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In this manuscript, new dark and trigonometric function traveling wave soli-
ton solutions to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov
equation by using the modified exponential function method are successfully
obtained. Along with novel dark structures, trigonometric solutions are also
extracted. For deeper investigating of waves propagation on the surface, 2D
and 3D graphs along with contour simulations via computational programs
such as Wolfram Mathematica, Matlap softwares and so on are presented.
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1. Introduction

Special functions such as hyperbolic and trigono-
metric play an important role in nonlinear sci-
ence arising in physics, applied science, mathe-
matical physics and so on. In this sense, the
hyperbolic sine arises in the gravitational poten-
tial of a cylinder while the hyperbolic tangent
arises in the calculation and rapidity of special
relativity [1]. In recent years, many real world
problems can be symbolized with the help of spe-
cial functions. Therefore, scientists investigating
properties of special functions need to modify or
revise the classical methods [2-45] which are not
giving any solutions such problems for explain-
ing more physical meaning of problems. Authors
of [54] developed a novel numerical method that
possesses the capability of a multi-scale solution
of the engineering problems. They showed that
their method can solve the non-linear coupled dif-
ferential equations with high accuracy and preci-
sion. A novel multi-resolution method proposed

by Seyedi in [55] for solving partial differential
equations. He tested this method for the solu-
tion of well-known viscous Burger’s equation and
the obtained results showed superior accuracy in
comparison to the finite difference and boundary
element methods. Some important models have
been investigated by experts in [56-70]. Boiti et
al. [46] has introduced a model which is an impor-
tant applications in incompressible fluids defined
as [47]

ut + uxxx + 3(u

∫
(ux)dy)x = 0, (1)

afternamed the (2+1)-dimensional asymmetri-
cal Nizhnik-Novikov-Veselov equation (ANNVE).
Jian-Guo Liu [48] has derived new Lump-type so-
lutions by using Hirota’s bilinear form for Eq.(1).
Z.L. Zhao et al have introduced the mixed Lump
stripe solutions to the Eq.(1) [49]. M.S. Osman
have applied the generalized unified method for
finding multi-wave solutions of Eq.(1) with frac-
tional order [50]. This manuscript is organized
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as follows. In section 2, we present in a de-
tailed manner the modified exponential function
method (MEFM). We apply MEFM to the AN-
NVE to find new dark and trigonometric solu-
tions in section 3. In the last section of paper, we
present a comprehensive conclusion.

2. General facts of the MEFM

MEFM is summarized as follows [51-53];

P (u, ux, uy, ut, u
2, · · · ) = 0, (2)

where u = u(x, y, t), is an unknown function, P
is a polynomial in u(x, y, t).

Step 1: Combining the independent variables
x, y and t by a dependent variable ξ

u(x, y, t) = U(ξ), ξ = kx+ wy − ct, (3)
∂u

∂x
= kU ′(ξ),

∂u

∂t
= −cU ′(ξ), (4)

...

where k,w, c are real constants and non-zero.
Putting Eq.(3) into Eq.(2) produces the nonlinear
ordinary differential equation (NODE) as follow-
ing,

N(U,U ′, U ′′, U2, · · · ) = 0, (5)

where N is a polynomial of U = U(ξ).

Step 2: We suppose the solution form of Eq.(5)
in the following form;

U(ξ) =

∑N
i=0Ai(e

−Ω(ξ))i∑M
j=0Bj(e

−Ω(ξ))j
, (6)

in which Ai (0 ≤ i ≤ N) and Bj (0 ≤ j ≤ M)
are real-constants with AN 6= 0, BM 6= 0. Here,
Ω = Ω(ξ) satisfies the following differential;

Ω′ = µexp(Ω) + exp(−Ω) + λ, (7)

Eq.(7) is of the following results under the several
conditionals defined as;

Family 1 If µ 6= 0, λ2 − 4µ > 0,

Ω(ξ) = ln(
−
√
λ2−4µ
2µ tanh(

√
λ2−4µ

2 (ξ + c1))− λ
2µ . (8)

Family 2 If µ 6= 0, λ2 − 4µ < 0,

Ω(ξ) = ln(

√
−λ2+4µ

2µ tan(

√
−λ2+4µ

2 (ξ + c1))− λ
2µ . (9)

Family 3 When µ = 0, λ 6= 0, λ2 − 4µ > 0,

Ω(ξ) = −ln(
λ

exp(λ(ξ + c1)− 1)
). (10)

Family 4 Once µ 6= 0, λ 6= 0, λ2 − 4µ = 0,

Ω(ξ) = ln(−2λ(ξ + c1) + 4

λ2(ξ + c1)
).

Family 5 If µ = 0, λ = 0, λ2 − 4µ = 0,

Ω(ξ) = ln(ξ + c1).

Step 3: Setting Eqs. (3,4) into the Eq.(2), after-
ward, we can find the polynomial of exp(−Ω(ξ)).
Considering all the coefficients of the same power
of exp(−Ω(ξ)) to zero gives a system. By solving
this system via various computational programs,
we can obtain the values of parameters. This pro-
cess gives many solutions to the model considered.

3. Implementation of MEFM

In this section, MEFM has been successfully con-
sidered to the ANNVE to find more and novel
dark and trigonometric function traveling wave
solutions. Our aim is to obtain a new hyperbolic
function traveling wave solution by using an ex-
pansion method of the Eq.(1). We take the trav-
elling wave transformation as following

u = u(x, y, t) = U(ξ), ξ = kx+ wy − ct, (11)

where k,w, c are real constants and non-zero.
Substituting Eq.(11) into Eq.(1) along with easily
calculations, we find an equation between and as

N = M + 2, (12)

Case 1: If we choose M = 1 and N = 3, we can
write follows;

U =
A0 +A1e

−Ω(ξ) +A2e
−2Ω(ξ) +A3e

−3Ω(ξ)

B0 +B1e−Ω(ξ)

=
Υ

Ψ
,

(13)
and

U ′ =
Υ′Ψ−ΥΨ′

Ψ2
, (14)

U ′′ = · · · , (15)
...,

where A3 6= 0, B1 6= 0. After simple calculation,
we can use the following coefficients for new dark
and trigonometric function traveling wave soliton
solutions as

Case-1.1 If we select following coefficients,

A0 =
−2kwλB0

A2 + 2kwB0
(A1 + 2kwλB0),

A3 =
A2 + 2kwB0

λ
,B1 =

−A2 − 2kwB0

2kwλ
,

(16)
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c =
λk3(−4A1 + λ(A2 − 6kwB0))

A2 + 2kwB0
,

µ =
λ

A2 + 2kwB0
(A1 + 2kwλB0),

we have the new dark solution as following under
the Family-1 condition,

u1(x, y, t) =$ − 8λ2kw(A1 + 2kwλB0)2

(A2 + 2kwB0)2f2(x, y, t)

× (1 +
A2 + 2kwB0

2A1 + 4kwB0
f(x, y, t)),

(17)

where $ = −2λkw(A1+2kwλB0)
A2+2kwB0

, f(x, y, t) =

−λ − τtanh(1
2τ(kx + wy − ct)), τ =√

λ2 − 4λ(A1+2kwλB0)
A2+2kwB0

.

For a better understanding of the physical mean-
ing of Eq.(17), 3D and 2D figures along with con-
tour graphs may be seen in Figures (1), (2) and
(3) for suitable values of parameters as follows;

Figure 1. The 3D surface of Eq.(17).

Figure 2. The contour surface of Eq.(17).

Figure 3. The 2D surface of Eq.(17).

Case-1.2a When

A0 =
B0

B2
1

(−λA3B0 +A1B1), A2 = A3(λ+
B0

B1
),

µ =
−λ2

2
+

3A1

A3
− 3λ

B0

B1
,

c = 3k3(
4A1

A3
+ λ(−λ− 4B0

B1
)), w =

−A3

2kB1
,

(18)

we have the new dark solution as following under
the Family-1 condition,

u2 =
κω + ωλτA3

√
3B1tanh(

√
3

2 τf(x, y, t))

A3B3
1(λ+ τ

√
3tanh2(

√
3

2 τf(x, y, t)))2

+
3ω(−λA3B0 +A1B1)tanh2(

√
3

2 τf(x, y, t))

A3B3
1(λ+ τ

√
3tanh2(

√
3

2 τf(x, y, t)))2
,

(19)
where ω = −4A1B1 + λA3(4B0 + λB1),
κ = −9A1B1 + λA3(9B0 + 2λB1), τ =√
−4A1
A3

+ λ(λ+ 4B0
B1

), f(x, y, t) = c1 + kx +

3k3τ2t− A3
2kB1

y.

3D and 2D figures along with contour graphs may
be seen in Figures (4),(5) and (6).
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Figure 4. The 3D surface of Eq.(19).

Figure 5. The contour surface of Eq.(19).

Figure 6. The 2D surface of Eq.(19).

Case-1.2b When we reconsider Eq.(18) under
the terms of Family-2 condition, we can find new
trigonometric function traveling wave soliton so-
lution

u3 =
κω − ωλτ

√
3A3B1tan(1

2τf(x, y, t))

A3B3
1(λ+ τ

√
3$2tan2(1

2τf(x, y, t)))2

+
3ω(λA3B0 −A1B1)tan2(1

2τf(x, y, t))

A3B3
1(λ+ τ

√
3$2tan2(1

2τf(x, y, t)))2
,

(20)

in which ω = −4A1B1 + λA3(4B0 + λB1),
κ = −9A1B1 + λA3(9B0 + 2λB1), τ =√

12A1
A3

+ λ(−λ− 4B0
B1

), $ = −4A1
A3

+ λ(λ + 4B0
B1

),

f(x, y, t) = c1 + kx+ 3k3$t− A3
2kB1

y.

3D and 2D figures along with contour graphs may
be seen in Figures (7),(8) and (9).

Figure 7. The 3D surface of Eq.(20).

Figure 8. The 2D surface of Eq.(20).

Figure 9. The contour surface of Eq.(20).
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4. Conclusions

With the help of MEFM, we have successfully ob-
tained new dark and trigonometric function trav-
elling soliton solutions. For deeper investigating
of physical meanings of solutions found in this pa-
per, 2D and 3D graphs along with contour sim-
ulations have been plotted. The alternative per-
spective view of the solutions Eqs. (17, 19, 20)
can be viewed from the 3D, 2D graphs along with
contour simulations can be also viewed from the
Figs. (1,2,3,4,5,6).

Comparing the results produced in this paper
with the existing paper in literature, it can be
viewed that the results found in this paper are en-
tirely new dark and trigonometric function trav-
elling soliton solutions to the Eq.(1). To the
best of our knowledge, the application of MEFM
to the (2+1)-dimensional asymmetrical Nizhnik-
Novikov-Veselov equation has been not submit-
ted previously. With the help of MEFM, we
have successfully obtained new dark and trigono-
metric function travelling soliton solutions. For
deeper investigating of physical meanings of solu-
tions found in this paper, 2D and 3D graphs along
with contour simulations have been plotted. The
alternative perspective view of the solutions Eqs.
(17, 19, 20) can be viewed from the 3D, 2D graphs
along with contour simulations can be also viewed
from the Figs. (1,2,3,4,5,6).

Comparing the results produced in this paper
with the existing paper in literature, it can be
viewed that the results found in this paper are en-
tirely new dark and trigonometric function trav-
elling soliton solutions to the Eq.(1). To the
best of our knowledge, the application of MEFM
to the (2+1)-dimensional asymmetrical Nizhnik-
Novikov-Veselov equation has been not submitted
previously.
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