52  10.57 (5, 7) 0.48  10.55 (7, 8) 0.26 

Table 10. Performances of the Alternative Policies with DFR distribution, s=5, K=0 and 𝜇2 is changing 

   Optimal Policy  IP Policy  Proposed Policy 

 

# 

 

𝜌 (𝜇1, 𝜇2, 𝛽) 
Average  

Cost  

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

1  0.5 (14, 2.30, 0.8) 7.83  8.33 (3, 6) 6.00  7.93 (4, 11) 1.32 

2 0.75 (14, 1.44, 0.8) 8.44  8.92 (4, 7) 5.34  8.51 (4, 16) 0.81 

3 1.00 (14, 1.05, 0.8) 9.24  9.40 (4, 7) 1.73  9.28 (12, 23) 0.49 

4 1.25 (14, 0.82, 0.8) 10.02  10.13 (4, 7) 1.10  10.02 (16, 28) 0.06 

5 1.50 (14, 0.68, 0.8) 10.74  10.84 (5, 8) 0.92  10.74 (19, 33) 0.02 

   Optimal Policy  IP Policy  Proposed Policy 

 

# 

 

𝜌 

(𝜇1, 𝜇2, 𝛽) 

 

Average  

Cost 

 Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

 Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

1  0.5 (15, 0.5, 0.05) 7.05  7.20 (1, 2) 2.03  7.09 (1, 7) 0.48 

2 0.75 (6.65, 0.5, 0.05) 8.21  8.49 (1, 2) 3.32  8.21 (2, 3) 0.00 

3 1.00 (4.25, 0.5, 0.05) 9.19  9.26 (2, 3) 0.70  9.24 (2, 5) 0.45 

4 1.25 (3.15, 0.5, 0.05) 9.98  10.01 (2, 3) 0.27  9.99 (3, 4) 0.09 

5 1.50 (2.50, 0.5, 0.05) 10.70  10.72 (2, 3) 0.19  10.71 (3, 4) 0.10 
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As the holding cost rate (h) and unit lost sales cost (c) 

are both set to 3 in all the above examples, we aim to 

depict the effect of changes in the (holding cost 

rate)/(unit lost sales cost) ratio in Figure 2. In order to 

visit different values of this ratio, without loss of 

generality we only change holding cost rate: h varies 

from 1 to 14 while c is kept constant at 3. The other 

parameters are assumed to be [𝑠, 𝜇1, 𝜇2, 𝛽, 𝐾, λ] =
[2, 4.25, 0.5, 0.05, 0.5, 6]. In the figure, for each 

increment of h, average system cost of both the optimal 

and proposed policies, and (𝐼∗, 𝐼∗∗) values of the 

proposed policy are presented. As seen from the height 

of the bars representing the average system costs of the 

policies the performances are so close to each other: 

average and maximum optimality gaps are calculated 

as 0.25% and 0.90%, respectively. Furthermore, for 

both of the policies average system cost is concave in h 

that converges to a certain value (18) when h is above 

12. As h increases and becomes larger relative to c, both 

policies demotivate production. In our example, when 

ℎ > 12 it is optimal not to produce at all. In this case 

all the incoming demands are lost and the average 

system cost converges to λc = 18 for both of the 

policies. In parallel to this observation, it is also seen 

from the figure that both of the optimal control 

parameters of the proposed policy, which are defined 

by (𝐼∗, 𝐼∗∗), are non-increasing in h. Equivalently we 

can say that they would be non-decreasing in c. On the 

hand, when holding cost rate is getting smaller and 

smaller (compared to the unit lost sales cost) the 

average cost converges to zero. As h decreases both 𝐼∗ 

and 𝐼∗∗ increase in order to minimize shortage and start-

up costs. At the extreme, when ℎ = 0, 𝐼∗ can be set to 

any value above a threshold that guarantees no 

shortage. Similarly,  𝐼∗∗ can be any value (greater than 

𝐼∗) such that fixed cost per each server is incurred only 

finitely many times. For all such control levels the long-

run average system cost would be zero.  

 

 
Figure 2. Effects of changes in h on the average cost and (𝐼∗, 𝐼∗∗) 

 

7. Conclusion 

This article considers a production-inventory system in 

a make-to-stock environment with multiple identical 

production channels (machines, servers or lines), fixed 

production start-up costs and lost sales. We assume that 

production times are 2-phase Coxian random variables 

that allows us to model rework/remanufacturing and 

repair operations within the production process. 

Demands are generated according to a stationary 

Poisson process and unsatisfied demands are 

immediately lost.  

We extend the existing literature by considering phase-

type production times and multiple servers with start-

up costs in the same model. The system is modeled as 

an 𝑀/𝐶𝑜𝑥2/𝑠 make-to-stock queue and dynamic 

programming formulation is developed. Thereafter, we 

first numerically characterize the optimal production 

policy and reveal that it has a highly dynamic nature. 

Secondly, we propose a policy structure that aims to 

capture the dynamic nature of the optimal policy with 

two control and three weight parameters. Control 

parameters are to define the maximum inventory and 

the production start-up levels. The other three 

parameters are the weights of the number of active 

servers at stage-1, the number of active servers at stage-

2 and the number of items in inventory. This policy 

structure has the capability to trace a large space of 

several different policies. Using this structure we 

specifically propose a policy with fixed weight 

parameters and test its performance with respect to the 

optimal. Results reveal that our policy, which is 

controlled by only two parameters and thus easy-to-

apply, is near optimal at all the instances.   
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