
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.10, No.1, pp.118-136 (2020)

http://doi.org/10.11121/ijocta.01.2020.00797

RESEARCH ARTICLE

An improved differential evolution algorithm with a restart
technique to solve systems of nonlinear equations

Jeerayut Wetweerapong and Pikul Puphasuk*

Deparment of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
wjeera@kku.ac.th, ppikul@kku.ac.th

ARTICLE INFO ABSTRACT

Article History:
Received 06 March 2019
Accepted 16 December 2019
Available 31 January 2020

In this research, an improved differential evolution algorithm with a restart
technique (DE-R) is designed for solutions of systems of nonlinear equations
which often occurs in solving complex computational problems involving vari-
ables of nonlinear models. DE-R adds a new strategy for mutation operation
and a restart technique to prevent premature convergence and stagnation dur-
ing the evolutionary search to the basic DE algorithm. The proposed method
is evaluated on various real world and synthetic problems and compared with
the recently developed methods in the literature. Experiment results show that
DE-R can successfully solve all the test problems with fast convergence speed
and give high quality solutions. It also outperforms the compared methods.

Keywords:
Systems of nonlinear equations
Global optimization
Differential evolution algorithm
Restart technique

AMS Classification 2010:
65K10

1. Introduction

Difficult nonlinear problems arise in a variety
of fields in science and engineering, which de-
mands for the effective computational methods
and leads to the development of various intelli-
gence methods [1, 2] such as genetic algorithm,
particle swarm optimization, and differential evo-
lution algorithm. These methods are recognized
as the alternative approaches to the analytical
ones and have found applications in many areas.
For example, they have been applied to data clus-
tering problems in data science [3, 4], the weight
training of artificial neural networks [5,6], and nu-
merical treatments of nonlinear systems [7–11].
This research focuses on solving nonlinear systems
of equations which is common and important both
in theoretical and application aspects [12–16]. It
has been used as a key part of solving complex
problems involving decision variables of nonlin-
ear models. New systems of nonlinear equations
often emerge from computational problems and
can range from moderate problems with a few
variables to the hard ones with many variables.

For example, physical models that are expressed
as nonlinear partial differential equations become
large systems of nonlinear equations when dis-
cretized [17]. The systems may also have strongly
dependent variables or a large number of local so-
lutions, which makes them much more difficult to
solve. So the analytical solution approach aiming
to get the closed form solution is usually imprac-
tical or impossible.
There are two practical approaches to solving a
system of nonlinear equations: the local meth-
ods that directly solve the original system and the
global methods that transform the system into an
optimization problem (with box constraints of the
variables) and solve that equivalent optimization
problem instead. The local methods consist of
iterative procedures that require an approximate
solution as a starting vector point and use the lo-
cal information (the derivatives or gradients) from
the equational functions of the system to compute
a new better approximate solution point for the
next iteration. They include all various Newton-
type methods [12] and can produce solutions with
good computational speed and solution quality if

*Corresponding Author

118

An improved differential evolution algorithm with a restart technique. . . 119

the functions satisfy some analytical properties
and an approximate solution sufficiently close to
a real solution is given. Since these critical re-
quirements of the local methods are often not full-
filled, the derivative-free global solution methods
are needed.

1.1. Related work

There are a few global methods proposed for solv-
ing nonlinear systems in the literature. In 1998,
Karr et al. [18] presented a hybrid scheme us-
ing a genetic algorithm to locate initial guesses
of solutions, which are then supplied to a Newton
method. Their results on one selected test prob-
lem of finding the nodes and weights for Gauss-
Legendre quadrature showed that the genetic al-
gorithm can effectively locate an initial guess that
allows the Newton method to converge to an ac-
curate solution. Later, Grosan and Abraham [19]
applied a multi-objective optimization approach
to solve nonlinear systems in 2008. They used
a genetic algorithm and considered the nondomi-
nated solutions stored in an external set. Several
problems are tested and the obtained solutions
of various qualities both in number of different
solutions and accuracy are reported. In 2009,
Hirsch et al. [20] used the continuous GRASP
optimization method, a multi-start local search
procedure, to find all roots of nonlinear systems.
In order to find different solutions, the objective
function is adaptively modified to create an area
of repulsion (or penalty region) around solutions
that have already been found, and the continu-
ous GRASP is run multiple times. The method
showed promising results on four selected nonlin-
ear systems from the literature. Jaberipour et
al. [21] used a particle swarm optimization algo-
rithm to solve nonlinear systems in 2011. They
proposed a new way of updating each particle
and a mechanism to replace some of the worst
particles. Several test problems including both
nonlinear systems of a single equation and a few
equations are tested, and the solutions and their
accuracies are reported. In 2012, Pourjafari and
Mojallali [22] proposed a hybrid scheme of a two-
phase root finder for a nonlinear system using an
invasive weed optimization algorithm and a clus-
tering technique. They also aimed to locate all
roots of the system. The approach gives success-
ful results on several constructed nonlinear equa-
tions in single variable that have many local so-
lutions and on three real world problems of small
size that have a few different solutions. Oliveira
and Petraglia [23] proposed a stochastic optimiza-
tion method known as fuzzy adaptive simulated
annealing (fuzzy ASA) to find many solutions of

a nonlinear system in 2013. The fuzzy ASA is
run several times to explore different regions dur-
ing different activations. The method is stopped
when the solutions with the predefined accuracy
are found. Several test problems are tested and
the obtained high accuracy solutions are reported.
In 2016, Raja et al. [24] presented a memetic algo-
rithm (GA-SQP), a hybrid of a genetic algorithm
and a local search method based on a sequen-
tial quadratic programming (SQP) technique, for
solving nonlinear systems. Several variants of
GA-SQPs are proposed and tested on six different
application problems. The results showed that
the hybrid approaches give higher precision solu-
tions and their proposed methods outperform sev-
eral methods: simulated annealing (SA), pattern-
search (PS), Nelder–Mead (NM) and Levenberg-
Marquardt (LM) algorithm.
Recently in 2018, Zhang et al. [25] proposed a
modified cuckoo search algorithm (CSA) for solv-
ing nonlinear equations and nonlinear systems.
Four application systems are used to evaluate
the CSA performance. By setting high preci-
sion tolerance as the termination condition, solu-
tions with high accuracies are obtained and re-
ported. They have shown that the CSA gives
more accurate solutions than those obtained by
GA-SQPs. And also in 2018, Raja et al. [10]
have presented the particle swarm optimization
hybrid with Nelder-Mead method (PSO-NMM) to
solve nonlinear benchmark models. PSO-NMM
exploits the strength of PSO as an efficient global
search method to find good initial solutions and
then applies the Nelder-Mead simplex method to
refine the solutions for rapid local convergence.
They have shown that for moderate to difficult
nonlinear system problems, the hybridization of
NMM can enhance the convergence and give qual-
ity solutions with high precision.

1.2. Innovative contribution

From the development of computational intelli-
gence and evolutionary optimization methods to
solve various complex real world and synthetic
test problems of nonlinear systems, it is clear that
the global methods become the essential tools and
need more researchers attentions. This approach
will also make solving nonlinear systems an im-
portant field of global optimization since it can
supply plenty of challenging test problems. In
addition, research contributions in this direction
still lack common ground of how to compare and
establish the obtained results.
In this research, we aim to apply the differential

120 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

evolution algorithm (DE) to solve nonlinear sys-
tems. DE is a popular and efficient global opti-
mization method introduced by Storn and Price
during the years 1995-1997 [26, 27] and it is sur-
prising that no explicit research contributions on
using DE to solve the problems are found among
our extensive related literature reviews. We pro-
pose an improved differential evolution algorithm
with a restart technique (DE-R) for solving the
problems and offer a basic ground of applying DE
in this direction. The main features of the pro-
posed algorithm can be summarized as follows:

• The mixing strategy of the xbest-
mutation to the basic DE mutation that
utilizes the current best vector solution to
enhance the search and the convergence
to an optimal solution.

• The incorporating of a restart technique
to prevent premature convergence and
stagnation during the evolutionary search.

• Its performance both in term of the con-
vergence speed and the achievement of
high precision solutions are tested on
several nonlinear benchmark problems of
varying difficulty.

The remainder of the paper is organized as fol-
lows. The basic differential algorithm is presented
in the next section and the proposed algorithm is
described in Section 3. Section 4 gives details of
the experimental design and lists all the bench-
mark problems. In Section 5, the performances
of the DE-R method are compared with those of
the basic DE algorithms based on the setting of
the value to reach, and with those of the PSO and
PSO-NMM methods [10] based on the setting of
the maximum number of function evaluations. Fi-
nally, the conclusion are given in the last section.

2. The differential evolution algorithm
(DE)

The basic or classic DE algorithm [26,27] for solv-
ing a continuous optimization problem is a sto-
chastic search method using a population of real
vectors with four main operations: initialization,
mutation, crossover and selection. The pseudo
code of the basic DE is illustrated in Table 1. Its
main features are the differential mutation, the
combined binomial crossover and the greedy se-
lection. First, the initial population is generated
uniformly in feasible region. For each generation
and each target vector xi, three different random

population vectors xr1, xr2, xr3, which are also dif-
ferent from the target vector, are used to gener-
ate a mutant vector xm = xr1 + F (xr2 − xr3) by
adding the scaled difference of two vectors to an-
other one with the scaling factor F . Then, some
components of the target vector are exchanged
with those of the mutant vector according to the
crossover rate CR to produce the trial vector. The
trial vector will replace the target vector in the se-
lection process if it is fitter.
For more than two decades, DE has been shown
to be one of the most efficient methods for con-
tinuous optimization problems [28–30]. However,
DE’s performances depend on five main factors:
the population size NP , the control parameters F
and CR, the dimension D, the objective function
f to be solved, and the amount of computations
allowed [31,32]. There are numerous research con-
tributions on modifying DE to improve the per-
formances in solving practical problems. These
include the main approaches of adapting the con-
trol parameters and adjusting the basic mutation
operation [33–42].

3. An improved differential evolution
algorithm with a restart technique
(DE-R)

We propose an improved differential evolution al-
gorithm with a restart technique (DE-R) as a
general purpose method for solving nonlinear sys-
tems through their equivalent transformed objec-
tive functions. Let the form of a nonlinear system
be

f1(x1, x2, ..., xn) = 0

f2(x1, x2, ..., xn) = 0

...
fm(x1, x2, ..., xn) = 0

where fi : [LB,UB]n ⊆ Rn → R for i = 1, ...,m
are nonlinear equations (including linear func-
tions) and x = (x1, x2, ..., xn) is a real vector. We
want to find a solution x∗ such that fi(x

∗) = 0
simultaneously for all i. The problem is trans-
formed into the corresponding optimization prob-
lem by defining the objective function f as the
sum of the absolutes or the squares of all fi.
For the smoothness of f , we use the sum of the
squares. So the objective function f is as follows:

f(x) =
m∑
i=1

f2i (x). (1)

An improved differential evolution algorithm with a restart technique. . . 121

Table 1. Pseudo code of the DE algorithm.

The DE algorithm

(1) Inputs:
Objective function to be minimize (f), problem dimension (D), and population size (NP).

(2) Initialization:
(2.1) Randomly initialize all (row) vectors of the population matrix P = [xij] of size NP ×D with

real values between the lower and upper bounds LB and UB.
(2.2) Calculate the fitness (the objective function value) for each population vector and record the

best vector xbest and the best value fbest.
(3) Mutation:

For each target population vector xi, construct the mutant vector xm by

xm = xr1 + F (xr2 − xr3)

where r1, r2 and r3 are randomly generated distinct indices (in the range of 1 to NP) which are
also different from the target index i, and F is a scaling factor.

(4) Crossover:
Construct the trial vector (the candidate vector) xc by replacing some components of xi with the
corresponding components of xm as follows:

xcj =

{
xmj ; rand() < CR or j = IC,
xij ; otherwise

where rand() is a uniform random number in [0, 1], CR is a crossover rate, and IC is a randomly
fixed index from 1 to D.

(5) Selection:
Apply the greedy selection and check for an update of xbest.
(5.1) Greedy selection:

If f(xc) < f(xi), then replace the target vector xi with xc.
(5.2) Updating xbest:

If f(xc) < fbest, then update xbest with xc and update fbest with f(xc).
(6) Stopping condition:

Repeat all the steps (3) - (5) until fbest is less than the value to reach (V TR) or the maximum
number of function evaluations (maxnf) is reached. Then report the obtained best solution.

To be able to optimize the objective function by
using small number of function evaluations, we
tend to use small population size. But optimiz-
ing with small populations will tend to loss diver-
sity and lead to premature convergence or stagna-
tion easily [31, 32, 43, 44]. We can also accelerate
the convergence by utilizing the information of
the population xbest but this again increases the
chance of those convergence problems. DE-R uti-
lizes the xbest information and at the same time
prevents premature convergence and stagnation
by incorporating an xbest-mutation and a restart
technique.
The pseudo code and the flowchart of the pro-
posed DE-R method are presented in Table 2 and
Figure 1, respectively. After initialization, the
DE-R creates a mutant vector by using the mix-
ing scheme of two mutation operations: the basic
mutation

xm = xr1 + F (xr2 − xr3) (2)

and the xbest-mutation [28] that uses the xbest
information

xm =xbest+ F1(xr1 − xr2) + F2(xr3 − xr4) (3)

where xr1, xr2, xr3, and xr4 are different random
vectors from the population and different from the
target vector xi. Each mutation operation is ran-
domly chosen and applied with the proportion of
50% : 50%. And instead of using a fixed value for
scaling factors, the DE-R algorithm uses random
values in the range of [0.5, 0.7] for F, F1 and F2.
These basic proportion and range of scaling fac-
tors are chosen from the preliminary experiments.
For the crossover operation, the fixed value of
crossover rate CR = 0.9 is used to generate the
trial vector. Then the same greedy selection as
in basic DE is applied. To prevent premature
convergence or stagnation, the restart technique
randomly restart PR of the population vectors
by replacing them with the new generated vec-
tors as in the initialization for every NRS gen-
erations. This incorporated restart operation pe-
riodically supplies small amount of new contents
to the evolving population. Note that the xbest
vector is kept, updated and used in the xbest-
mutation along the entire optimization process.

122 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

Table 2. Pseudo code of the improved DE algorithm with a restart (DE-R).

The improved DE algorithm with a restart (DE-R)

(1) Inputs and control parameters:
Objective function to be minimize : f
Problem dimension: D
Lower and upper bounds of the problem: LB,UB
Population size: NP = 50
The value to reach: V TR = 10−20

Maximum number of function evaluations: maxnf
Scaling factors: F, F1, F2 in the range of [0.5, 0.7]
Crossover rate: CR = 0.9
Mixing rate of basic mutation and xbest-mutation: 0.5
The period to apply a restart (number of generations): NRS = 200
Restart rate (the percentage to restart the population vectors): PR = 0.2

(2) Initialization:
(2.1) Randomly initialize all (row) vectors of the population matrix P = [xij] of size NP ×D with

real values between the lower and upper bounds LB and UB.
(2.2) Calculate the fitness (the objective function value) for each population vector and record the

best vector xbest and the best value fbest.
(3) Mutation:

(3.1) For each target population vector xi, generate a uniform random number u in [0, 1]. If u < 0.5,
apply the DE basic mutation in (3.2); otherwise, apply the xbest- mutation in (3.3).

(3.2) Basic mutation:
Randomly generate distinct indices r1, r2 and r3 (in the range of 1 to NP) which are also
different from the target index i. Construct the mutant vector xm by

xm = xr1 + F (xr2 − xr3)

where F is randomly generated in [0.5, 0.7].
(3.3) The xbest-mutation:

Randomly generate distinct indices r1, r2, r3, and r4 (in the range of 1 to NP) which are
also different from the target index i. Construct the mutant vector xm by

xm = xbest+ F1(xr1 − xr2) + F2(xr3 − xr4)

where xbest is the current best solution and F1, F2 are randomly generated in [0.5, 0.7].
(4) Crossover:

Construct the trial vector (the candidate vector) xc by replacing some components of xi with the
corresponding components of xm as follows:

xcj =

{
xmj ; rand() < CR or j = IC,
xij ; otherwise

where xm is the mutant vector from the step (3), CR is the crossover rate, rand() is a uniform
random number in [0, 1], and IC is a randomly fixed index from 1 to D.

(5) Selection:
Apply the greedy selection and check for an update of xbest.
(5.1) Greedy selection:

If f(xc) < f(xi), then replace the target vector xi with xc.
(5.2) Updating xbest:

If f(xc) < fbest, then update xbest with xc and update fbest with f(xc).
(6) Restart:

Apply the restart technique every NRS generations by randomly choosing PR × NP distinct
population vectors to be re-initialized as in the initialization where PR is the restart rate.

(7) Stopping condition:
Repeat all the steps (3) - (6) until fbest is less than V TR or maxnf is reached. Then report the
obtained best solution.

An improved differential evolution algorithm with a restart technique. . . 123

Start

Set NP, maxnf, NRS and VTR.

Generate initial population.

Evaluate all vectors xi ; i=1,2,…,NP.

Find and set xbest and fbest.

Set the generation number G=1 and

number of function evaluations nf=0.

i=1

Set a target vector xi.

(Mutation)

Generate the mutant vector xm.

(Crossover)

Generate the candidate vector xc from xi and xm.

(Selection)

Compute f(xc) and nf=nf+1.

Update xi by xc if f(xc)<f(xi).

Update xbest and fbest by xc and f(xc) if f(xc)<fbest.

fbest <VTR or

nf > maxnf

Report xbest and fbest.

G:=G+1

i:=i+1

Stop

Yes

No

No

Yes

i=NP

Yes

Modulo(G,NRS)=0

Apply the restart operation.

No

Figure 1. Flowchart of the proposed DE-R method.

124 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

4. Experimental design

To evaluate the performance of the DE-R algo-
rithm, two experiments with different settings
and measurements are performed. The first ex-
periment assesses the proposed DE-R algorithm
against the basic DE algorithms on 10 nonlin-
ear benchmark models by setting the value to
reach (V TR) while the second experiment com-
pares the DE-R algorithm to the PSO and PSO-
NMMmethods [10] by setting the maximum num-
ber of function evaluations (maxnf).

4.1. Experiment 1: Performance
comparison of the DE-R with the
basic DE algorithms

The DE-R algorithm and the basic DE algorithms
are tested on 10 selected nonlinear systems con-
sisting of 6 real world problems (case study 1-6)
and 4 synthetic problems (case study 7-10). Their
definitions, parameters, variable bounds and the
solutions (for the case of synthetic problems) are
listed as follows.

Case study 1: Neurophysiology application [23,
45]. The system consists of the following six equa-
tions in six variables

f1(x) = x21 + x23 − 1 = 0
f2(x) = x22 + x24 − 1 = 0
f3(x) = x5x

3
3 + x6x

3
4 − c1 = 0

f4(x) = x5x
3
1 + x6x

3
2 − c2 = 0

f5(x) = x5x1x
2
3 + x6x

2
4x2 − c3 = 0

f6(x) = x5x
2
1x3 + x6x

2
2x4 − c4 = 0

where ci = 0 for all i as in [23] and −10 ≤ xi ≤ 10.

Case study 2: Robot kinematics application [46].
This problem concerns the indirect-position prob-
lem which is to find the desired position and ori-
entation of the robot hand and the relative joint
displacements. This problem can be reduced to
the following system of eight equations in eight
variables

f1(x) = 4.731× 10−3x1x3 − 0.3578x2x3

−0.1238x1 + x7 − 1.637× 10−3x2

−0.9338x4 − 0.3571 = 0

f2(x) = 0.2238x1x3 + 0.7623x2x3 + 0.2638x1

−0.07745x2 − 0.6734x4 − 0.6022 = 0

f3(x) = x6x8 + 0.3578x1 + 4.731× 10−3x2 = 0

f4(x) = −0.7623x1 + 0.2238x2 + 0.3461 = 0

f5(x) = x21 + x22 − 1 = 0

f6(x) = x23 + x24 − 1 = 0

f7(x) = x25 + x26 − 1 = 0

f8(x) = x27 + x28 − 1 = 0

where −1 ≤ xi ≤ 1.

Case study 3: Automative steering application
[20, 47]. This problem describes the kinematic
synthesis of a trailing six-member mechanism for
automotive steering. The system contains three
equations in three unknown as follows

fi(x) = [Ei(x2 sinϕi − x3)− Fi(x2 sinψi − x3)]
2

+[Fi(1 + x2 cosψi)− Ei(x2 cosϕi − 1)]2

−[(1 + x2 cosψi)(x2 sinϕi − x3)x1

−(x2 sinψi − x3)(x2 cosϕi − x3)x1]
2 = 0 ,

i = 1, 2, 3

where 0 ≤ xi ≤ 1 and

Ei = x2(cosψi − cosψ0)− x2x3(sinψi − sinψ0

−(x2 sinψi − x3)x1

Fi = −x2 cosϕi − x2x3 sinϕi + x2 cosϕ0

+x1x3 + (x3 − x1)x2 sinϕ0.

The constants ϕi and ψi are given as follows

ϕ0 = 1.3954170041747090114,

ϕ1 = 1.7444828545735749268,

ϕ2 = 2.0656234369405315689,

ϕ3 = 2.4600678478912500533,

ψ0 = 1.7461756494150842271,

ψ1 = 2.0364691127919609051,

ψ2 = 2.2390977868265978920,

ψ3 = 2.4600678409809344550.

Case study 4 : Economics modeling applica-
tion [23, 45]. This problem arises in economics
modeling. It can be extended for general dimen-
sions n as follows

fi(x) = (xi +
n−i−1∑
j=1

xjxj+i)xn − ci = 0,

i = 1, 2, ..., n− 1

fn(x) =
n−1∑
j=1

xj + 1 = 0

where ci = 0 for all i as in [23] and −10 ≤ xi ≤ 10.

Case study 5 : Chemical equilibrium applica-
tion [23, 46, 48]. This problem describes a chem-
ical equilibrium system. It concerns the combus-
tion of propane in air to form ten products, which
are transformed to ten equations in ten variables.
To solve this problem, the system can be reduced
to the following systems of five equations in five

An improved differential evolution algorithm with a restart technique. . . 125

variables

f1(x) = x1x2 + x1 − 3x5 = 0

f2(x) = 2x1x2 + x1 + x2x
2
3 +R5x2 −R1x5

+2R7x
2
2 +R4x2x3 +R6x2x4 = 0

f3(x) = 2x2x
2
3 + 2R2x

2
3 − 8x5 +R3x3

+R4x2x3 = 0

f4(x) = R6x2x4 + 2x24 − 4R1x5 = 0

f5(x) = x1(x2 + 1) +R7x
2
2 + x2x

2
3 +R5x2

+R2x
2
3 + x24 − 1 +R3x3 +R4x2x3

+R6x2x4 = 0

where −100 ≤ xi ≤ 100 and the constants used
in this system are

R1 = 10, R2 = 0.193, R3 = 0.002597/
√
40,

R4 = 0.003448/
√
40, R5 = 0.00001799/40,

R6 = 0.0002155/
√
40, R7 = 0.00003846/40.

Case study 6 : Combustion application [23,45].
This problem is a typical chemical equilibrium
problem which represents a combustion problem.
The system consists of ten equations in ten un-
knowns as follows

f1(x) = x2 + 2x6 + x9 + 2x10 − 10−5 = 0

f2(x) = x3 + x8 − 3× 10−5 = 0

f3(x) = x1 + x3 + 2x5 + 2x8 + x9 + x10

−5× 10−5 = 0

f4(x) = x4 + 2x7 − 10−5 = 0

f5(x) = 0.5140437× 10−7x5 − x21 = 0

f6(x) = 0.1006932× 10−6x6 − 2x22 = 0

f7(x) = 0.7816278× 10−15x7 − x24 = 0

f8(x) = 0.1496236× 10−6x8 − x1x3 = 0

f9(x) = 0.6194411× 10−7x9 − x1x2 = 0

f10(x) = 0.2089296× 10−14x10 − x1x
2
2 = 0

where −20 ≤ xi ≤ 20.

Case study 7 : Rosenbrock function [49]. This
function is well-known for testing the perfor-
mance of the optimization methods. The two-
dimensional function has the global minimum in-
side a long, narrow, parabolic shaped flat val-
ley. It is unimodal for dimensions 2 and 3, and
has 2 minima for higher dimensions. The high-
dimensional function is highly nonseparable and is
used as one of the difficult test functions. Rosen-
brock function can be written in the form of sys-
tem of nonlinear equations in general dimensions
n as follows{

f2i−1(x) = 10(xi+1 − x2i) = 0, i = 1, 2, ..., n− 1

f2i(x) = 1− xi = 0, i = 1, 2, ..., n− 1.

In this work, we set n = 10 and −100 ≤ xi ≤ 100.
The global solution is (1, 1, ..., 1).

Case study 8 : SINQUAD function [50]. This
function is multimodal and nonseparable and it is
one of the test functions from CUTE: Constrained
and Unconstrained Testing Environment. It can
be scaled up to arbitrary dimension n and can be
written in the form of the following system

f1(x) = (x1 − 1)2 = 0

fi(x) = sin(xi − xn)− x21 + x2i = 0, i = 1, ..., n− 1

fn(x) = x2n − x21 = 0.

We set n = 10 and −100 ≤ xi ≤ 100.
There are 2n−1 + 1 solutions in the forms
(1, 1, ..., 1, 1) and (1, a1, a2, ..., a8,−1) where aj ∈
{0.2357835607,−1}.
Case study 9 : Proposed function 1. This
function can be written in the form of the sys-
tem of three nonlinear equations in n variables
where n ≥ 3. The first two equations give the
intersection of two n-spheres which is an (n− 1)-
sphere. The last equation chooses the two in-
tersection points where x1 = 0.05. This system
is expected to be highly nonseparable since the
searching points must lie in the (n− 1)-sphere. It
is shown as follows

f1(x) = x21 + x22 + · · ·+ x2n − 100 = 0

f2(x) = (x1 − 0.1)2 + x22 + · · ·+ x2n − 100 = 0

f3(x) = x21 + (x2 − x3)
2 + (x3 − x4)

2 + · · ·

+(xn−1 − xn)
2 − 0.0025 = 0.

We set n = 10 and −100 ≤ xi ≤
100. There are two solutions which are
(0.05, a, a, ..., a) and (0.05,−a,−a, ...,−a) where

a =
√
(100− 0.052)/(n− 1).

Case study 10 : Proposed function 2. This func-
tion can be written in the form of the system of
three nonlinear equations in n variables where n
is even. The system has one obvious solution at
(n, n, ..., n). It is presented as follows

f1(x) = x1 + x2 + · · ·+ xn − n2 = 0

f2(x) = x21 + x22 + · · ·+ x2n − n3 = 0

f3(x) = x21 − x22 + x23 − x24 + · · ·+ x2n−1 − x2n = 0.

We set n = 10 and −100 ≤ xi ≤ 100.
For the first experiment, the proposed DE-R is
tested and compared with two basic DE algo-
rithms. The basic DEs follow the settings as rec-
ommended in [27] to use NP in the range of 5×D
to 10×D, F = 0.5 and CR = 0.9. Since the max-
imum D of all test problems is 10, NP = 50 and
NP = 100 are chosen. So we denote these ba-
sic DEs as DE59-50 and DE59-100, respectively.

126 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

The DE-R method, denoted by DE59-50-R, uses
NP = 50, F in [0.5, 0, 7] and the same CR = 0.9.
The settings and features of DE59-50, DE59-100
and DE59-50-R are summarized in Table 3. Each
algorithm is run 30 times for each problem. The
maximum number of function evaluations maxnf
is set to 1000000 and the V TR (value to reach)
for fbest is set to 10−20 to guarantee that each
fi(xbest) is less than 10−10. If the fbest value is
less than the V TR before reaching the maxnf ,
the successful run and the number of function
evaluations used (nf) are recorded. We report
the number of successful runs (NS), the mean of
function evaluations (Mean nf) and the percent-
age of standard derivation (%SD).

4.2. Experiment 2: Performance
comparison of DE-R with PSO and
PSO-NMM methods

The second experiment compares the perfor-
mance of the DE-R algorithm with those of the
PSO and PSO-NMM using the same setting as
in [10]. The objective function f is the mean
square defined by

f(x) =
1

m

m∑
i=1

fi(x)
2. (4)

We choose the following PSO and PSO-NMM
variants that obtain good results in [10]: PSO-12,
PSO-15, PSO-16, PSO-NMM-12, PSO-NMM-15,
and PSO-NMM-16. They are compared on the
case studies 1, 4, 5, and 6. Note that for the case
study 4, the parameters ci = 1 for i = 1, 2, ..., n−1
where n = 5. Each algorithm conducts 100 inde-
pendent runs for each problem. The Min, Mean
and SD values of fbest of DE-R at each maxnf
are compared with those of PSO and PSO-NMM.

The PSO-12 and PSO-15 methods use maxnf =
50000 while PSO-16 uses maxnf = 100000. The
PSO-NMM-12, PSO-NMM-15 and PSO-NMM-16
variants extend the corresponding PSO variants
respectively. For each PSO-NMM method, if its
PSO phase obtains the solution that reaches the
tolerance 10−15 or uses up all the maxnf with-
out reaching the tolerance, then it enters the
NMM phase by applying the local search using the
Nelder-Mead method with the additional func-
tion evaluations of 200000. To compare the DE-R
with each PSO-NMM method on each test prob-
lem, the maxnf for DE-R needs to be adjusted
properly. For the former case, Neurophysiology
and Economics modeling applications, the DE-R
method uses only 200000 as the maxnf . For the
latter case, Chemical equilibrium and Combus-
tion applications, DE-R uses the sum of the func-
tion evaluations of both two phases.

5. Results and discussion

This section shows performance comparison of
the DE-R with the basic DE algorithms and the
performance comparison of DE-R with PSO and
PSO-NMM methods. In each report table, the
best values are indicated in bold. The discussion
for each experiment is given as follows.

5.1. Performance comparison of the DE-R
with the basic DE algorithms

The performance comparison of DE59-50, DE59-
100 and DE59-50-R are shown in Table 4, Figure
2 and Figure 3. The table presents the NS, Mean
and %SD of each method for all 10 test systems.
For the ability and stability of solving each prob-
lem, the number of successful runs out of the
total 30 runs is considered first. From Table 4,
the results show that the DE59-50 algorithm can
successfully solve 6 out of 10 problems. It can-
not solve the problems 6, 8, 9 and 10, and gives
no successful runs out of total 30 runs for these
problems. It can solve problem 5 (Chemical Equi-
librium Applications) and problem 7 (Rosenbrock
problem), but gives high Means and %SDs. How-
ever, DE59-50 gives the best results for the first
four problems which appear to be relatively easy
problems. We can conclude that DE59-50 is good
for easy problems but cannot be recommended
for solving difficult problems. This is because of
its too small population size.
The DE59-100 algorithm can solve all 10 prob-
lems. This shows that the increased population
size of 100 can increase the solving ability of the
DE algorithm with F = 0.5 and CR = 0.9. How-
ever, DE59-100 gives very high Mean values. This
shows that its speed of convergence is rather slow.
The proposed DE59-50-R algorithm can success-
fully solve all 10 problems. It also gives the best
results (smallest Means) for the last 6 problems
which appear to be difficult problems. For the
first four easy problems, DE59-50-R gives the
second best results. This shows that the incor-
porated new mutation strategy and restart tech-
nique can prevent the premature convergence and
stagnation, and still gives fast convergence speeds
for difficult problems as clearly shown in Figure
2 and Figure 3.

Some solutions obtained by DE59-50-R for all
application systems and SINQUAD function are
reported. We show only 4 different solutions for
each problem. Since we set the V TR = 10−20,
the absolute values of each fi(x) must be less
than 10−10. Table 5 shows some solutions of Neu-
rophysiology application. Our method gives 30

An improved differential evolution algorithm with a restart technique. . . 127

Table 3. The settings and features of DE59-50, DE59-100 and DE59-50-R.

DE algorithm NP F CR Mutation and other feature
DE59-50 50 0.5 0.9 basic mutation

DE59-100 100 0.5 0.9 basic mutation

DE59-50-R 50 [0.5, 0.7] 0.9 basic mutation & xbest-mutation
and a restart technique

Table 4. Performance comparison of DE59-50, DE59-100 and DE59-50-R using NS, Mean nf,
%SD values at V TR = 10−20 averaged over 30 independent runs.

Systems Methods NS Mean nf %SD
1: Neurophysiology DE59-50 30 27272.70 16.98

application DE59-100 30 76787.67 19.51
DE59-50-R 30 40233.67 16.99

2: Robot kinematics DE59-50 30 24942.53 28.27
application DE59-100 30 57355.60 18.13

DE59-50-R 30 34721.30 17.70

3: Automative steering DE59-50 30 2303.30 12.34
application DE59-100 30 4307.83 8.89

DE59-50-R 30 2682.10 12.03

4: Economics modeling DE59-50 30 12780.60 5.96
application DE59-100 30 30193.97 4.63

DE59-50-R 30 21831.93 7.96

5: Chemical equilibrium DE59-50 30 190249.03 47.06
application DE59-100 30 124793.33 5.70

DE59-50-R 30 30582.23 3.95

6: Combustion DE59-50 0 - -
application DE59-100 30 95503.70 3.79

DE59-50-R 30 59380.20 4.13

7: Rosenbrock DE59-50 30 193992.90 50.51
function DE59-100 30 110388.83 3.62

DE59-50-R 30 59565.40 2.52

8: SINQUAD DE59-50 0 - -
function DE59-100 30 173259.07 12.29

DE59-50-R 30 81755.37 8.90

9: Proposed DE59-50 0 - -
function 1 DE59-100 30 109782.20 6.95

DE59-50-R 30 65107.80 5.72

10: Proposed DE59-50 0 - -
function 2 DE59-100 30 638354.80 14.20

DE59-50-R 30 160827.47 12.69

different solutions for 30 runs. The values of each
variable can be positive or negative. There are
two trends of solutions. First, their magnitudes
are pairwise equal as |x1| = |x2|, |x3| = |x4| and
|x5| = |x6|. For another trend, all their compo-
nents are different. We notice that the absolute
values of x5 and x6 are quite smaller than other
components.
Some solutions of Robot kinematics application
are presented in Table 6. The authors in [46]
claimed that there are 16 solutions. Our results
show that the proposed method gives 10 different

solutions in 30 runs. All |xi| are not equal but
have roughly the same order. Table 7 shows some
solutions of Automative steering application. Our
method gives all 30 different solutions for 30 runs.
The absolute values of x1 are bigger than others
and the values of x2 and x3 have quite the same
order. For the Economics modeling application,
30 different solutions are obtained. Some of them
are reported in Table 8. Each variable can be pos-
itive or negative. The absolute values of x10 are
much smaller than others which have the same
order.

128 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

0 20 000 40 000 60 000 80 000

0

−20

−10

−15

−5

Number of function evaluations

lo
g1

0(
fb

es
t)

DE59−50
DE59−100
DE59−50−R

Neurophysiology application

(a)

0 20 000 40 000 60 00010 000 30 000 50 000

0

−20

−10

−15

−5

Number of function evaluations

lo
g1

0(
fb

es
t)

DE59−50
DE59−100
DE59−50−R

Robot kinematics application

(b)

0 2 000 4 0001 000 3 000

0

−20

−10

−15

−5

Number of function evaluations

lo
g1

0(
fb

es
t)

DE59−50
DE59−100
DE59−50−R

Automative steering application

(c)

0 20 00010 000 30 000

0

−20

−10

−15

−5

Number of function evaluations

lo
g1

0(
fb

es
t)

DE59−50
DE59−100
DE59−50−R

Economics modeling application

(d)

0 200 000100 00050 000 150 000

0

−20

−10

−15

−5

Number of function evaluations

lo
g1

0(
fb

es
t)

DE59−50
DE59−100
DE59−50−R

Chemical equilibrium application

(e)

0 200 000100 00050 000 150 000

0

−20

−10

−15

−5

Number of function evaluations

lo
g1

0(
fb

es
t)

DE59−50
DE59−100
DE59−50−R

Combustion application

(f)

Figure 2. Convergence graphs of DE59-50, DE59-100 and DE59-50-R for systems 1 - 6.

There are four real solutions of the Chemical
equilibrium application reported in [48]. Our
method gives all four solutions as shown in Table
9. For the Combustion application, the proposed
method gives 30 different solutions in 30 runs.
Some solutions are presented in Table 10. It
shows that the absolute values of x5, x6, x9 and
x10 are bigger than those of other components

which are rather small.
In case of the synthetic test problems, the num-
bers of solutions for each of Rosenbrock function,
proposed functions 1 and 2 are at most 2 and
all these solutions are found. Thus we show only
the solutions of SINQUAD function which has
2n−1 + 1 solutions. Some of them are shown in
Table 11. After running the proposed method 30

An improved differential evolution algorithm with a restart technique. . . 129

0 200 000100 00050 000 150 000

0

−20

−10

−15

−5

Number of function evaluations

lo
g1

0(
fb

es
t)

DE59−50
DE59−100
DE59−50−R

Rosenbrock function

(a)

0 200 000100 000 300 000

0

−20

−10

−15

−5

Number of function evaluations

lo
g1

0(
fb

es
t)

DE59−50
DE59−100
DE59−50−R

SINQUAD function

(b)

0 200 000100 00050 000 150 000

0

−20

−10

−15

−5

Number of function evaluations

lo
g1

0(
fb

es
t)

DE59−50
DE59−100
DE59−50−R

Proposed function 1

(c)

0e00 1e062e05 4e05 6e05 8e05

0

−20

−10

−15

−5

Number of function evaluations

lo
g1

0(
fb

es
t)

DE59−50
DE59−100
DE59−50−R

Proposed function 2

(d)

Figure 3. Convergence graphs of DE59-50, DE59-100 and DE59-50-R for systems 7 - 10.

Table 5. Some solutions of Neurophysiology application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 9.7749269097E-01 - 4.2695388140E-02 9.2272247439E-02 - 8.2491292630E-01
x2 - 9.7749277453E-01 4.2695288767E-02 - 1.1674880868E-01 7.9424101299E-01
x3 - 2.1096928480E-01 9.9908813614E-01 9.9573381602E-01 5.6525981992E-01
x4 2.1096889745E-01 - 9.9908814042E-01 - 9.9316147514E-01 6.0760284168E-01
x5 - 2.9012525772E-05 1.0549841840E-04 1.0199560579E-09 - 4.1050316028E-11
x6 - 2.9012444215E-05 1.0549834938E-04 1.0098557221E-09 4.2217134911E-11

f1(x) 1.9671153595E-11 - 5.6388893555E-11 1.6900481015E-11 - 1.7983725620E-11
f2(x) - 4.6815662458E-11 1.6239010137E-11 3.8434810889E-11 - 7.0937811181E-11
f3(x) 2.2663307018E-12 6.7481831402E-11 1.7678400883E-11 2.0558188234E-12
f4(x) - 6.9223284026E-11 - 6.2704301665E-14 - 8.0570377011E-13 4.4194815939E-11
f5(x) - 8.0752967592E-12 - 1.3367709799E-11 - 2.2980110987E-11 2.3198700376E-11
f6(x) 2.6177939401E-11 1.0192828755E-12 - 5.0234619236E-12 3.9133806914E-13

times, it can give 27 different solutions.
To show that the proposed method can also give
high quality solutions, it is applied to solve two
difficult application systems and one difficult syn-
thetic function (Neurophysiology and Combus-
tion systems, and SINQUAD function) by setting
3 different levels of the V TR values: 10−20, 10−30

and 10−40. The solutions once reaching each
V TR level are recorded in the same run in or-
der to investigate their behaviors and accuracies.
The results are shown in tables 12, 13, and 14,
respectively. One set of three solutions (each one
at each accuracy level) from the same run is re-
ported for each problem.

130 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

Table 6. Some solutions of Robot kinematics application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 1.6443166583E-01 1.6443166582E-01 6.7155426177E-01 6.7155426182E-01
x2 - 9.8638847688E-01 - 9.8638847685E-01 7.4095537891E-01 7.4095537883E-01
x3 - 9.5472843449E-01 2.3961601716E-01 - 2.3961165919E-01 9.5472976979E-01
x4 2.9747876626E-01 - 9.7086773778E-01 - 9.7086881339E-01 2.9747448069E-01
x5 - 9.1115479620E-01 - 9.9763539824E-01 9.5791710189E-01 - 1.2877823744E-01
x6 4.1206423943E-01 - 6.8728539911E-02 - 2.8704498935E-01 9.9167341678E-01
x7 9.9132241509E-01 - 6.1550840708E-01 - 5.2790902637E-01 9.6931180772E-01
x8 - 1.3145291671E-01 7.8813031971E-01 8.4930092421E-01 - 2.4583453656E-01

f1(x) - 2.4255042419E-12 4.6582404600E-11 2.1869284161E-11 - 1.5662637853E-11
f2(x) 3.1039615322E-11 4.5871084708E-12 - 1.3820167233E-11 5.0422999109E-12
f3(x) 2.1743830694E-12 1.2673250470E-11 1.4527121259E-11 - 5.7471936498E-11
f4(x) 1.5060341862E-11 2.7537028213E-11 5.3715809578E-11 - 2.9148350400E-12
f5(x) 4.0200731632E-11 - 1.2329803845E-11 3.2028157904E-11 - 1.9571233523E-11
f6(x) - 9.7184482684E-12 - 6.6788574671E-11 3.0616620350E-11 - 2.4448998381E-11
f7(x) 5.4400040028E-11 1.0798473227E-11 - 5.2414739216E-12 - 1.9850676658E-11
f8(x) - 2.2364221586E-11 2.5351054589E-11 - 1.3006706823E-11 - 3.8787306700E-11

Table 7. Some solutions of Automative steering application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 1.1192696492E-01 1.4669784820E-01 2.1001674043E-02 1.8459769700E-02
x2 3.8819470790E-05 2.5842964204E-05 1.0358260865E-05 2.5086298124E-05
x3 1.3969968025E-05 9.5393185049E-06 9.4604945191E-05 4.0484643474E-06

f1(x) - 2.4953389394E-12 5.1027141958E-13 1.5509436820E-11 1.0749400610E-12
f2(x) 6.2113867145E-12 - 1.8836413824E-12 2.9312085336E-11 1.9709660895E-11
f3(x) 9.1878352205E-11 3.1456991936E-11 4.8961749305E-11 6.6461220923E-11

Table 8. Some solutions of Economics modeling application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 - 6.1626101672E+00 6.0154692495E+00 5.1444125822E+00 3.5697160902E-01
x2 8.4423418690E+00 2.4451383666E+00 - 8.8035624273E-01 - 3.2209182844E+00
x3 - 6.0135423035E+00 - 4.3358334024E+00 1.8536153932E+00 6.4891799317E+00
x4 6.6724322251E+00 9.7533235680E-01 9.9392766203E-01 - 8.4197837365E+00
x5 1.4648933274E+00 - 6.7099720313E+00 8.8882743353E-01 3.8711746522E+00
x6 - 9.4952931192E+00 2.9005275369E+00 8.0171844852E-01 5.6239280280E+00
x7 - 1.8950537683E+00 - 2.0062068336E+00 - 3.9152883109E+00 6.0633634547E-01
x8 2.5753259373E+00 3.0111923766E+00 - 5.5692586733E-01 1.0345842326E+00
x9 3.4115059994E+00 - 3.2956476191E+00 - 5.3299310986E+00 - 7.3414727781E+00
x10 - 2.1904782760E-13 - 5.8674381000E-14 - 6.1325687030E-13 4.1496727200E-14

f1(x) 2.8765042169E-11 2.4583005293E-12 - 2.7179403893E-12 - 3.7642815954E-12
f2(x) 8.8232434540E-13 - 2.3163223689E-12 - 1.6660038822E-11 3.1943021197E-13
f3(x) 4.1467842031E-12 3.4719167082E-12 6.0666202644E-13 - 6.1741234660E-13
f4(x) 1.0720305561E-11 - 8.5259062950E-14 4.7145635625E-12 - 2.4212746954E-12
f5(x) - 1.1227997919E-11 6.1242977433E-13 - 1.3063316353E-12 3.0065629487E-12
f6(x) - 7.4689413357E-13 - 7.3251520844E-13 1.7618556611E-11 - 1.8728334542E-12
f7(x) - 2.4172620758E-12 - 4.7228264171E-13 1.2805457393E-12 1.0217298215E-12
f8(x) 4.0410941261E-12 9.8653194558E-13 1.7156652338E-11 - 6.5818503348E-14
f9(x) - 7.4728297801E-13 1.9337008404E-13 3.2686168644E-12 - 3.0464709312E-13
f10(x) 4.9998227780E-11 - 8.8817841970E-16 - 8.0000006619E-11 - 9.9991126490E-12

From tables 12 and 13, the solution for both ap-
plication problems at V TR = 10−20 are quite
different from those at V TR = 10−30 and 10−40

where at these higher accuracies we obtained sim-
ilar solutions with more accurate solutions at

V TR = 10−40. For the solutions of SINQUAD
function as in Table 14, we can see the same trend

An improved differential evolution algorithm with a restart technique. . . 131

Table 9. All solutions of Chemical equilibrium application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 3.1141022831E-03 2.7571773851E-03 2.4710000144E-03 2.1533077099E-03
x2 3.4597924347E+01 3.9242289252E+01 4.3879222733E+01 5.0549570315E+01
x3 6.5041778861E-02 - 6.1387603945E-02 5.7784455215E-02 - 5.4144807517E-02
x4 8.5937805056E-01 8.5972442500E-01 - 8.6020547295E-01 - 8.6067132299E-01
x5 3.6951859146E-02 3.6985043297E-02 3.6965520015E-02 3.7000695742E-02

f1(x) 4.4613771011E-11 - 4.0732806017E-11 - 2.5496216249E-11 - 2.4678356580E-11
f2(x) 7.7566347442E-12 - 3.0284536164E-11 5.4004083757E-11 2.1900292344E-11
f3(x) - 5.7297743156E-11 - 7.1773320794E-12 - 2.5416176759E-11 8.9192338411E-12
f4(x) 1.4782175484E-11 - 2.1605606193E-11 - 7.5870421057E-11 - 2.4946711363E-11
f5(x) - 4.8531411962E-11 - 6.2299256465E-11 - 2.2982240893E-11 - 3.8321561636E-11

Table 10. Some solutions of Combustion application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 - 2.1256693800E-07 - 1.2076437010E-06 - 8.2052168644E-08 - 2.9426051511E-07
x2 - 8.1757590664E-06 4.2644337543E-06 - 1.4477162217E-07 - 4.7401492243E-06
x3 - 6.7527163990E-04 - 4.2090672635E-05 5.1227964677E-05 - 6.0923109793E-05
x4 - 4.1833078103E-06 6.4157325619E-06 2.1289152054E-06 3.0404307410E-06
x5 1.6567014001E-04 4.5312194101E-04 - 2.2149062432E-04 3.2378004814E-04
x6 1.2934173578E-03 8.0745848233E-04 - 2.3204194677E-04 1.6392254306E-04
x7 7.0916610888E-06 1.7921487387E-06 3.9355599926E-06 3.4797831273E-06
x8 7.0527161222E-04 7.2090667874E-05 - 2.1227993570E-05 9.0923084400E-05
x9 5.3586029742E-04 - 3.0507240444E-04 4.9435402384E-04 - 1.1232728214E-03
x10 - 1.5522596511E-03 - 6.5205449512E-04 - 1.0062660059E-05 4.0508395318E-04

f1(x) - 4.8273876190E-11 3.7401625020E-12 3.8557848129E-11 2.1883831795E-11
f2(x) - 2.7678047280E-11 - 4.7604545021E-12 - 2.8892893645E-11 - 2.5393269464E-11
f3(x) - 5.6092310138E-11 1.8660651569E-12 4.0505311148E-11 2.6580721802E-11
f4(x) 1.4367258554E-11 3.0039278904E-11 3.5190617200E-11 - 3.0043345588E-12
f5(x) 8.4709844719E-12 2.1834044602E-11 - 1.1392318563E-11 1.6557120143E-11
f6(x) - 3.4477399301E-12 4.4934787964E-11 - 2.3406963800E-11 - 2.8432143924E-11
f7(x) - 1.7500064230E-11 - 4.1161624304E-11 - 4.5322799486E-12 - 9.2442190882E-12
f8(x) - 3.8015147210E-11 - 4.0044070424E-11 1.0271567782E-12 - 4.3230264589E-12
f9(x) 3.1455493138E-11 - 1.3747522017E-11 3.0610441206E-11 - 7.0974973960E-11
f10(x) 1.0965489675E-17 2.0599143169E-17 - 1.9304158566E-20 7.4580841134E-18

Table 11. Some solutions of SINQUAD function.

Solution 1 Solution 2 Solution 3 Solution 4

x1 1.0000013135E+00 1.0000020233E+00 9.9999578687E-01 9.9999635081E-01
x2 - 1.0000013135E+00 2.3578778570E-01 - 9.9999578691E-01 - 9.9999635080E-01
x3 2.3578630346E-01 2.3578778573E-01 2.3577476333E-01 - 9.9999635077E-01
x4 2.3578630350E-01 2.3578778572E-01 - 9.9999578687E-01 - 9.9999635077E-01
x5 2.3578630340E-01 - 1.0000020233E+00 - 9.9999578688E-01 - 9.9999635083E-01
x6 - 1.0000013135E+00 - 1.0000020234E+00 2.3577476328E-01 - 9.9999635075E-01
x7 2.3578630343E-01 2.3578778581E-01 - 9.9999578683E-01 - 9.9999635080E-01
x8 2.3578630341E-01 2.3578778575E-01 2.3577476333E-01 - 9.9999635085E-01
x9 - 1.0000013135E+00 2.3578778572E-01 - 9.9999578684E-01 - 9.9999635081E-01
x10 - 1.0000013135E+00 - 1.0000020233E+00 - 9.9999578686E-01 - 9.9999635083E-01

f1(x) 1.7252114825E-12 4.0939003788E-12 1.7750473715E-11 1.3316562876E-11
f2(x) 2.0599966177E-11 - 2.9519581224E-11 2.7519320156E-11 7.3162587100E-12
f3(x) 1.2524037363E-11 - 3.2059285782E-12 3.5025565781E-11 - 2.5635049639E-11
f4(x) 4.9083563602E-11 - 1.0487832824E-11 - 1.0218825786E-11 - 2.1720181209E-11
f5(x) - 2.9645889910E-11 - 1.5809797915E-11 - 4.2824632729E-12 3.1798563782E-11
f6(x) 5.6868731946E-11 - 7.3832051584E-12 - 1.0347889212E-11 - 4.7247761259E-11
f7(x) - 6.3057475908E-12 6.1809182772E-11 - 4.7515213986E-11 9.0893959026E-13
f8(x) - 2.4836653567E-11 1.0494015379E-11 3.5985284197E-11 5.4105275815E-11
f9(x) - 1.9166890297E-12 - 1.3320324010E-11 - 4.3021475271E-11 1.6147416737E-11
f10(x) 1.9149126729E-12 - 5.2741366829E-11 - 2.2285395751E-11 3.4775182733E-11

132 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

Table 12. Solutions of Neurophysiology application at V TR = 10−20, 10−30 and 10−40.

Solution at V TR = 10−20 Solution at V TR = 10−30 Solution at V TR = 10−40

x1 9.774926909651037E-01 9.774910633733470E-01 9.774910827638724E-01
x2 - 9.774927745309928E-01 - 9.774910647465765E-01 - 9.774910827654670E-01
x3 - 2.109692848010614E-01 - 2.109768258014221E-01 - 2.109767359618408E-01
x4 2.109688974538331E-01 2.109768194390176E-01 2.109767359544526E-01
x5 - 2.901252577197261E-05 - 9.810715906270790E-08 2.444699263961000E-10
x6 - 2.901244421520325E-05 - 9.810715863387080E-08 2.444699263882000E-10

f1(x) 1.967115359491345E-11 2.220446049250313E-16 0
f2(x) - 4.681566245778868E-11 - 2.220446049250313E-16 0
f3(x) 2.266330701846849E-12 8.737850539388192E-17 - 3.153751293361295E-22
f4(x) - 6.922328402630745E-11 - 1.434521764580082E-17 6.260981755202151E-21
f5(x) - 8.075296759227116E-12 - 2.701156197524962E-16 1.071345911685355E-21
f6(x) 2.617793940060294E-11 6.272936219045604E-16 - 3.157529343873903E-21

Mean nf 40233.67 57500.57 77651.60
%SD 16.99 12.58 5.00

Table 13. Solutions of Combustion application at V TR = 10−20, 10−30 and 10−40.

Solution at V TR = 10−20 Solution at V TR = 10−30 Solution at V TR = 10−40

x1 - 2.125669379957560E-07 1.371784251667994E-07 1.379796690717610E-07
x2 - 8.175759066442083E-06 - 9.619976447815970E-08 - 1.024640702937120E-07
x3 - 6.752716398985501E-04 1.565137776437351E-05 1.560729129475898E-05
x4 - 4.183307810306110E-06 7.224452410444500E-09 6.565809411140000E-11
x5 1.656701400100495E-04 3.763180720674607E-07 3.703652200388360E-07
x6 1.293417357824663E-03 1.844925109281104E-07 2.085321794461283E-07
x7 7.091661088782333E-06 4.996387774070343E-06 4.999967170952946E-06
x8 7.052716122205029E-04 1.434862223559040E-05 1.439270870524103E-05
x9 5.358602974230222E-04 - 2.040883524405975E-07 - 2.282373401823797E-07
x10 - 1.552259651139891E-03 4.965651547579558E-06 4.956818525791918E-06

f1(x) - 4.827387619045422E-11 9.657869664593532E-17 0
f2(x) - 2.767804727950166E-11 - 3.609037981661123E-17 0
f3(x) - 5.609231013833449E-11 - 5.014435047745458E-18 0
f4(x) 1.436725855439561E-11 5.511287633945886E-16 1.694065894508601E-21
f5(x) 8.470984471899497E-12 5.264730829992297E-16 1.728855061170187E-21
f6(x) - 3.447739930109454E-12 6.835193007961348E-17 1.049095379878782E-21
f7(x) - 1.750006423022506E-11 - 5.218880731519356E-17 - 4.028719824372849E-22
f8(x) - 3.801514721037196E-11 - 1.388394783354915E-16 2.272081369646687E-21
f9(x) 3.145549313765976E-11 5.544608392318181E-16 - 3.954927090396494E-22
f10(x) 1.096548967520139E-17 9.105212626901849E-21 8.907628343995374E-21

Mean nf 59380.20 93172.65 129106.13
%SD 4.13 4.11 4.23

of behaviors at all 3 different V TR values.
From these 3 tables, we can conclude that the pro-
posed method DE-R can give more accurate solu-
tions by setting higher precision values of V TR.
From V TR = 10−20 to 10−30 and from 10−30 to
10−40, DE-R requires greater numbers of function
evaluations. The increased percentages of Means
are 35.83% and 35.04% for Neurophysiology ap-
plication. For Combustion application, they are
59.91% and 60.51%. And for SINQUAD function,
they are 41.08% and 58.25%, respectively.

5.2. Performance comparison of DE-R
with PSO and PSO-NMM methods

The performance comparison of DE-R, PSO vari-
ants, and PSO-NMM variants on 4 nonlinear
benchmark problems are presented in Table 15
and Table 16. The DE-R is the same as DE59-
50-R in the first experiment except that it uses
the setting of maxnf as described in Section 4.2.

Both tables report Min, Mean and SD of fbest
based on the corresponding maxnf ’s. From the
results, the first two problems are relatively easy
problems whereas the last two problems are more
difficult problems with the Chemical equilibrium

An improved differential evolution algorithm with a restart technique. . . 133

Table 14. Solutions of SINQUAD function at V TR = 10−20, 10−30 and 10−40.

Solution at V TR = 10−20 Solution at V TR = 10−30 Solution at V TR = 10−40

x1 1.000001313473061E+00 1.000000000741824E+00 9.999999999921714E-01
x2 - 1.000001313492704E+00 - 1.000000000741824E+00 - 9.999999999921714E-01
x3 2.357863034574390E-01 2.357835623069449E-01 2.357835607415836E-01
x4 2.357863035031185E-01 2.357835623069448E-01 2.357835607415836E-01
x5 2.357863034047495E-01 2.357835623069443E-01 2.357835607415836E-01
x6 - 1.000001313528972E+00 - 1.000000000741824E+00 - 9.999999999921714E-01
x7 2.357863034339120E-01 2.357835623069443E-01 2.357835607415836E-01
x8 2.357863034107586E-01 2.357835623069438E-01 2.357835607415836E-01
x9 - 1.000001313470187E+00 - 1.000000000741824E+00 - 9.999999999921714E-01
x10 - 1.000001313474019E+00 - 1.000000000741824E+00 - 9.999999999921714E-01

f1(x) 1.725211482508887E-12 5.503030808840126E-19 6.128739500341215E-23
f2(x) 2.059996617731485E-11 0 0
f3(x) 1.252403736273777E-11 4.232725281383409E-16 0
f4(x) 4.908356360244781E-11 3.677613769070831E-16 0
f5(x) - 2.964588990961303E-11 - 1.179611963664229E-16 0
f6(x) 5.686873194576947E-11 0 0
f7(x) - 6.305747590751309E-12 - 1.179611963664229E-16 0
f8(x) - 2.483665356711739E-11 - 4.371503159461554E-16 0
f9(x) - 1.916689029712870E-12 0 0
f10(x) 1.914912672873470E-12 0 0

Mean nf 81755.37 115341.27 182524.47
%SD 8.90 6.03 18.83

Table 15. Performance comparison of PSO, PSO-NMM and DE-R methods on Neurophysi-
ology and Economics modeling applications averaged over 100 independent runs.

Problems maxnf Methods Min Mean SD
Neurophysiology 50000 PSO-12 1.01E-29 1.41E-11 1.11E-10
application PSO-15 0 1.48E-11 1.39E-10

DE-R 3.75E-36 1.06E-13 1.03E-12
100000 PSO-16 0 2.37E-10 2.34E-09

DE-R 0 1.52E-37 1.49E-36
200000 PSO-NMM-12 0 6.14E-30 3.71E-29

PSO-NMM-15 0 3.09E-32 1.27E-31
PSO-NMM-16 0 2.36E-32 1.16E-31
DE-R 0 5.39E-96 5.39E-95

Economics modeling 50000 PSO-12 2.77E-30 2.52E-27 4.08E-27
application PSO-15 2.47E-33 1.03E-32 4.56E-33

DE-R 7.40E-33 1.36E-32 4.30E-33
100000 PSO-16 2.47E-33 9.69E-33 4.32E-33

DE-R 7.40E-33 1.35D-32 4.41E-33
200000 PSO-NMM-12 4.93E-33 4.91E-32 4.13E-32

PSO-NMM-15 2.47E-33 1.02E-32 4.46E-33
PSO-NMM-16 2.47E-33 9.60E-33 4.24E-33
DE-R 7.40E-33 1.37E-32 4.15E-33

application as the most difficult one. The DE-
R gives the best Mean values for all cases of
Neurophysiology application, Chemical equilib-
rium application, and Combustion application.
It shows much better performances on Chemical
equilibrium application and Combustion applica-
tion, especially on Chemical equilibrium applica-
tion where it gives the Mean values in the order
of 10−33 while the PSO and PSO-NMM give the
values in the order of 10−4. For the Economics

modeling application, all methods produce nearly
the same results with PSO-15, PSO-16 and PSO-
NMM-16 giving only slightly better results. Thus,
we can conclude that the DE-R outperforms all
the compared methods.

6. Conclusions

In this paper, we have proposed an efficient im-
provement of the differential evolution algorithm

134 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

Table 16. Performance comparison of PSO, PSO-NMM and DE-R methods on Chemical
equilibrium and Combustion applications averaged over 100 independent runs.

Problems maxnf Methods Min Mean SD
Chemical equilibrium 50000 PSO-12 9.84E-06 5.79E-04 3.04E-03
application PSO-15 3.55E-06 1.61E-03 5.10E-03

DE-R 1.54E-34 1.05E-33 1.34E-33
100000 PSO-16 4.16E-07 5.73E-04 3.05E-03

DE-R 1.54E-34 1.08E-33 1.33E-33
250000 PSO-NMM-12 2.58E-34 5.33E-04 3.04E-03

PSO-NMM-15 1.22E-34 1.60E-03 5.11E-03
DE-R 1.54E-34 9.19E-34 1.26E-33

300000 PSO-NMM-16 5.93E-34 5.33E-04 3.04E-03
DE-R 1.54E-34 1.19E-33 1.60E-33

Combustion 50000 PSO-12 3.08E-11 2.76E-08 4.34E-08
application PSO-15 1.01E-11 4.88E-09 8.68E-09

DE-R 3.68E-21 3.56E-18 9.62E-18
100000 PSO-16 3.99E-12 2.22E-09 4.21E-09

DE-R 9.83E-37 4.41E-22 1.87E-21
250000 PSO-NMM-12 1.45E-33 4.69E-17 1.04E-16

PSO-NMM-15 1.28E-33 6.91E-17 2.37E-16
DE-R 1.29E-42 2.43E-23 1.17E-22

300000 PSO-NMM-16 4.69E-34 5.05E-17 1.09E-16
DE-R 2.49E-44 7.80E-24 3.34E-23

by using a mixing scheme of two mutation op-
erations and a restart technique for solving the
nonlinear systems. The designed algorithm has
the advantage of integrating both the global and
local search techniques to balance the exploration
and exploitation. It can successfully solve all ten
selected test problems with varying degrees of dif-
ficulty and outperforms the two basic differen-
tial evolution algorithms using the recommended
setting from the literature. It also outperforms
the compared methods recently developed in the
literature. This performance results from the
proper modification to the basic DE algorithms
and shows that the DE algorithm with the restart
technique is a promising tool for solving com-
plex systems of nonlinear equations. Future study
could investigate on designing and applying the
differential evolution algorithms to more compli-
cated nonlinear problems in high dimensions such
as those derived from difficult nonlinear ODEs
and PDEs, and those from learning models of ar-
tificial neural networks.

Acknowledgements

The authors would like to thank the Department
of Mathematics, Faculty of Science, Khon Kaen
University, Thailand.

References

[1] Boussäıd, I., Lepagnot, J., & Siarry, P.
(2013). A survey on optimization metaheuris-
tics. Information sciences, 237, 82–117 .

[2] Siddique, N., & Adeli, H. (2015). Nature in-
spired computing: An overview and some fu-
ture directions. Cogn Comput, 7, 706–714.

[3] Nanda, S. J., & Panda, G. (2014). A survey
on nature inspired metaheuristic algorithms
for partitional clustering. Swarm and Evolu-
tionary Computation, 16, 1—18.

[4] José-Garćıa, A., & Gómez-Flores, W. (2016).
Automatic clustering using nature-inspired
metaheuristics: A survey. Applied Soft Com-
puting, 41, 192—213.

[5] Hamm, L., Brorsen, B. W., & Hagan, M. T.
(2007). Comparison of Stochastic Global Op-
timization Methods to Estimate Neural Net-
work Weights. Neural Process Lett, 26, 145—
158.

[6] Piotrowski, A. P. (2014). Differential evo-
lution algorithms applied to neural network
training suffer from stagnation. Applied Soft
Computing, 21, 382—406.

[7] Raja, M. A. Z., Umar, M., Sabir, Z., Khan,
J. A., & Baleanu, D. (2018). A new stochastic
computing paradigm for the dynamics of non-
linear singular heat conduction model of the
human head. Eur. Phys. J. Plus, 133(364),
DOI 10.1140/epjp/i2018-12153-4.

[8] Sabir, Z., Manzar, M. A., Raja, M. A. Z.,
Sheraz, M., & Wazwaz, A. M. (2018). Neuro-
heuristics for nonlinear singular Thomas-
Fermi systems. Applied Soft Computing, 65,
152-169.

An improved differential evolution algorithm with a restart technique. . . 135

[9] Raja, M. A. Z., Shah, Z., Manzar, M. A., Ah-
mad, I., Awais, M.,& Baleanu, D. (2018). A
new stochastic computing paradigm for non-
linear Painlevé II systems in applications of
random matrix theory. Eur. Phys. J. Plus,
133(254), DOI 10.1140/epjp/i2018-12080-4.

[10] Raja, M. A. Z., Zameer, A., Kiani, A. K.,
Shehzad, A., & Khan, A. R. (2018). Nature-
inspired computational intelligence integra-
tion with Nelder-Mead method to solve non-
linear benchmark models. Neural Comput &
Applic, 29, 1169-1193.

[11] Ahmad, I., Zahid, H., Ahmad, F., Raja, M.
A. Z., & Baleanu, D. (2019). Design of com-
putational intelligent procedure for thermal
analysis of porous fin model. Chinese Journal
of Physics, 59, 641-655.

[12] Broyden, C. G. (1965). A class of meth-
ods for solving nonlinear simultaneous equa-
tions. Mathematics of computation, 19(92),
577–593.

[13] Mart́ınez, J. M. (1994). Algorithms for solv-
ing nonlinear systems of equations. In : E.
Spedicato, ed. Algorithms for Continuous
Optimization-The state of the art. Kluwer
Academic Publishers, London, 81–108.

[14] Kelley, C. T. (1995). Iterative methods for
solving linear and nonlinear equations. SIAM,
Philadelphia.

[15] Dennis, J. E., & Schnabel, R. B. (1996). Nu-
merical methods for unconstrained optimiza-
tion and nonlinear equations. SIAM, Philadel-
phia.

[16] Ortega, J. M., & Rheinboldt, W. C. (2000).
Iterative solution of nonlinear equations in
several variables. SIAM, Philadelphia.

[17] Kelley, C. T. (2003). Solving nonlinear equa-
tions with Newton’s method. SIAM, Philadel-
phia.

[18] Karr, C. L., Weck, B., & Freeman, L.
M. (1998). Solutions to systems of nonlinear
equations via a genetic algorithm. Eng. Appl.
Artif. Intell., 11(3), 369–375.

[19] Grosan, C., & Abraham, A. (2008). A new
approach for solving nonlinear equations sys-
tems. IEEE Transactions on Systems Man
and Cybernetics-Part A: Systems and Hu-
mans, 38(3), 698–714.

[20] Hirsch M. J., Pardalos, P. M., & Resende,
M. G. C. (2009). Solving systems of nonlinear
equations with continuous GRASP. Nonlinear
Analysis: Real World Applications, 10, 2000–
2006.

[21] Jaberipour, M., Khorram, E., & Karimi, B.
(2011). Particle swarm algorithm for solving
systems of nonlinear equations. Computers

and Mathematics with Applications, 62(2),
566–576.

[22] Pourjafari, E., & Mojallali, H. (2012). Solv-
ing nonlinear equations systems with a new
approach based on invasive weed optimization
algorithm and clustering. Swarm and Evolu-
tionary Computation, 4, 33–43.

[23] Oliveira, H. A., & Petraglia, A. (2013). Solv-
ing nonlinear systems of functional equations
with fuzzy adaptive simulated annealing. Ap-
plied Soft Computing, 13, 4349–4357.

[24] Raja, M. A. Z., Kiani, A. K., Shehzad,
A., & Zameer, A. (2016). Memetic com-
puting through bio-inspired heuristics inte-
gration with sequential quadratic program-
ming for nonlinear systems arising in different
physical model. SpringerPlus, 5:2063, DOI
10.1186/s40064-016-3750-8.

[25] Zhang, X., Wan, Q., & Fan, Y. (2019). Ap-
plying modified cuckoo search algorithm for
solving systems of nonlinear equations. Neu-
ral Comput & Applic, 31, 553–576.

[26] Storn, R., & Price, K. (1995). Differen-
tial evolution—a simple and efficient adap-
tive scheme for global optimization over con-
tinuous spaces. Technical Report TR-95-012,
ICSI, Berkeley.

[27] Storn, R., & Price, K. (1997). Differential
evolution: A simple and efficient heuristic for
global optimization over continuous spaces. J
Glob Optim, 11(4), 341–359.

[28] Storn, R. (2008). Differential evolution
research-Trends and open questions. In : U.
K. Chakraborty, ed. Advances in Differential
Evolution. Springer, Berlin, 1–31.

[29] Neri, F., & Tirronen, V. (2010). Recent ad-
vances in differential evolution: a survey and
experimental analysis. Artif Intell Rev, 33,
61–106.

[30] Das, S., & Suganthan, P. N. (2011). Differen-
tial evolution: a survey of the state-of-the-art.
IEEE Trans Evol Comput, 15(1), 4–31.

[31] Lampinen, J., & Zelinka, I. (2000). On stag-
nation of the differential evolution algorithm.
Proceedings of the 6th international Mendel
conference on soft computing, 76–83.

[32] Gämperle, R., Müller, S. D., & Koumout-
sakos, P. (2002). A parameter study for differ-
ential evolution. Proceedings of the conference
in neural networks and applications (NNA),
fuzzy sets and fuzzy systems (FSFS) and evo-
lutionary computation (EC), WSEAS, 293–
298.

[33] Fan, H. Y., & Lampinen, J. (2003). A
trigonometric mutation operation to differen-
tial evolution. J Glob Optim, 27(1), 105–129.

136 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

[34] Das, S., Konar, A., & Chakraborty, U.
K. (2005). Two improved differential evolu-
tion schemes for faster global search. ACM-
SIGEVO Proceedings of genetic and evolu-
tionary computation conference, 991–998.

[35] Kaelo, P., & Ali, M. M. (2007). Differential
evolution algorithms using hybrid mutation.
Comput Optim Appl, 37, 231–246.

[36] Das, S., Abraham, A., Chakraborty, U. K.,
& Konar, A. (2009). Differential evolution
with a neighborhood-based mutation opera-
tor. IEEE Trans Evol Comput, 13(3), 526–
553.

[37] Neri, F., & Tirronen, V. (2009). Scale factor
local search in differential evolution. Memet
Comput J, 1(2), 153–171.

[38] Qin, A. K., & Suganthan, P. N. (2005).
Self-adaptive differential evolution algorithm
for numerical optimization. Proceedings of the
IEEE congress on evolutionary computation,
1785–1791.

[39] Salman, A., Engelbrecht, A. P., & Omran, M.
G. (2007). Empirical analysis of self-adaptive
differential evolution. Eur J Oper Res, 183(2),
785–804.

[40] Soliman, O. S., & Bui, L. T. (2008). A self-
adaptive strategy for controlling parameters
in differential evolution. Proceedings of the
IEEE congress on evolutionary computation,
2837–2842.

[41] Yang, Z., Tang, K., & Yao, X. (2008). Self-
adaptive differential evolution with neighbor-
hood search. Proceedings of the world congress
on computational intelligence, 1110–1116.

[42] Qin, A. K., Huang, V. L., & Suganthan, P. N.
(2009). Differential evolution algorithm with
strategy adaptation for global numerical op-
timization. IEEE Trans Evol Comput, 13(2),
398–417.

[43] Zaharie, D. (2002). Critical values for con-
trol parameters of differential evolution al-
gorithm. Proceedings of the 8th international
Mendel conference on soft computing, 62–67.

[44] Zaharie, D. (2003). Control of population di-
versity and adaptation in differential evolu-
tion algorithms. Proceedings of the 9th inter-
national Mendel conference on soft comput-
ing, 41–46.

[45] Verschelde, J., Verlinden, P., & Cools, R.
(1994). Homotopies exploiting newton poly-
topes for solving sparse polynomial systems.
SIAM J. Numer. Anal., 31, 915–930.

[46] Morgan, A., & Shapiro, V. (1987). Box-
bisection for solving second-degree systems
and the problem of clustering. ACM Transac-
tion on Mathematical Software, 13, 152–167.

[47] Pramanik, S. (2002). Kinematic synthesis
of a six-member mechanism for automotive
steering. ASME Journal of Mechanical De-
sign, 124, 642–645.

[48] Meintjes, K., & Morgan, A. (1990). Chem-
ical equilibrium systems as numerical test
problems. ACM Transaction on Mathemati-
cal Software, 16, 143–151.

[49] More, J., Garbow, B., & Hillstrom, K.
(1981). Testing unconstrained optimization
software. ACM Transaction on Mathematical
Software, 7, 17–41.

[50] Bongartz, I., Conn, A., Gould, N., & Toint,
Ph. (1995). CUTE: constrained and uncon-
strained testing environment. ACM Transac-
tions on Mathematical Software, 21, 123–160.

Jeerayut Wetweerapong completed M.Sc. degree
in Mathematics from West Virginia University, US
in 1995 and Ph.D. degree in Mathematics from Khon
Kaen University, Thailand in 2012. He has been
teaching and doing research in field of scientific com-
puting and optimization at Department of Mathemat-
ics, Khon Kaen University.

http://orcid.org/0000-0001-5053-3989

Pikul Puphasuk completed M.Sc. degree in Math-
ematics from Khon Kaen University, Thailand in
2002 and Ph.D. degree in Applied Mathematics from
Suranaree University of Technology, Thailand in 2009.
She is an assistant professor at Department of Mathe-
matics, Khon Kaen University. Her research areas in-
clude computational sciences, numerical analysis and
optimization.

http://orcid.org/0000-0001-9069-1703

An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.

