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1. Introduction

Let us consider the problem of finding a solution
of the system of nonlinear equations

F (x) = 0, F : Rn → R
n. (1)

The mapping F is assumed to fulfill the following
classical assumptions (CA):

• it is continuously differentiable in an open
convex set D ⊂ R

n,
• there is an x∗ in D such that F (x∗) = 0,
• the Jacobian F ′ is Lipschitz continuous at
x∗ and F ′(x∗) is nonsingular.

Newton’s method (see [1–3])

xk+1 = xk− (F ′(xk))
−1F (xk), k = 0, 1, . . . , (2)

is well suited to solve the system (1) due to its lo-
cal quadratic convergence. However, this method
is known to be numerically expensive. It requires
the evaluation of a jacobian matrix and the solu-
tion of a linear system per iteration. An alterna-
tive to Newton’s method is the Broyden’s quasi-
Newton method. This method uses approxima-
tions to the Jacobian matrix at each iteration by
performing rank-one updates, see [4]. It requires
only one F -evaluation per iteration and achieves,
under the classical hypotheses (CA), local super-
linear convergence as shown in [5]. Given an ini-
tial guess x0 and an initial approximation B0 of
the jacobian matrix, Broyden iteration is given by

xk+1 = xk −B−1
k F (xk), k = 0, 1, . . . , (3)

where Bk is updated at each iteration as

Bk+1 = Bk + (yk −Bksk)
sTk
sTk sk

, (4)
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with yk = F (xk+1)− F (xk) and sk = xk+1 − xk.
To avoid the drawback of storing and manipulat-
ing the (n×n)-matrices of Broyden, limited mem-
ory methods put restrictions on the size of systems
to solve, see references [6], [7] and [8]. Equation
(4) implies that if B0 is updated p times, the re-
sulting matrix can be written as

Bp = B0 + c1d
T
1 + . . .+ cpd

T
p = B0 + CDT , (5)

where

cj+1 =
yj −Bjsj

‖ sj ‖
and

dj+1 =
sj

‖ sj ‖
, j = 0, ..., p− 1,

with C = [c1, ..., cp] and D = [d1, ..., dp]. The up-
date matrix Q = CDT is sum of p rank-one ma-
trices, its rank does not exceed p. The singular
values decomposition of Q is then given by

Q = σ1u1v
T
1 + . . .+ σpupv

T
p , (6)

where σ1 ≥ . . . ≥ σp ≥ 0 are the singular val-
ues. The sets {u1, . . . , up} and {v1, . . . , vp} are,
respectively, the left and right corresponding sin-
gular vectors. By choosing B0 = I, the matrix Bp

can be stored using 2p vectors of length n.

Suppose the maximal rank of Q is fixed at p with
p << n. Broyden rank reduction (BRR) method,
see [7], is a variant of limited memory Broyden

methods that approximates Q by a matrix Q̃ with
low rank q ≤ p−1 by truncating the singular value
decomposition (6).

The current number of stored updates is denoted
by m (0 ≤ m ≤ p). The maximal number of up-
dates to the initial Broyden matrix is thus given
by p. If p updates are stored (m = p), the sin-
gular value decomposition of Q is computed and
the last (p − q) singular values are removed just
before the next update is computed. In this case,
the next Broyden update will proceed using the
modified matrix

B̃k = Bk −R,

where R =

p
∑

l=q+1

σlulv
T
l is the so-called round-

off matrix. No reduction is performed as long as
m < p. Thus, the liberated memory is used to
store (p− q) new Broyden’s updates according to
the scheme (7)

Bk+1 =



































Bk + (yk −Bksk)
sTk
sTk sk

−R

(

I − sks
T
k

sTk sk

) if m = q + 1,

Bk + (yk −Bksk)
sTk
sTk sk

, else.

(7)

The BRR method, as presented in [7], does not
give any idea how to fix a priori the rank of the
matrix Q̃, only the smallest singular value is re-
moved. But, in many cases there are more than
one singular value that are close to zero and so
they can be removed. In this case, memory will be
free to store more than one Broyden’s update. We
propose here a new approach using a threshold-
ing process of singular values of the update matrix
by fixing a relative accuracy for the approxima-
tion of the matrix Q. In section 2 we present
the new method and prove its local superlinear
convergence. Section 3 is devoted to numerical
results showing the efficiency of the method.

2. The proposed method

In many nonlinear problems, the singular values
of the update matrix decay rapidly to zero, and
more than one singular value can be removed. In
figure 3 (see problem 3 in section 3) we present
the singular values distribution of Q in case of the
Spedicato function for p = 6 and p = 10. For ex-
ample, when p = 6, we can see that the two last
smallest singular values are zero while the third
and the fourth ones are close to zero. In this ex-
ample, the four last singular values can advanta-
geously be removed as memory will be available
to store four new Broyden updates and no sin-
gular values decomposition will be needed during
the following four iterations.
So, the question is how, in general, to choose the
rank q of Q̃ and thence the number of singular
values to remove. As an answer to this question,
we propose to use a tresholding process by ex-
ploiting the information about the approximation
error ‖ R ‖2. Given a relative accuracy ε > 0 of

the approximation Q̃, i.e.,

||Q− Q̃||2 < ε||Q||2,

the required rank q(ε) is given, if it exists, by

q(ε) = min {k ∈ {1, . . . , p− 1} s.t. σk+1 < εσ1}.
(8)
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The value of q(ε) is calculated each time a reduc-
tion of the update matrix is needed, and all sin-
gular values satisfying the condition σl+1 < εσ1,
l = 1, . . . , p − 1 are removed. If there is no k

satisfying (8), only the smallest singular value is
removed (we turn back to the BRR method), and
in this case q = p − 1. So, the rank q will be
chosen as

q =

{

q(ε) if q(ε) exists,
p− 1 otherwise.

(9)

This dynamical choice of q leads to a new
method, displayed in Algorithm 1, which will
be called dynamical Broyden rank reduction
(DBRR) method.

In DBRR algorithm, the Sherman Morrison
Woodbury formula, see [1], is used in order to
compute the inverse of the Broyden matrix. If we
set B0 = I we get

(I + CDT )−1 = I − C(I +DTC)−1DT .

In this case, we have only to solve linear systems
of equations with p × p matrices. Note also that
the singular value decomposition of the update
matrix is carried out using an economical process,
see [7]. Note that the error that is introduced
by removing the last (p− q) singular values of Q
equals

||R|| =
{

σq+1 for m = q + 2,
0 else.

Let us now prove the superlinear convergence of
the proposed algorithm.

Theorem 1. Let q be defined as in (9) with

||R|| ≤ α ‖ sk ‖, sk 6= 0, k ∈ N, (10)

where the constant α does not depend on k. Let,
in addition, the classical hypotheses (CA) hold.
Then the DBRR method has local superlinear con-
vergence.

Proof. Define Ek = Bk−F ′(x∗) and ek = xk−x∗
for k = 0, 1, . . .. To prove linear convergence
of the proposed method, we need the following
lemma whose proof can be found in [1], p. 77.

Lemma 1. Let F : Rn → R
n be continuously dif-

ferentiable in the open convex set D ⊂ R
n and F ′

is γ-Lipschitz in x ∈ D. Then, for any u, v ∈ D,

∥

∥F (v)− F (u)− F ′(x)(v − u)
∥

∥

≤ γ

2
(‖v − x‖+ ‖u− x‖) ‖v − u‖.

Equation (7) can be written as

Ek+1 = Ek

(

I − sks
T
k

sTk sk

)

+
(

yk − F ′(x∗)sk
) sTk
sTk sk

−R

(

I − sks
T
k

sTk sk

)

. (11)

Using Lemma 1 we have

∥

∥yk − F ′(x∗)sk
∥

∥ ≤ γ

2
(||ek+1||+ ||ek||) ‖sk‖,

(12)

where γ is the constant Lipschitz for F ′. Thus we
obtain, from equation (11), the so-called bounded
deterioration property of the DBRR method

||Ek+1|| ≤ ||Ek||+
(

α+
γ

2

)

(||ek+1||+ ||ek||) ,
(13)

since ||R|| = σq+1 ≤ α||sk|| ≤ α (||ek+1||+ ||ek||).

We have used the fact that

(

I − sks
T
k

sTk sk

)

is an or-

thogonal projection and then its norm is equal to
one. Inequality (13) implies local convergence of
the DBRR method. In fact, as shown in [5], any
quasi-Newton method that obeys the bounded de-
terioration property has local linear convergence.
As consequences of the linear convergence, we
have

||ek+1|| ≤
1

2
||ek||, k = 0, 1, . . . , (14)

and

∞
∑

k=0

||ek|| ≤ 2||e0||. (15)

Since DBRR method satisfies the secant equation
(Bk+1sk = yk), according to Theorem 8.2.4 in [1],
a sufficient condition for {xk}k to converge su-
perlinearly to the root x∗ is the so-called Dennis-
Moré condition

lim
k→+∞

||Eksk||
||sk||

= 0. (16)

Equation (11) also implies

||Ek+1||F ≤
∥

∥

∥

∥

Ek

(

I − sks
T
k

sTk sk

)∥

∥

∥

∥

F

+

∥

∥

∥

∥

(

yk − F ′(x∗)sk
) sTk
sTk sk

∥

∥

∥

∥

F

+ ||R||F ,
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Algorithm 1. Let x0 ∈ R
n and B0 ∈ R

n×n be given. Set the parameter p and the accuracy ε > 0.
Let m = 0.

: For k = 0, 1, 2, ... until convergence,
1. : Solve Bksk = −F (xk) for sk
2. : xk+1 = xk + sk
3. : yk = F (xk+1)− F (xk)
4. : If m = p then

4.1. : Compute the singular values decomposition of Q as in (6)
4.2. : Compute q as in (9)

4.3. : Reduce Broyden matrix: Bk = Bk −
p

∑

i=q+1

σiuiv
T
i

4.4. : Set m = q

5. : Update matrix Bk as in (7)
6. : Set m = m+ 1

where ||.||F denotes the Frobenius norm. From
equation (12), we obtain

∥

∥

∥

∥

(

yk − F ′(x∗)sk
) sTk
sTk sk

∥

∥

∥

∥

F

=

∥

∥

∥

∥

(

yk − F ′(x∗)sk
) sTk
sTk sk

∥

∥

∥

∥

≤ γ

2
(||ek+1||+ ||ek||) .

The following lemma, where the proof can be
found in [1], p. 183, will be useful in the sequel.

Lemma 2. Let s ∈ R
n be nonzero and let E ∈

R
n×n. Then

∥

∥

∥

∥

E

(

I − ssT

sT s

)
∥

∥

∥

∥

F

≤ ‖E‖F − 1

2‖E‖F

( ||Es||
||s||

)2

.

Using inequality (14) and Lemma 2 we derive

||Ek+1||F ≤ ||Ek||F − ||Eksk||
2

2||Ek||F ||sk||2

+ 3
4γ||ek||+ ||R||F

≤ ||Ek||F − ||Eksk||
2

2||Ek||F ||sk||2

+ 3
4 (γ + 2α

√
n) ||ek||.

This inequality is equivalent to

||Eksk||2
||sk||2

≤ 2||Ek||F (||Ek||F − ||Ek+1||F

+
3

4
(γ + 2α

√
n)||ek||

)

. (17)

Using inequality (15) we show that

+∞
∑

k=0

||Eksk||2
||sk||2

≤ 2c

(

||E0||F +
3

2
(γ + 2α

√
n)||e0||

)

,

where c > 0 is an upper bound of the sequence
{Ek}k. Hence, condition (16) is satisfied and the
superlinear convergence is proved. �

3. Numerical results

We present now numerical tests by applying the
proposed method to some classical test functions
from the literature and we present a comparison
of this method with the classical BRR method
(q = p−1). The numerical experiments were car-
ried out using the scientific computing software
MATLAB. We use the following stopping crite-
rion for our computer programs

||F (xk)|| < εa + εr||F (x0)||,

where εa = 10−15 and εr = 10−15 (respectively,
absolute and relative tolerances). For both BRR
and DBRR methods most of the computational
time is spent in evaluations of the function F and
computation of the singular values decomposition
of the update matrix.

Problem 1

Let us consider the trigonometric system







F1(x) = cos(x1)−9+3x1+8 exp(x2),

Fi(x) = cos(xi)−9+3xi+8 exp(xi−1), i=2,...,n−1,

Fn(x) = cos(xi)−1.

The size of this problem is n = 1000000, and
the initial guess is given by x0 = (1.2, . . . , 1.2)T .
We plot in figure 1 the distribution of singular
values of the update matrix for p = 5, 8, 10 and
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Figure 1. Singular values of the update matrix Q for p = 5, 8, 10 and p = 15 for Problem 1.

p = 15. For these values of p, the update matrix
has rank two in all nonlinear iterations. Hence,
the DBRR method requires less singular values
decomposition calls. The size of this problem is
n = 1000000, and the initial guess is given by
x0 = (1.2, . . . , 1.2)T . We plot in figure 1 the dis-
tribution of singular values of the update matrix
for p = 5, 8, 10 and p = 15. For these values of
p, the update matrix has rank two in all nonlin-
ear iterations. Hence, the DBRR method requires
less singular values decomposition calls.

For this example both BRR and DBRR do not
converge for p ≤ 4. Performances of DBBR and
BRR methods, for different values of p, are pre-
sented in tables 1 and 2, respectively. For all p
values, the choice of ε does not significantly affect
the convergence rate and the computational time.

Problem 2

We consider now the so-called extended system of
Byeong

Fi(x) = cos(x2i − 1)− 1, i = 1, . . . , n.

The size of this problem is n = 1000000,
and the initial guess is given by x0 =
(0.0087, . . . , 0.0087)T . For this example, the up-
date matrix has rank one during all nonlinear it-
erations, see figure 2.

So, whenever a reduction of the update matrix is
needed, (p − 1) singular values are removed free-
ing the memory to store new updates. For a given
value of p, the choice of the parameter ε does not
affect the performance of DBRR method as shown
in table 3. A comparison of tables 3 and 4 shows
the efficiency of the singular values thresholding
process.

Problem 3

In this example, we compute the root of the so-
called Spedicato function

Fi(x) =

{

1− xi if i odd,
10(xi − x2i−1) if i even,

for i = 1, . . . , n. The size of this problem is
n = 1000000, and the initial guess is given by
x0 = (−1.2, . . . ,−1.2)T . Both BRR and DBRR
methods do not converge for p ≤ 4. The rank of Q
increases with the nonlinear iterations as shown
in figure 3.

Performances of DBBR and BRR methods are
presented in tables 5 and 6, respectively.

Problem 4

We consider the nonlinear convection-diffusion
partial differential equation



A New Broyden rank reduction method to solve large systems of nonlinear equations 181

Table 1. Performance of the DBRR method for Problem 1.

p = 5 p = 8
ε = 10−2 10−4 10−6 10−10 10−1 10−3 10−5 10−10

Iters 28 28 28 28 28 28 28 28
CPU time 10.865 11.104 12.011 11.021 10.380 12.417 12.879 11.505
SVD calls 8 8 8 8 3 4 4 4
SVD time 2.961 3.106 3.338 3.024 1.435 3.308 3.386 2.999
% SVD time 27.2 28.0 27.7 27.5 13.8 26.6 26.3 26.1

p = 10 p = 15
ε = 10−1 10−3 10−5 10−10 10−1 10−3 10−5 10−10

Iters 28 28 28 28 28 28 28 28
CPU time 10.989 13.712 13.235 12.897 14.436 13.227 13.224 13.269
SVD calls 2 3 3 3 1 1 1 1
SVD time 1.296 3.713 3.244 3.233 1.436 1.220 1.200 1.220
% SVD time 11.8 27.1 26.0 25.0 9.9 9.8 9.8 9.9

Table 2. Performance of the BRR method for Problem 1.

p 5 8 10 15

Iters 28 28 28 28
CPU time 18.315 26.526 36.235 34.971
SVD calls 23 20 18 13
SVD time 8.440 14.558 21.079 27.623
% SVD time 46.1 54.9 58.9 62.8

Figure 2. Singular values of the update matrix Q for p = 3, 5, 10 and p = 15 for Problem 2.

−∆u+ Cu

(

∂u

∂x
+

∂u

∂y

)

= f (18)

with homogeneous Dirichlet boundary conditions
on the unit square (0, 1) × (0, 1). As in [2], the

source f has been constructed so that the exact
solution is

10xy(1− x)(1− y) exp(x4.5).
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Table 3. Performance of the DBRR method for Problem 2.

p = 3 p = 5
ε = 10−1 10−3 10−5 10−10 10−1 10−3 10−5 10−10

Iters 38 38 38 38 38 38 38 38
CPU time 10.588 10.566 10.647 10.839 11.434 11.333 11.606 11.265
SVD calls 18 18 18 18 9 9 9 9
SVD time 3.399 3.340 3.310 3.381 3.507 3.446 3.461 3.428
% SVD time 32.1 31.6 31.1 32.2 30.7 30.4 29.9 30.5

p = 10 p = 15
ε = 10−1 10−3 10−5 10−10 10−1 10−3 10−5 10−10

Iters 38 38 38 38 38 38 38 38
CPU time 14.705 14.778 14.795 14.693 17.930 19.642 19.851 17.810
SVD calls 4 4 4 4 2 2 2 2
SVD time 4.505 4.462 4.490 4.500 5.244 6.257 4.260 5.224
% SVD time 30.7 30.2 30.4 30.7 29.2 31.8 29.6 29.39

Table 4. Performance of the BRR method for Problem 2.

p 3 5 10 15

Iters 38 38 38 38
CPU time 14.531 22.864 46.849 78.311
SVD calls 35 33 28 23
SVD time 6.225 12.021 29.772 3
% SVD time 46.1 54.9 58.9 62.8

Figure 3. Singular values of the update matrix Q for p = 6, 7, 10 and p = 15 for Problem 3.

We set C = 20 and u0 = 0. Equation (18) is
discretized on a 500 × 500 grid using centered
differences. Evolution of the sigular values of Q
is displayed in figure 4 for different values of p.

For p ≤ 5 the rank of Q is p, and only the pth

singular value is removed. In this case, BRR and
DBRR methods behave similarly, see tables 7 and
8. For p = 10 the rank of Q is ten but condition
(8) is satisfied in the first iterations for ε = 10−1
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Table 5. Performance of the DBRR method for Problem 3.

p = 6 p = 7
ε = 10−1 10−3 10−5 10−10 10−1 10−3 10−5 10−10

Iters 34 30 30 29 35 31 31 31
CPU time 64.624 59.187 48.712 62.041 62.158 60.539 53.024 56.152
SVD calls 7 10 10 10 6 7 7 8
SVD time 3.588 5.334 5.085 5.229 4.109 4.695 4.756 5.039
% SVD time 5.6 9.0 10.5 8.4 6.6 7.7 8.9 9.0

p = 10 p = 15
ε = 10−1 10−3 10−5 10−10 10−1 10−3 10−5 10−10

Iters 44 28 28 28 22 22 22 22
CPU time 88.144 50.620 57.985 47.654 39.766 47.879 48.934 40.140
SVD calls 5 3 3 3 1 1 1 1
SVD time 7.098 3.698 2.262 4.777 1.232 1.232 1.638 1.201
% SVD time 6.9 7.3 3.9 7.9 3.1 3.1 3.3 3

Table 6. Performance of the BRR method for Problem 3.

p 6 7 10 15

Iters 30 26 26 22
CPU time 66.512 64.398 74.920 55.834
SVD calls 24 19 16 17
SVD time 13.291 11.841 16.890 15.771
% SVD time 20.0 18.4 22.5 28.3

Figure 4. Singular values of the update matrix Q for p = 5, 10, 15 and p = 20 for Problem 4.

since, in this case, q = 6 at iteration 11 and q = 8
at both iterations 15 and 17. For p = 20 the rank
of Q increases with nonlinear iterations, but con-
dition (8) is satisfied for ε = 10−1, 10−3, 10−5.

4. Conclusion

We have introduced a new Broyden rank reduc-
tion method to solve systems of nonlinear equa-
tions. The method is based on a thresholding
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Table 7. Performance of the DBRR method for Problem 4.

p = 5 p = 10
ε = 10−1 10−3 10−5 10−7 10−1 10−3 10−5 10−7

Iters 73 73 73 73 45 45 45 45
CPU time 23.510 24.832 25.525 23.745 20.925 23.673 22.265 22.154
SVD calls 68 68 68 68 30 35 35 35
SVD time 5.945 6.283 6.406 5.960 7.608 9.508 9.083 8.976
% SVD time 25.3 25.7 25.1 25.1 36.8 40.1 40.8 40.5

p = 15 p = 20
ε = 10−1 10−3 10−5 10−7 10−1 10−3 10−5 10−7

Iters 36 38 37 37 36 35 35 35
CPU time 19.294 24.411 27.716 27.530 14.555 20.106 26.488 27.106
SVD calls 11 21 22 22 3 9 14 15
SVD time 6.797 10.992 13.067 12.661 2.979 8.078 12.978 13.575
% SVD time 35.4 45.1 47.2 46 20.5 40.2 49.0 50.1

Table 8. Performance of the BRR method for Problem 4.

p 5 10 15 20

Iters 73 45 37 35
CPU time 23.525 22.326 25.567 29.168
SVD calls 68 35 22 15
SVD time 5.825 9.002 12.045 14.646
% SVD time 24.8 41.0 47.1 50.9

process of the Broyden matrix singular values.
All singular values of the update matrix that are
smallest than a given threshold are removed. We
have proved the local superlinear convergence and
numerically tested the method on a variety of
problems. As compared to classical Broyden rank
reduction, our method induces a significant re-
duction of the execution time (CPU time) by re-
ducing the number of calls of the singular values
decomposition. As a perspective of this work is
to combine the proposed method with that pre-
sented in [8].
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