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In this work, we have used reduced differential transform method (RDTM)
to compute an approximate solution of the Two-Dimensional Convection-
Diffusion equations (TDCDE). This method provides the solution quickly in
the form of a convergent series. Also, by using RDTM the approximate so-
lution of two-dimensional convection-diffusion equation is obtained. Further,
we have computed exact solution of non-homogeneous CDE by using the same
method. To the best of my knowledge, the research work carried out in the
present paper has not been done, and is new. Examples are provided to support
our work.
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1. Introduction

We consider two-dimensional convection-diffusion
equation as follows:

∂u(a,b,t)
∂t

+ βa
∂u(a,b,t)

∂a
+ βb

∂u(a,b,t)
∂b

= αa
∂2u(a,b,t)

∂a2
+ αb

∂2u(a,b,t)
∂b2

+ f(a, b, t),
in Ω× (0, T ] , u(a, b, t) = g(a, b, t),
(a, b) ∈ ∂Ω, t∈(0, T ], u(a, b, 0) = h(a, b),
(a, b) ∈ Ω,

(1)

where βa and βb are progressive velocity compo-
nents in the direction of a and b respectively, and
αa > 0 and αb > 0 are the coefficients of diffu-
sivity in the a and b directions, respectively. And
αa > 0 and αb > 0 are g(a, b, c) and h(a, b) are
smooth functions and Ω is a subset of R2 and
(0, T ] is the time interval, and ∂Ω is the bound-
ary of Ω.

This equation is frequently used in applied sci-
ences and engineering especially in modeling and

simulations of various complex phenomena in sci-
ence and engineering. This paper first describes
RDTM and then uses it to solve the Convection-
diffusion equation. In recent years, studies con-
ducted on findings new analytical solutions of dif-
ferential equations have attracted attention of sci-
entists from all over the world (see [1]- [9]).

And some numerical solutions have been devel-
oped to solve these types of convection-diffusion
problems. likes: Higher-Order ADI method [10]
or rational high-order compact ADI method [11],
the alternating direction implicit method [12],
the finite element method [13], fourth-order com-
pact finite difference method [14], decomposition
Method [15], the finite difference method [16], re-
strictive taylors approximation [17], The funda-
mental solution [18], finite difference method [19],
combined compact difference scheme and alter-
nating direction implicit method [20], higher or-
der compact schemes method [21], the finite vol-
ume method [22], the finite difference and le-
gendre spectral method [23] and even the Monte
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Carlo method [24]. Keskin in [25] proposed the
RDTM to solve various PDE and fractional non-
linear partial differential equations.

This method is a repetitive procedure for the solu-
tion of a Taylor series differential equations. This
technique reduces the size of the computational
work and can be easily applied to numerous phys-
ical problems. We organize the paper as follows.
In section RDTM is used to four types of TDCDP,
and section 4 concludes the paper.

2. Analysis of the RDTM

We have a function with three variables u(a, b, t),
and presume that it can be shown as an in-
vention of multiple of two functions u(a, b, t) =
v(a, b)w(t). u(a, b, t) can be denoted as

u(a, b, t) =

(

∞
∑

n1=0

∞
∑

n2=0

V (n1, n2)a
n1bn2) · (

∞
∑

n3=0

W (n3)t
n3)

=
∞
∑

n1=0

∞
∑

n2=0

∞
∑

n3=0

V (n1, n2)W (n3)a
n1bn2tn3

=
∞
∑

k=0

Uk(a, b)t
k, (2)

where Uk(a, b) is called t-dimensional spec-
trum function of u(a, b, t). The three-dimensional
RDTM are introduced are defined in [26] as fol-
lows:

Definition 1. Assume u(a, b, t) is an analytic
function in the domain of interest. The RDTM
of u(a, b, t) is defined as

Uk(a, b) =
1

k!
[
∂k

∂tk
u(a, b, t)]t=0. (3)

Definition 2. The differential inverse transform
of Uk (a, b) is defined as:

u(a, b, t) =
∞
∑

k=0

Uk(a, b)t
k. (4)

By inserting equation (3) in (4), we obtain

u(a, b, t) =
∞
∑

k=0

1

k!
[
∂k

∂tk
u(a, b, t)]t=0t

k, (5)

Some basic properties of RDTM are presented in
Table1 below.

Table 1. The operations for the re-
duced differential transform method.

Original function Transformed function
g(a, b, t)± h(a, b, t) Gk(a, b)±Hk(a, b)

eγt γk

k!
∂c

∂tc
g(a, b, t) (k+c)!

K! Gk+c(a, b)

g(a, b, t)h(a, b, t)
∑k

l=0Gl(a, b)Hk−l(a, b)
∂w

∂aw
g(a, b, t) ∂w

∂aw
Gk(a, b)

awbvtc awbvδ(k − c) =

{

awbv, k = c

0, k 6= c
∂w+v+c

∂aw∂bv∂tc
g(a, b, t) ∂w+v

∂aw∂bv
(k+c)!

k! Gk+c(a, b)

3. Applications

We used the basic definitions (in Section 2) of the
three-dimensional RDTM for solving four exam-
ples of Convection-diffusion equations (CDE).

Example 1. Consider the TDCDP (see [15])

∂u

∂t
−

∂2u

∂a2
−

∂2u

∂b2
= 0, (a, b, t) ∈ Ω× J, (6)

with the initial condition

u(a, b, 0) = sin(πa) sin(πb). (7)

By using the RDTM in equations (6) and (7), we
obtain

(k+1)Uk+1(a, b)−
∂2

∂a2
Uk(a, b)−

∂2

∂b2
Uk(a, b) = 0,

(8)

from initial condition(7), we have

U0(a, b) = sin(πa) sin(πb). (9)

By using Eq. (9) in Eq. (8), we obtain Uk(a, b)
values for k = {0, 1, 2, 3, · · · } as follows:

U1(a, b) = −2π2sin(πa)sin(πb),
U2(a, b) = 2π4sin(πa)sin(πb),
U3(a, b) = −4

3π
6 sin(πa)sin(πb),

U4(a, b) = 2
3π

8sin(πa)sin(πb),
U5(a, b) = − 4

15π
10 sin(πa)sin(πb),

U6(a, b) = 4
45π

12 sin(πa)sin(πb),
U7(p, q) = − 8

315π
14 sin(πa)sin(πb), . . . ,

(10)

by using the differential inverse reduced transform
of Uk(a, b) ,we get
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u(a, b, t) =
∞
∑

k=0

Uk(a, b)t
k

= U0(a, b) + U1(a, b)t+ U2(a, b)t
2 + . . .

= sin(πa)sin(πb)(1− 2π2t+ 2π4t2 − 4
3π

6t3

+2
3π

8t4 − 4
15π

10t5 + 4
45π

12t6 + . . . ),
(11)

by using the closed form in the solution of (11),
we obtain following approximate solution

u(a, b, t) = sin(πa)sin(πb)e−2π2t. (12)

Example 2. We consider the non-homogeneous
convection-diffusion problem see ( [15])

∂u

∂t
+

∂u

∂a
+

∂u

∂b
−

∂2u

∂a2
−

∂2u

∂b2
= 3a2 − 6a+ 2t+ 1,

(a, b, t) ∈ Ω× J, (13)

subject to the initial condition

u(a, b, 0) = a3 + b. (14)

By using the basic properties of RDTM in equa-
tions (13) and (14), we obtain the following rela-
tions

(k + 1)Uk+1(a, b) +
∂
∂a
Uk(a, b) +

∂
∂b
Uk(a, b)

− ∂2

∂a2
Uk(a, b)−

∂2

∂b2
Uk(a, b)

= 3a2δ(k)− 6aδ(k) + 2δ(k − 1) + δ(k),
(15)

Taking the differential transform of Eq.(14), we
write

U0(a, b) = a3 + b. (16)

By using Eq. (16) in Eq. (15), we obtain Uk(a, b)
values fork = {0, 1, 2, 3, · · · } as follows

U1(a, b) = 0, U2(a, b) = 1, Ui(a, b) = 0,
for(i = 3, 4, 5, . . . ).

(17)

The exact solution of the equation (13) will as-
sume the following form:

u(a, b, t) =
∞
∑

k=0

Uk(a, b)t
k = a3 + b+ t. (18)

Example 3. We consider the non-homogeneous
CDE (see [14])

∂u

∂t
−
∂2u

∂a2
−
∂2u

∂b2
+
∂u

∂a
= (2π2−1)e−tsin(πa) cos(πb)

+ πe−tcos(πa) cos(πb), (a, b, t) ∈ Ω× J, (19)

with the initial condition

u(a, b, 0) = sin(πa) cos(πb). (20)

By using the basic properties of RDTM in equa-
tions (19) and (20), we obtain the following rela-
tions

(k + 1)Uk+1(a, b)−
∂2

∂a2
Uk(a, b)

− ∂2

∂b2
Uk(a, b) +

∂
∂a
Uk(a, b)

= (2π2 − 1) (−1)k

k! sin(πa)cos(πb)

+ π
(−1)k

k! cos (πa)cos(πb),

(21)

from initial condition(20), we have

U0(a, b) = sin(πa)cos(πb). (22)

By using Eq. (22) in Eq. (21), we obtain Uk(a, b)
values for k = {0, 1, 2, 3, · · · } as follows:

U1(a, b) = −sin(πa)cos(πb),
U2(a, b) = 1

2sin(πa)cos(πb),
U3(a, b) = −1

6sin(πa)cos(πb),
U4(a, b) = 1

24sin(πa)cos(πb),
U5(a, b) = − 1

120sin(πa)cos(πb),
U6(a, b) = 1

720sin(πa)cos(πb),
U7(a, b) = − 1

5040sin(πa)cos(πb), . . . ,

(23)

by using the differential inverse reduced transform
of Uk(a, b),we get

u(a, b, t) =
∞
∑

k=0

Uk(a, b)t
k = U0(a, b)+U1(a, b)t+. . .

= sin(πa)cos(πb)(1−t+
t2

2!
−
t3

3!
+
t4

4!
−
t5

5!
+
t6

6!
−. . . ),

(24)

by using the closed form in the solution of (24),
we obtain the following exact solution

u(a, b, t) = e−tsin(πa)cos(πb). (25)

Example 4. Consider the TDCDP (see [14])

∂u
∂t

= ∂2u
∂a2

+ ∂2u
∂b2

− ∂u
∂a

+e−t(2π2 − 1)sin(πa)sin(πb)
+πe−tcos(πa)sin(πb), (a, b, t) ∈ Ω× J,

(26)

with the initial condition

u(a, b, 0) = sin(πa)sin(πb). (27)
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By using the basic properties of RDTM in equa-
tions (26) and (27), we obtain the following rela-
tions

(k + 1)Uk+1(a, b) =
∂2

∂a2
Uk(a, b) +

∂2

∂b2
Uk(a, b)

−
∂

∂a
Uk(a, b) + (2π2 − 1)

(−1)k

k!
sin(πa)sin(πb)

+ π
(−1)k

k!
cos(πa)sin(πb), (28)

from initial condition(28), we have

U0(a, b) = sin(πa)sin(πb). (29)

By using Eq. (29) in Eq. (28), we obtain Uk(a, b)
values for k = {0, 1, 2, 3, · · · }

U1(a, b) = −sin(πa)sin(πb),
U2(a, b) = 1

2sin(πa)sin(πb),
U3(a, b) = −1

6sin(πa)sin(πb),
U4(a, b) = 1

24sin(πa)sin(πb),
U5(a, b) = − 1

120sin(πa)sin(πb),
U6(a, b) = 1

720sin(πa)sin(πb),
U7(a, b) = − 1

5040sin(πa)sin(πb), . . . ,

(30)

by using the differential inverse reduced transform
of Uk(a, b),we get

u(a, b, t) = sin(πa)sin(πb)(1− t+ t2

2

− t3

6 + t4

24 − t5

120 + t6

720 − . . . ),
(31)

by using the closed form in the solution of (31)
we obtain the following exact solution

u(a, b, t) = e−tsin(πa)sin(πb). (32)

4. Conclusion

In this study, we used RDTM to solve convection-
diffusion problems and showed that RDTM is an
effective and appropriate technique for finding ex-
act solutions of the TDCDP which we have inves-
tigated here. On the other hand the results are
quite reliable for solving this problem. The exact
closed form solution was obtained for all the ex-
amples presented in this paper. RDTM offers an
excellent opportunity for future research.
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