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The third order fractional partial differential equations is obtained the exact
solution depending on initial-boundary value problem. The exact solution and
its stability estimates theorem is proved for this equation. Difference schemes
are presented for the third order fractional partial differential equation. The
stabilities of these difference schemes for this problem are given. The numerical
solutions of the third order fractional partial differential equation defined by
Caputo fractional derivative for fractional orders α = 0.1, 0.5, 0.9 are calculated
by these methods. The exact solutions are compared with the numerical results
and it is shown that the given method is effective.
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1. Introduction

The theory of fractional differential equations be-
comes one of the most interesting and attractive
topics and has shown an increasing development.
Differential equations involving fractional order
derivatives are used to model a variety of systems
has important applied sciences and engineering
aspects. In applied sciences, this frame of deriva-
tives are used to model a variety of systems, of
which the important applications lie in field of
viscoelasticity, electrode-electrolyte polarization,
heat conduction, electromagnetic waves, diffusion
equation and so on [1, 2].

Finite difference methods in particular became
very popular and a large number of schemes has
been published very recently. Consequently it be-
comes important to understand how they com-
pare in terms of accuracy, stability and computing
times. In [3–7], fractional differential transform
method (FDTM) and modified fractional differen-
tial transform method (MFDTM) to solve third-
order dispersive partial differential equations were
studied by various authors. Third order partial

differential equations were investigated in [8], [9],
and [10]. In [11], the initial value problem for
the third order partial differential equation with
time delay with self adjoint positive operator of
a Hilbert space was investigated. Finally, some
paper implemented several on the numerical so-
lutions of the fractional differential equations in
recent years [12–18].

Now, we shall give the following basic definitions
for this study.

Definition 1. The Caputo fractional derivative
Dα

t u(t, x) of order α depended on time is defined
as:

∂αu(t, x)

∂tα
= Dα

t u(t, x) (1)

=
1

Γ(n− α)

t
∫

0

1

(t− p)α−n+1

∂αu(p, x)

∂pα
dp,

(n− 1 < α < n) ,

and for α = n ∈ N defined as:
1
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Dα
t u(t, x) =

∂αu(t, x)

∂tα
=
∂nu(t, x)

∂tn
.

Definition 2. First-order approximation
method computing the problem (1) given by the
formula:

Dα
t U

k
n
∼= gα,τ

k
∑

j=1

w
(α)
j (Uk−j+1

n − Uk−j
n ), (2)

where gα,τ = 1
Γ(2−α)τα and w

(α)
j = j1−α − (j −

1)1−α. From the above facts, we have the follow-
ing approximation [19]:

∂αu(tk, xn)

∂tα
= gα,τ

[

w1U
k
n − wkU

0
n (3)

+
k−1
∑

j=1

(wk−j+1 − wk−j)u
j
n



 .

In this work, we consider the third order frac-
tional partial differential equation depend on ini-
tial boundary value problem















































∂3u(t,x)
∂t3

+ ∂αu(t,x)
∂tα − ∂2u(t,x)

∂x2 + u(t, x) = f(t, x),
0 < x < L, 0 < t < T, 0 < α < 1,

u(0, x) = ϕ(x), ut(0, x) = ψ(x),

utt(0, x) = σ(x), 0 ≤ t ≤ T,

u(t,XL) = u(t,XR) = 0, XL < x < XR.

(4)

For the problem (4), basic definitions are given.
The exact solution of the problem (4) and its sta-
bility inequalities are investigated. The first or-
der of difference schemes of the problem (4) are
constructed. The theorem of stability estimates
for the solution of difference schemes for initial-
boundary value problem for this partial differen-
tial equation are obtained. The results of numer-
ical experiments are presented and are compared
with exact solutions. These results obtained with
Matlab programming showed that the method
gives good results for this problem.

2. The exact solution and stability for

third order fractional partial

diferential eqation

Consider the equation (4) the following abstract
form







d3u(t)
dt3

+Au(t) = F (t), (0 < t < T ),

u(0) = ϕ, u′(0) = ψ, u′′(0) = σ,

(5)

in a Hilbert space H = L2[0, L]. Here f(t) =
f(t, x) is abstract function defined on [0, T ] with
values in H = L2[0, L]. ϕ = ϕ(x) and ψ = ψ(x)
are the elements of H = L2[0, L]. u(t) = u(t, x) is
unknown abstract function defined on [0, T ] with
values in H = L2[0, L].

A : D(A) → H is the differential operator defined
by formula

Au(x) = −u
′′

(x) + u(x)

with domain

D(A) = {u : ux, uxx ∈ L2[0, L]; u(0) = u(L) = 0} .

Here, F (t) = f(t)−Dα
t u(t).

Now, we shall get the formula for the solution of
the problem (5). Using the method [8] , we write
the problem (5) as the following first order linear
differential equations:











du(t)
dt − aBu(t) = w(t),

dw(t)
dt − aBw(t) = v(t),
dv(t)
dt +Bv(t) = F (t),

(6)

where B = A1/3. Using the initial conditions of
the problem (5) and the formula (6), we get new
initial conditions for the formula (5) as the fol-
lowing:

{

w(0) = u′(0)− aBu(0)
v(0) = u′′(0)−Bu′(0) +B2(0).

(7)

Here, a = 1
2 + i

√
3
2 and a = 1

2 − i
√
3
2 .

Integrating the formula (6) and using the initial
conditions of the formula (7), we obtain

u(t) = R1u(0) +R2u
′(0) +R3u

′′(0)

+

t
∫

0

R4f(s)ds−

t
∫

0

R4D
α
s u(s)ds. (8)

Here
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R1 =
aeaA

1/3t − aeaA
1/3t

a− a
+
e−A1/3t − eaA

1/3t

(a+ 1)(a+ 1)

+
eaA

1/3t − eaA
1/3t

(a+ 1)(a− a)
,

R2 =
eaA

1/3t − eaA
1/3t

(a− a)A1/3
−

e−A1/3t − eaA
1/3t

(a+ 1)(a+ 1)A1/3

−
eaA

1/3t − eaA
1/3t

(a+ 1)(a− a)A1/3
,

R3 =
e−A1/3t − eaA

1/3t

(a+ 1)(a+ 1)A2/3
+

eaA
1/3t − eaA

1/3t

(a+ 1)(a− a)A2/3
,

R4 = −
e−A1/3(t−s) − eaA

1/3(t−s)

(a+ 1)(a+ 1)A2/3
.

Lemma 1. The following inequalities are satis-
fied:

{

‖R1‖H ≤M(δ), ‖R2‖H ≤M(δ)
‖R3‖H ≤M(δ), ‖R4‖H ≤M(δ).

(9)

Lemma 2. For t ≥ 0 of the following estimates
hold:

∥

∥

∥
e−A1/3t

∥

∥

∥
≤ e−δ1/3t (10)

The proof of this Lemma is supported the spectral
representation of unit self-adjoint positive definite
operator A in a Hilbert space H.

Lemma 3. Suppose that ϕ ∈ D(A), ψ ∈ D(A2/3),

σ ∈ D(A1/3), Dα
t u(t) and f(t) are continuously

differentiable on [0, T ]. Then, there are the fol-
lowing stability inequality for the formula (8)

‖Dα
t u(t)‖H ≤ M

{

‖ϕ‖H +
∥

∥

∥
A−1/3ψ

∥

∥

∥

H

+
∥

∥

∥
A−2/3σ

∥

∥

∥

H

+ max
0≤t≤T

∥

∥

∥
A−2/3f(t)

∥

∥

∥

H

}

. (11)

Proof. Taking the first derivative of the problem
(8) and using the following formula for fractional
derivative of order 0 < α < 1, we find

Dα
t u(t) =

1

Γ(1− α)

t
∫

0

u′(p)dp

(t− p)α
, where u(0) = 0,

(12)

which implies that the proof of this lemma is com-
pleted. �

Theorem 1. Let ϕ ∈ D(A), ψ ∈ D(A2/3),

σ ∈ D(A1/3) and f(t) be continuously differen-
tiable on [0, T ]. Then, there is a unique solution

of problem (5) and the following stability inequal-
ities hold:

max
0≤t≤T

‖u(t)‖H

≤ M
{

‖ϕ‖H +
∥

∥

∥
A−1/3ψ

∥

∥

∥

H
+
∥

∥

∥
A−2/3σ

∥

∥

∥

H

+ max
0≤t≤T

∥

∥

∥
A−2/3f(t)

∥

∥

∥

H

}

, (13)

max
0≤t≤T

∥

∥

∥

∥

d3u(t)

dt3

∥

∥

∥

∥

H

+ max
0≤t≤T

‖Au(t)‖H

≤ M
{

‖Aϕ‖H +
∥

∥

∥
A2/3ψ

∥

∥

∥

H
+
∥

∥

∥
A1/3σ

∥

∥

∥

H

+ max
0≤t≤T

∥

∥f ′(t)
∥

∥

H
+ ‖f(0)‖H

}

(14)

are valid, where M is independent on f(t), t ∈
[0, T ], ϕ, ψ, and σ.

Proof. From (9), (10) and (8), the proof of the
formula (13) and (14) are completed. �

3. Constructed difference scheme and

its stability

Let us choose h = L
M for x−axis and τ = T

N
for t−axis as grid mess in the difference scheme
method. In this case, we have

xn = xL + nh; n = 1, 2, ...M, tk = kτ, k =
1, 2, ..., N. Applying the formula (2) for the frac-
tional partial differential equation (4), we con-
struct the following the first order difference
schemes



























































































Uk+2
n −3Uk+1

n +3Uk
n−Uk−1

n

τ3

+gα,τ
k
∑

j=1
w

(α)
j (Uk−j+1

n − U
k−j
n ) + Uk

n

− 1
2h2 [U

k+1
n+1 − 2Uk+1

n + Uk+1
n−1 + Uk

n+1

−2Uk
n + Uk

n−1]

= fkn = f(tk, xn),

U0 = ϕ,

U1−U0

τ = ψ.

(15)

Theorem 2. Suppose that the assumption A ≥ δ

holds and ϕ ∈ D(A), ψ ∈ D(A2/3) and σ ∈

D(A1/3. Then, for the solution of difference
scheme (15) the following stability estimates
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max
1≤k≤N

‖
Uk+2
n − 3Uk+1

n + 3Uk
n − Uk−1

n

τ3
‖H

+ max
1≤k≤N

‖Auk‖H

≤ M (δ)
{

‖Aϕ‖H +
∥

∥

∥
A2/3ψ

∥

∥

∥

H
+
∥

∥

∥
A1/3σ

∥

∥

∥

H

+ max
0≤t≤T

∥

∥

∥

∥

fk − fk−1

τ

∥

∥

∥

∥

H

+ ‖f1‖H

}

,

hold, where M (δ) is independent of choosing τ,
ϕ, ψ, σ and fk, 1 ≤ s ≤ N − 1.

The proof of Theorem 2 is based on the formu-
las for the solution of difference schemes (15), on
the estimates for the step operators and on the
self-adjointness and positivity of operator A.

4. Numerical experiments

Example

Investigate the following third order fractional
partial differential equation for initial boundary
value problems











































































∂3u(t,x)
∂t3

+ ∂αu(t,x)
∂tα − ∂2u(t,x)

∂x2 + u(t, x)

= sinx(4 + 6 t3−α

Γ(4−α) + 2t3),

0 < x < π, 0 < t < 1, 0 < α ≤ 1,

u(0, x) = − sinx,

ut(0, x) = 0, utt(0, x) = 0, 0 ≤ t ≤ 1,

u(t, 0) = u(t, π) = 0, 0 ≤ x ≤ π.

(16)

This problem has the exact solution of as u(t, x) =
(t3 − 1) sinx.

For the numerical solution of problem (16), we ap-
plied difference schemes method to (10). By the
help of modified Gauss elimination method, we
compute the maximum norm of error of the nu-
merical solution as

ε = max
n = 0, 1, ...,M
k = 0, 1, 2..., N

|u(t, x)− U(tk, xn)| ,

where Uk
n = U(tk, xn) is the numerical solution

and u(t, x) is the exact solution. The error analy-
sis table gives our the error analysis for difference
schemes method.

Table 1. Error analysis table.

τ = 1
N , h = pi

M
The difference scheme (16)

α

0.1 0.0722
N =M = 40 0.5 0.0711

0.9 0.0692
0.1 0.0365

N =M = 80 0.5 0.0359
0.9 0.0349
0.1 0.0183

N =M = 160 0.5 0.0180
0.9 0.0188
0.1 0.0122

N =M = 240 0.5 0.0120
0.9 0.0213
0.1 0.0047

N = 625,M = 25 0.5 0.0112
0.9 0.0247

5. Conclusion

The exact solution of the third order fractional
partial differential equation is examined. The
abstract theorem on the stability estimate for
the solution of the initial boundary value prob-
lems for the third order fractional equations is
established. The first order of accuracy differ-
ence schemes for the numerical solution of the
initial-boundary value problems for the third or-
der fractional equations are presented. Stability
estimates for the solution of difference schemes for
the initial-boundary value problems for the third
order fractional equations are obtained. The Mat-
lab implementation of the first order of accuracy
difference schemes for the approximate solution of
the initial boundary value problem for the third
order fractional equations are presented. Taking
into consideration the results of numerical exam-
ples, applications of the theorems are shown.
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