
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.10, No.1, pp.55-65 (2020)

http://doi.org/10.11121/ijocta.01.2020.00753

RESEARCH ARTICLE

Optimal control of fractional integro-differential systems based on a

spectral method and grey wolf optimizer

Raheleh Khanduzi*a, Asyieh Ebrahimzadehb, and Samaneh Panjeh Ali Beikc

aDepartment of Mathematics and Statistics, Gonbad Kavous University, Golestan, Iran
bSchool of Basic Sciences, Farhangian University, Tehran, Iran
cYoung Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
khanduzi@gonbad.ac.ir, ebrahimzadeh263@gmail.com, panjehali@alumni.iust.ac.ir

ARTICLE INFO ABSTRACT

Article History:
Received 16 November 2018

Accepted 24 July 2019

Available 14 January 2020

This paper elaborated an effective and robust metaheuristic algorithm with
acceptable performance based on solution accuracy. The algorithm applied in
solution of the optimal control of fractional Volterra integro-differential (FVID)
equation which be substituted by nonlinear programming (NLP). Subsequently
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compared with those achieved using other methods.
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1. Introduction

The main purpose of this essay is to introduce
an efficient approach for solving following optimal
control problem (OCP):

Problem A: Find optimal control u∗ and corre-
sponding optimal state x∗ that minimize the qua-
dratic performance index

J =

∫ T

0

(

x2(t) + u2(t) + f(t)x(t) + g(t)u(t)
)

dt,

(1)

subject to the fractional Volterra integro-
differential (FVID) equation

Dαx(t) = a(t)x(t)+b(t)u(t)+

∫ t

0
(K(t, s))ϕ(x(s))ds,

(2)

where a(t), b(t), g(t), f(t) are known and real
valued functions which are belonged to L2[0, T ]
and ϕ(x(s)) is a nonlinear function in terms of
the unknown function x(s).

In various problems of physics, mechanics and
engineering, fractional differential equations have
been proved to be a valuable tool in the modeling
of many phenomena. There are many applica-
tions in viscoelasticity, electrochemistry, control
and electromagnetic, [1, 2]. In consequence, the
subject of fractional equations is gaining much
importance and attention. Meanwhile, the study
of OCP governed by fractional integro differential
equations is also important as such systems oc-
cur in various problems of applied nature. Some
approaches for numerical solutions of fractional
optimal control problems can be found in [3–6].
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We need to be mindful only special cases of OCPs
can be solved analytically, so choosing the best
numerical schemes in terms of rapidity of conver-
gence and accuracy is significant. The method im-
plemented for discritizing mentioned OCP is spec-
tral method, which is one of the most accurate
method which used by several author and in dif-
ferent kind of functional problems for example see
the [7,8] and the references in. The idea is to write
the solution of OCP as a sum of Bernoulli poly-
nomials, substituting these approximations in the
OCP yields a NLP in the coefficients which can
be solved using any metaheuristic algorithm pre-
sented in the literature for solving an optimization
problem.

Among these algorithms, nature-inspired meta-
heuristic algorithms are appropriate for global
searches according to ability in exploring glob-
ally and exploiting locally. Mirjalili et al. [9]
proposed grey wolf optimizer (GWO) algorithm
inspired by the behavior of grey wolves in na-
ture. Indeed, the GWO algorithm simulated the
leadership hierarchy and hunting behavior of grey
wolves. GWO has shown a good performance
when applied to solve nonlinear continuous op-
timization problems. The GWO algorithm is also
compared with particle swarm optimization, grav-
itational search algorithm, differential evolution,
evolutionary programming, and evolution strat-
egy to confirm its results.

So, GWO is theoretically able to solve our NLP.
Some points on the advantages of the GWO have
been expressed:

• The social hierarchy helped GWO to
visit the best solutions generated over the
course of iteration.

• The encircling procedure determined a
circle-shaped neighborhood around the
solutions which can be developed to
higher dimensions as a hyper-sphere.

• The random parameters helped candidate
solutions to have hyper-spheres with dif-
ferent random radii.

• The hunting approach accepted candidate
solutions to detect the probable location
of the prey.

• Exploration and exploitation are war-
ranted by the adaptive values of two pa-
rameters.

• The adaptive values of parameters helped
GWO to efficiently trade off between ex-
ploration and exploitation.

• The GWO had only two main parameters
to be controlled.

The paper is organized as follows: In section 2,
the basic concepts about the Bernoulli polyno-
mials and how to approximate the functions in
terms of these polynomials is interpreted. Also,
the operational matrices of fractional integration
are mentioned. As we have provided some defini-
tion of fractional calculus. In section 3, the out-
line of our spectral scheme for discretizing afore-
mentioned optimal control problem and obtaining
the resulted NLP is presented. Section 4 is de-
voted to explain the grey wolf optimizer algorithm
for solving the problem under consideration.

In section 5, numerical results are reported to ver-
ify the applicability of the presented method in
comparison with the other methods in the liter-
ature. Through these examples, the superiority
of these three bases functions are also discussed.
Finally, section 6 ends this paper with a brief con-
clusion and some remarks.

2. Preliminaries

In this section, we give some basic concepts we
require.

2.1. Fractional Calculus

This section, reviews some basic definitions and
notations of fractional integral and derivative
which are applied further in this work [10].

Definition 1. The Riemann-Liouville fractional
integral operator of order α, is defined by

Iαξ(t) =
1

Γ(α)

∫ t

0
(t−s)α−1ξ(s)ds, α > 0, t > 0.

(3)

in which Γ(.) denotes the Gamma function and
for α = 0, we set I0ξ(t) = ξ(t).

Definition 2. Let n = ⌈α⌉ (⌈.⌉ denotes ceiling
function, ⌈t⌉ = min{z ∈ Z : z ≥ t}), the operator
Dα, defined by

Dαξ(t) = DnIn−αξ(t),

is called the Riemann-Liouville fractional differ-
ential operator of order α. For α = 0, we set
D0 = I, the identity operator.

The one type of fractional derivative is Caputo
fractional derivative, which is frequently used in
applications.

Definition 3. The Caputo fractional derivative
of f , is defined as
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Dα
∗
ξ(t) =

{

In−αDnξ(t), n− 1 < α < n, n ∈ N,
dn

dtn
ξ(t), α = n.

(4)

Lemma 1. Let α, β ≥ 0, c1, c2 ∈ ℜ and
f(t), g(t) ∈ L1[0, T ]. Then

1) IαIβf(t) = IβIαf(t),
2) IαIβf(t) = Iβ+αf(t),
3) Dα(c1f(t) + c2g(t)) = c1D

α(f(t)) +
c2D

β(g(t))

Note that for n− 1 < α < n, n ∈ N

IαDα
∗
ξ(t) = ξ(t)−

n−1
∑

k=0

ξ(k)(0+)
tk

k!
. (5)

hold almost everywhere on [0, T ].

2.2. An overview on Bernoulli

polynomials

Bernoulli polynomials of order m can be defined
with the following formula [11],

βm(t) =
m
∑

i=0

(

m

i

)

αit
m−i, (6)

where αi, i = 0, 1, · · · ,m are Bernoulli numbers.
These numbers are a sequence of signed rational
numbers which arise in the series expansion of
trigonometric functions [12] and can be defined
by the identity

t

et − 1
=

m
∑

i=0

αi
ti

i!
. (7)

The first few Bernoulli numbers are

α0 = 1, α1 = −
−1

2
, α2 = −

1

6
, α4 =

−1

30
. (8)

with α2i+1 = 0, i = 1, 2, 3, · · · . Bernoulli polyno-
mials form a complete basis over the interval [0,
1] [13]. These polynomials satisfy the following
formula [12]

∫ 1
0 βn(t)βm(t)dt = (−1)n−1 m!n!

(m+n)!αn+m, (9)

m,n ≥ 1

The first few Bernoulli polynomials are

β0(t) = 1,

β1(t) = t−
1

2
,

β2(t) = t2 − t+
1

6
,

β3(t) = t3 −
3

2
t2 +

1

2
t.

Presume that H := L2[0, 1] and

Y = span{β0, β1, . . . , βm},

wherem ∈ N∪{0} and βi’s are the Bernoulli poly-
nomials. Since Y ⊂ H is a finite dimensional vec-
tor space, for every f ∈ H, there exists a unique
y0 ∈ Y such that

‖f − y0‖2 ≤ ‖f − y‖2 ∀y ∈ Y,

in which ‖f‖2 =
√

〈f, f〉. Here, the function y0 is
called the best approximation to f out of Y . As
y0 ∈ Y , we may conclude that

f(t) ≈ y0(t) =
m
∑

j=0

cjβj(t) = CTΨ(t),

where

ΨT (t) = (β0(t), β1(t), . . . , βm(t)), (10)

and

CT = (c0, c1, . . . , cm) such that C uniquely calcu-
lated by

C = Q−1

∫ 1

1
f(t)Ψ(t)dt, (11)

where Q ∈ R
(m+1)×(m+1) is said the dual matrix

of Ψ(t) and given by

Q =

∫ 1

0
Ψ(t)ΨT (t)dt.

For more details about best approximation see
[13].

2.3. Bernoulli operational matrix of the

fractional integration

In in recent years, the operational matrices have
attracted researchers attention and applied to
solving problems consisted of continuous oper-
ators (such as integral, derivative, delay, etc.).
Moreover, the numerical methods via these oper-
ational matrices are easily implemented and have
the following characteristics:

⋄ play a significant role as a preconditioner
in inverse problems,

⋄ have higher accuracy due to their sparsity.

The RiemannLiouville fractional integration of
the vector Ψ(t) given in Equation (10) can be ex-
pressed by [4]
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IγΨ(t) = F γΨ(t), (12)

in which F γ is the (m+1)×(m+1) RiemannLiou-
ville fractional operational matrix of integration.
Although F γ given in [4] we use the different way
and notations to show this matrix. For this pur-
pose, Assume that S

Iγβi(t) = Iγ(

i
∑

k=0

(

i

k

)

αk t
i−k)

=
i

∑

k=0

(

i

k

)

αk I
γti−k

=
i

∑

k=0

(

i

k

)

Γ(i− k + 1)αk

Γ(i− k + 1 + γ)
ti−k+γ

(13)

Now if ti−k+γ approximated in terms of Bernoulli
polynomials we can define each elements of S =
[sij ](m+1)×(m+1) as

sij =
i
∑

k=0

j
∑

l=0

Γ(i−k+1)

(

i

k

)(

j

l

)

αk αl

Γ(i−k+1+γ) (−l−k+α+1+i+j) , i, j = 0, 1, . . . ,m.

(14)

As a results F γ can be expressed as

F γ = SQ−1 (15)

3. Bernoulli polynomial collocation

method

For discretization of the integro-differential dy-
namic system (2), we express the fractional state
rate Dγx(t) and control variable u(t) in terms of
Bernoulli polynomial as

Dγx(t) ≃ XTΨ(t),

u(t) = UTΨ(t),
(16)

where XT and UT are unknown vectors and Ψ(t)
given in (10). Using Lemma 2.1. Equation (12),
x(t) can be represented by

x(t) = IγDγx(t) + x(0) ≃ (XTF γ + ET )Ψ(t).
(17)

F γ is the fractional operational matrix of inte-
gration and ET = [x0, 0, . . . , 0](1×(m+1). Now we
replace (16) and (17) in dynamic system (2)

XTΨ(t)− a(t)(XTF γ + ET )Ψ(t)− b(t)UTΨ(t)

−

∫ t

0
k(t, s)ϕ((XTF γ + ET )Ψ(s)) ds = 0,

(18)

In order to specify the unknown coefficients in
(18), we collocate this equation at m+ 1 colloca-
tion points. So (18) can be rewrite as

XTΨ(ti)− a(ti)(X
TF γ + ET )Ψ(ti)− b(ti)U

TΨ(ti)

−

∫ ti

0
k(ti, s)ϕ((X

TF γ + ET )Ψ(s)) ds = 0.

(19)

In above equation, ti, i = 0, . . . ,m are the
Chebyshev-Gauss-Lobatto nodes in [0, 1] which
we chose them as suitable collocation points. In
order to utilize the Gauss-Legendre (GL) quad-
rature formula, by means of transformation s =
ti
2 (τ + 1), (19) convert to

XTΨ(ti)− a(ti)(X
TF γ + ET )Ψ(ti)

− b(ti)U
TΨ(ti)−

ti

2

N
∑

j=0

ωjk(ti,
ti

2
(τj + 1))

×ϕ((XTF γ + ET )Ψ(
ti

2
(τj + 1))) = 0,

(20)

where τjs are GL nodes, zeros of Legendre polyno-
mials in the interval [−1, 1] and ωjs are the cor-
responding weights. Although explicit formulas
for quadrature nodes are not known, the weights
can be expressed in closed form by the following
relation consequently, the controlled FVID (2) is
reduced to m+ 1 nonlinear algebraic.

For discritization of the performance index stated
in (1) , we approximate f(t) and g(t) by Bernoulli
polynomials respectively as

f(t) = F TΨ(t), g(t) = GTΨ(t). (21)

Substituting (21) in (1) conclude that

J =

∫ 1

0
(XTΨ(t)ΨT (t)X + UTΨ(t)ΨT (t)U

+ F TΨ(t)ΨT (t)X +GTΨ(t)ΨT (t)U) dt
(22)
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Integrating (21) on [0, 1] results

J = XTQX + UTQU + F TQX +GTQU, (23)

in which Q given in (11). So, The OCP given in
(1) and (23) is converted to a NLP with objective
functional (22) and constraints (20).

The resulted NLP problem is also large scale. So,
it is of great importance to use an efficacious and
compatible metaheuristic algorithm which gener-
ates the solutions with high computational deci-
sions. This research utilizes a new metaheuristic
algorithm, called grey wolf optimizer (GWO) to
solve the problem under consideration. The next
section describe the GWO and its elements and
mechanisms to solve NLP governed by OCP.

4. Grey wolf optimizer

The proposed mathematical programming prob-
lem is the nonlinear and large scale. So, we need
to solve the problem by studying both local and
metaheuristic approaches. Among the local al-
gorithms, the trust region method plays a vital
role in solving large-scale nonlinear optimization
problems because of its efciency [14, 15]. How-
ever, it finds local solutions in a long amount of
time as the T >> 1 or the problem dimension
increases. To prevent this type of imperfection, a
grey wolf optimizer (GWO) algorithm is proposed
in this research. The GWO algorithm is a nature-
inspired metaheuristic algorithm which mimitates
the leadership hierarchy and hunting structure
of grey wolves.Therefore, high-performing meta-
heuristic approach with high computational high-
precision numerical solutions and short execution
time is implemented to solve the problem. The
GWO obtains near-optimal solutions or the global
minimum of objective functional in more efcient
way. About the proposed algorithm, it is nec-
essary to note that the GWO is really suitable
and appropriate for the nonlinear optimization
problems with the number of more variables and
constraints, specially when solving large-sized in-
stances of the problems [16–19]. For the prob-
lem, the values of objective functionals show that
GWO’s performance is better than local method
in terms of the approximate solution of functions
x(t) and u(t). So, on the base of above-mentioned
points, one can come to the conclusion that the
GWO is a favorable candidate for solving the
problem if T >> 1.

The GWO algorithm has derivation-free proce-
dures. In contrast to gradient-based optimization

algorithms, this metaheuristic algorithm mini-
mizes the problems stochastically. The optimiza-
tion mechanism begins with random solution, and
there is no need to compute the derivative of
search regions or gradient information of the ob-
jective functionals to obtain the global minimum
of the problem. This makes the GWO algorithm
highly applicable for the NLP problems with un-
known derivative information. On the other hand,
the simplicity of the GWO is particularly advan-
tageous in the presence of non-smooth objective
functionals, for which exact algorithms may fail to
reach their global solutions. Viability of the GWO
is analyzed using some non-smooth mathemat-
ical functions and engineering design problems
[20–22].So, the GWO algorithm is a favorable
choice and a competitive algorithm when consid-
ering non-smooth, and non-linear functions.

In this section, the essential nature of the GWO
algorithm is explained. GWO algorithm is an new
nature-inspired metaheuristic algorithm which
was first introduced by Mirjalili et al. [9].

GWO is a technique inspired from the nature and
grey wolves. The GWO algorithm simulated the
leadership hierarchy and hunting behavior of grey
wolves.

In leadership hierarchy, alpha, beta, delta, and
omega were applied as four grey wolves. Also,
hunting, searching for prey, encircling prey, and
attacking prey were as the three main components
of GWO. These new steps are discussed in the fol-
lowing section.

4.1. Social hierarchy

To formulate the social hierarchy of wolves, the
fittest solution is considered as the alpha (α). Ac-
cordingly, the second and third best solutions are
called beta (β) and delta (δ), respectively. The re-
maining candidate solutions are then represented
as omega (ω). Also, the hunting mechanism is
constructed by α, β, and δ. The ω wolves fol-
lowed these three wolves.

4.2. Encircling prey

As seen in nature, grey wolves surround prey dur-
ing the hunt. This surrounding behavior is given
by:

~D = | ~C. ~Xp(t)− ~X(t)| (24)

~X(t+ 1) = ~X(t)− ~A. ~D (25)

where t shows the current iteration, ~A and ~C are

coefficient vectors, ~Xp is the position vector of the
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prey, and ~X shows the position vector of a grey

wolf. The vectors ~A and ~C are computed followed
by:

~A = 2~a.~r1 − ~a (26)

~C = 2.~r2 (27)

where r1 and r2 are random vectors in [0, 1]. Over
the course of iterations, components of ~a are lin-
early reduced from 2 to 0.

4.3. Hunting

Grey wolves have the capability to identify the
position of prey and envelop them. The hunt is
normally conducted by the alpha. The beta and
delta also partake in hunting sometimes. So, the
first three best solutions is saved and the other
search agents (including the omegas) is performed
to update their positions based on the position of
the best search agents. This process is stated with
the following equations:

~Dα = | ~C1. ~Xα − ~X|, ~Dβ = | ~C2. ~Xβ − ~X|,

~Dδ = | ~C3. ~Xδ − ~X|, (28)

~X1 = ~Xα − ~A1.( ~Dα), ~X2 = ~Xβ − ~A2.( ~Dβ),

~X3 = ~Xδ − ~A3.( ~Dδ), (29)

~Xt+1 =
~X1 + ~X2 + ~X3

3
(30)

4.4. Attacking prey

At the end of the hunt, grey wolves rush at the
prey when it stops moving. To model nearing
the prey, the value of ~a is reduced from 2 to 0.

Then, the variation range of ~A is also reduced by

~a. Especially, ~A is a random value in the interval
[−2a, 2a].

4.5. Search for prey

Grey wolves chiefly explore based on the position
of the alpha, beta, and delta. They get away from
each other to search for prey and converge to rush

prey. To formulate divergence, ~A with random
values greater than 1 or less than −1 is applied
to enforce the search agent for diverging from the
prey. So, the GWO algorithm employing global
search strategy and this confirms exploration.

As it is seen in Eq. (27), the ~C vector is also
another factor of exploration. This factor obtains
random weights for prey to stochastically accentu-
ate (C > 1) or unaccentuate (C < 1) the efficacy

of prey in determining the distance in Eq. (24).
The C vector can be also considered as the efficacy
of barriers to nearing prey in nature. Usually, the
barriers in nature exist in the hunting paths of
wolves and impede them from swiftly and com-
fortably nearing prey.

Briefly, the search procedure starts with generat-
ing a random population of grey wolves. Over the
course of iterations, alpha, beta, and delta wolves
suggest the possible location of the prey. The
distance from the prey is updated by each candi-
date solution The parameter a is reduced from 2
to 0 to accentuate exploration and exploitation,
respectively.

Candidate solutions favor divergence of the prey

when | ~A| > 1 and move towards (converge) the

prey when | ~A| < 1. Finally, the GWO algorithm
stops when an end criterion is satisfied.

The pseudo code of the GWO algorithm is pre-
sented in Algorithm 1.

Algorithm 1. GWO algorithm

1: Initialize the grey wolf population Xi =
(xi(t), ui(t))(i = 1, · · · , n)

2: Initialize a, A, and C

3: Calculate the fitness of each search agent
4: Xα=the best search agent
5: Xβ=the second best search agent
6: Xδ=the third best search agent
7: while (k < Max number of iterations) do

8: for each search agent do
9: Update the position of the current

search agent by equation (30)
10: end for

11: Update a, A, and C

12: Calculate the fitness of all search agents
13: Update Xα, Xβ, and Xδ

14: k = k + 1
15: end while

16: return Xα

5. Numerical experiments

In these examples, firstly the OCP is converted to
a NLP with proposed method in section 3. The
resulted NLP is solved by using fmincon func-
tion in MATLAB and GWO algorithm to find lo-
cal and global minimum of constrained nonlinear
function, respectively.

For ease of references in tables, we use the pro-
posed method and local method to demonstrate
the results obtained from solving NLP with fmin-
con function and GWO algorithm, respectively.

In order to demonstrate and justify the perfor-
mance and the accuracy of our scheme on OCPs
governed by fractional integro-differential equa-
tion, we consider the following examples.
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Example 1. Consider the following OCP

J =

∫ 1

0

(

(x(t)− et)2 + (u(t)− e3t)2
)

dt (31)

subject to the nonlinear fractional integro-
differential equation

Dαx(t)−
3

2
x(t) +

1

2
u(t)−

∫ t

0

(

et−sx3(s)
)

ds = 0,

x(0) = 1.
(32)

The problem is to find the optimal control u∗(t),
which minimizes the quadratic performance index
(31). For this problem, the exact solution in the
case of α = 1 is given by [23]

x(t) = et, u(t) = e3t.

In Table 1, one can compare the optimal value
of objective functional by utilizing GOW algo-
rithm as well as local method in M = 7
and different values of α. The numerical re-
sults for x(t) and u(t) in M = 7 and α =
0.5, 0.7, 0.9 and 1 are plotted in Figures 1-2.
In these figures, we see that our approximate
solutions converge to exact solution. The re-
sults obtained with GOW method demonstrate
validity and effectiveness of proposed method.

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
(t

)

1

1.5

2

2.5

3

3.5

4

Exact

0.9

0.7

0.5

0.952 0.954 0.956

2.59

2.6

2.61

Figure 1. State x(t) as a function of
t for the Example 1 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9.

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
(t

)

0

5

10

15

20

25

Exact

0.9

0.7

0.5

0.7485 0.749 0.7495

9.45

9.46

9.47

9.48

9.49

Figure 2. Control u(t) as a function
of t for the Example 1 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9.

Example 2. Consider the following nonlinear
problem [23]

min J =

∫ 1

0

(

(x(t)− et
2

)2

+ (u(t)− (1 + 2t))2dt,

Dαx(t) + x(t)− u(t)

−

∫ t

0

(

t(1 + 2t)es(t−s)x(s)
)

ds = 0

The optimal control u∗ and corresponding optimal

state x∗ for α = 1 are respectively 1 + 2t and et
2

.

Figures 3-4 show the approximate solution of
functions x(t) and u(t) using GWO algorithm and
local method for M = 7 and α = 0.5, 0.7, 0.9.
The exact solution for α = 1 is also represented.
The value of objective function with GWO and lo-
cal methods for M = 7 and different values of α
are given in Table 2. It is obvious that we can
achieve a better approximation with GWO algo-
rithm against local method.



62 R. Khanduzi, A. Ebrahimzadeh, S. Panjeh Ali Beik / IJOCTA, Vol.10, No.1, pp.55-65 (2020)

Table 1. The value of J∗ for Example 1 (m = 7 and different α).

Local Method Proposed Method

α = 0.7 α = 0.9 α = 1 α = 0.7 α = 0.9 α = 1

J∗ 0.389877 0.0946404 4.17536× 10−11 2.45× 10−5 8.64× 10−8 7.74× 10−12

Table 2. The value of J∗ for Example 2 (m = 7 and different α).

Local Method Proposed Method

α = 0.7 α = 0.9 α = 1 α = 0.7 α = 0.9 α = 1

J∗ 0.0515124 0.00494284 1.29× 10−11 2.50× 10−6 1.22× 10−8 4.70× 10−12
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Figure 3. State x(t) as a function of
t for the Example 2 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9).
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Figure 4. Control u(t) as a function
of t for the Example 2 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9).

Example 3. Consider the minimization of frac-
tional [23]

J =

∫ 1

0

(

(x(t)− t)2 + (u(t)− tet
2

)2
)

dt,

subject to dynamic state

Dαx(t)− x(t)− u(t) + 2

∫ t

0

(

tse−x2(s)
)

ds = 0.

The optimal control u∗(t) and corresponding op-
timal state x(t) for α = 1 are as follows:

x∗(t) = t,

u∗(t) = 1− te−t2

We solve this OCP using GWO and local methods
for for M = 7 and various α. Figures 5-6 show
that as α → 1, the approximate solutions with
GWO algorithm tend to the exact solution in the
case of α = 1. The value of objective function with
GWO and local methods for M = 7 and differ-
ent values of α, is shown in Table 3. From Table
3, we can see that the value of objective function
based on GWO is all less than the least value of
objective function obtained by local method.



Optimal control of fractional integro-differential systems based on a spectral method . . . 63

Table 3. The value of J∗ for Example 3 (m = 7 and different α).

Local Method Proposed Method

α = 0.7 α = 0.9 α = 1 α = 0.7 α = 0.9 α = 1

J∗ 0.0366084 0.00374084 8.84× 10−14 4.71× 10−7 9.37× 10−8 2.12× 10−14
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Figure 5. State x(t) as a function of
t for the Example 3 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9).
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Figure 6. Control u(t) as a function
of t for the Example 3 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9).

6. Conclusions

By utilizing spectral method, OCP governed by
fractional Volttera-integro differential equation is
converted to a NLP.

In this research, a powerful and efficacious meta-
heuristic algorithm called Grey Wolf Optimizer
(GWO) is utilized to obtain the solutions of the
optimal control and state as well as the optimal
value of the objective function.

The GWO algorithm imitated the leadership hier-
archy with four types of grey wolves and hunting
procedure with searching for prey, encircling prey,
and attacking prey. These strategies confirmed
the preferable exploitation, exploration capabil-
ity and efficient escape from local optimum of the
GWO.

Numerical experiments verify the validity and the
applicability of the proposed method. Compar-
isons with the exact solution and other methods
show that this technique is a powerful and effi-
cient tool for solving the fractional OCP.
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