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1. Introduction

We consider the following continuous constrained
optimization problem

(P )
min
x∈Rn

f(x)

s.t. gj(x) ≤ 0, j = 1, 2, ...,m,

where f : R
n → R and gj(x) : R

n → R,
j ∈ J = {1, 2, ...,m} are continuously differen-
tiable functions. The problem (P ) is considered
in many problems of engineering and natural sci-
ences [1–4] and it is studied in many papers [6,7].

There exists a very rich theory for the solu-
tion of the problem (P ) [5]. One of the tra-
ditional but effective method to solve the prob-
lem (P ) is the penalty function method [8]. The
penalty function method has been proposed in
order to transform a constrained optimization
problem to an unconstrained optimization prob-
lem. The method offers constructing a barrier
on the boundary of the set of feasible solutions
which is defined as D0 := {x ∈ R

n : gj(x) ≤
0, j = 1, 2, . . . ,m} and it is assumed that D0 is
not empty. In order to construct a barrier the
“b(t) = − log(−t)”, “b(t) = max(t, 0)” functions

are used. The penalized objective function is de-
fined as

F (x, ρ) = f(x) + ρ

m
∑

j=1

b(gj(x)), (1)

and problem (P) re-stated as

(Pρ) min
x∈Rn

F (x, ρ),

where ρ > 0 is a penalty parameter. If b(t) =
max(t, 0) is in the formula (1), the penalty func-
tion is called as exact penalty function according
to Zangwill [9]. It can be observed that the ex-
act penalty function may be non-smooth. When
the penalty function approach is non-smooth, one
of the conventional approaches is constructing a
smoothing approach. The smoothing approach
is based on modifying the objective function or
approximating the objective function by smooth
functions [10]. In order to improve the smooth-
ing approaches, different types of valuable tech-
niques and algorithms are developed [11–14]. In
recent years, the smoothing approaches have been
used for many non-smooth problems such as min-
max [15,16], exact penalty [17–20] and etc. [21].
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If the problem (P ) or (Pρ) has just one min-
imizer, then many local optimization methods
can be used to solve with penalty method, but
if it has multiple local minimizers, most of the
well-known methods are not available to solve
[22]. The studies on global optimization have
become extensively increase among the other re-
search areas of optimization [23, 24]. There are
many valuable studies on global optimization de-
pending on deterministic, stochastic and heuris-
tic approaches [25, 26]. Most of the global opti-
mization techniques are proposed to solve uncon-
strained problems, but by combining the penalty
function method with a global optimization al-
gorithm the global solution of the problem (P )
can be obtained. One of the important global
optimization approaches is the auxiliary function
approach which includes the Tunneling Method
(Algorithm) [27], Filled Function Method [28,29],
Global Descent Method [30] and Cut-Peak Func-
tion Method [31]. These methods are established
on finding the lower minimizer than the current
one by making a suitable modification on the ob-
jective function. The modified function is gener-
ally called as auxiliary function (Filled Function,
Tunneling Function and etc.) [33].

In the next section, we give some preliminary def-
initions. In section 3, we introduce a new penalty
function in order to transform the problem (P)
into an unconstrained problem. In Section 4,
we present a minimization algorithm and conver-
gence results. In Section 5, we apply the algo-
rithms on the important test problems. In the
last section, we give some concluding remarks.

2. Preliminaries

We assume that the set D0 is closed and bounded
and the function f has a finite number of lo-
cal minimizers in D0. Throughout the paper,
we use x∗k to denote the k−th local minimizer of
f whereas by x∗ we mean the global minimizer.

‖x‖ =
√

∑n
k=1

x2k denotes the Euclidean norm in

R
n.

Definition 1. [13] Let f : Rn → R be a contin-

uous function. The function f̃ : Rn × R+ → R is
called a smoothing function of f(x), if f̃(·, β) is
continuously differentiable in R

n for any fixed β,
and for any x ∈ R

n,

lim
z→x,β→0

f̃(z, β) = f(x).

Definition 2. [19] Let ε > 0, a point xε is called
ε−feasible solution for the problem (P ), if

gj(x) ≤ ε, j = 1, 2, . . . ,m.

3. A New Penalty Function

In this section, we present a new penalty ap-
proach for the problem (P). Let us define the sets
Dj = {x ∈ R

n : gj(x) ≤ 0} for j = 1, 2, . . . ,m. It
can be observed that ∩m

j=1Dj = D0. The main
idea in exact penalty function approach is to con-
struct a barrier at the boundary of D0 such that
any local (global) solver can not find a point out-
side the set D0. Based on this idea, we define a
new penalty function as

F (x, ρ) = f(x) + ρ





m
∑

j=1

χDc
j
(x)



 ‖x− x0‖
2,

where ρ > 0, x0 ∈ D0 and

χDc
j
(x) =

{

0, x ∈ Dj ,

1, x 6∈ Dj ,

for j = 1, 2, . . . ,m. Since the function χDc
j
(x)

is non-smooth, we apply the smoothing approach
to this function in order to make it smooth. We
design the following function

χ̃Dc
j
(x, ε) =







0, t ≤ 0,
R1(t), 0 ≤ t ≤ ε,

1, t ≥ ε,

(2)

where ε > 0 and

R1(t) =
−2

ε3
t3 +

3

ε2
t2,

for t = gj(x), j = 1, 2, . . . ,m. By using R1 in
formula (2), the obtained smoothing function is
continuously differentiable. If the following func-
tion

R2(t) =
6

ε5
t5 −

15

ε4
t4 +

10

ε3
t3,

is used in formula (2) instead of R1, the obtained
smoothing function is second order continuously
differentiable. The function Ri, (i = 1, 2, . . . , k)
is called the smooth transition function. Now, we
obtain surrogate problem (P̃ρ) as follows:

(P̃ρ) min
x∈Rn

F (x, ρ, ε), (3)

where

F (x, ρ, ε) = f(x) + ρ





m
∑

j=1

χ̃Dc
j
(x, ε)



 ‖x− x0‖
2.

Theorem 1. Let x∗ be a solution for (P̃ρ) for
sufficiently large ρ > 0 then x∗ ∈ D0.

Proof. Suppose that x∗ 6∈ D0. Then, there exists
j such that t = gj(x

∗) > 0. We have two cases:
Case 1. Let t ≥ ε then, we have

F (x∗, ρ, ε) = f(x∗) + ρ‖x∗ − x0‖
2,

and

∇F (x∗, ρ, ε) = ∇f(x∗) + 2ρ(x∗ − x0) = 0.
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Therefore, we obtain

ρ = −∇f(x∗)(2(x∗ − x0))
−1.

Since f(x) continuous differentiable ‖f(x)‖ < ∞
and x∗ 6= x0, it can be concluded that ρ is finite.
If anyone chooses ρ1 > ρ, the ∇F (x∗, ρ1, ε) 6= 0.
Case 2. Let 0 < t ≤ ε then, we have

F (x∗, ρ, ε) = f(x∗) + ρ

(

−2

ε3
t3 +

3

ε2
t2
)

× ‖x∗ − x0‖
2,

and

∇F (x∗, ρ, ε) = ∇f(x∗) + ρA(x∗, ε),

where

A(x∗, ε) =

((

−2

ε3
t3 +

3

ε2
t2
)

‖x∗ − x0‖
2

+

(

−2

ε3
t3 +

3

ε2
t2
)

(2(x∗ − x0))

)

.

Thus, we obtain

ρ = −∇f(x∗)A(x∗, ε)−1.

It can be seen that ρ is finite. If anyone chooses
ρ2 > ρ, the ∇F (x∗, ρ2, ε) 6= 0.

As a consequence, if anyone chose the parameter
ρ in (1) as ρ > max{ρ1, ρ2}, the point x∗ cannot
be outside of D0. �

Corollary 1. Let x∗ be a solution for (P̃ρ) for
sufficiently large ρ then x∗ is a solution for (P ).

Proof. From Theorem 1, we have x∗ ∈ D0.
Then, we obtain

f(x∗) = F (x∗, ρ, ε)

= F (x∗, ρ, 0)

≤ F (x, ρ, 0)

= f(x).

This completes the proof. �

4. Algorithms for Minimization

Procedure

In this section, we propose our new algorithm to
find the global optimal point by considering the
problem (P̃ρ).

Algorithm

Step 1 Determine x0, ρ0 = 10, ε0 > 0, N > 1,
0 < η < 1 and let j = 1 and go to Step 2.

Step 2 Use xj−1 as an initial point and apply one
of the global optimization algorithms to
solve the problem (P̃ρ). Let xj is the so-
lution.

Step 3 If xj ∈ intD0 then stop the algorithm and
xj is the optimal solution else go to Step
4.

Step 4 If xj is ε−feasible for (P ), then stop and
xj is the optimal solution. Otherwise,
take ρj = Nρj−1, εj = ηεj−1 and j =
j + 1, then go to Step 2.

In Step 2 of algorithm xj is the global optimal so-

lution of the problem (P̃ρ) depending on the pa-
rameter ε. In order to obtain the global solution,
any of the global optimization methods can be
used. We use the auxiliary function based global
optimization method studied in [21,33]. The Aux-
iliary Function Method (AFM) is very effective
in terms of numerical results which is illustrated
in [21]. Our auxiliary function is defined as fol-
lows:

φ̃(x, x∗k, β, α) =f∗

k + (f(x)− f∗

k ) χ̃Ak
(t, β)

+ αH(‖x− x∗k‖
2),

where α and β are real parameters. The function
χ̃Ak

(t, β) is defined by

χ̃Ak
(t, β) =







0, t > β,

q(t, β), −β ≤ t ≤ β,

1, t < −β,

where

q(t, β) =
1

4β3
t3 −

3

4β
t+

1

2
,

and the function H is defined on R+ and it satis-
fies the following properties:

i. H(u) > 0,

ii. H
′

(u) < 0,
iii. limu→∞H(u) = 0.

At Step 3 and 4, the feasibility of the solution is
checked and the stopping conditions are declared.

In order to guarantee that the algorithm is worked
straightly, we prove the following theorems.

Theorem 2. Assume that the sequence {xj} is
produced by the Algorithm has a limit point x∗,
then x∗ ∈ D0.

Proof. Assume x∗ is a limit point of {xj}. Then
there exists set J ⊂ N, such that xj → x for
j ∈ J . Let us consider the contrary that x∗ 6∈ D0,
i.e. for sufficiently large j ∈ J , there exist δ0 > 0
and i0 ∈ {1, 2, . . . ,m} such that:
Case 1. gi0(x

j) ≥ δ0 ≥ ε > 0. Since xj is the
global minimum according j−th values of the pa-
rameters ρj , εj , for any x ∈ D0 we have

F (xj , ρj , εj) = f(xj) + ρj‖x
j − x0‖.

If j → ∞ then, ρj → ∞ and ρj‖x
j − x0‖ → ∞

(since xj 6∈ D0 and ‖xj − x0‖ > 0). Thus, f(x)
takes infinite values on D0 and it contradicts with
the boundedness of f on D0.
Case 2. t = gi0(x

j) ≥ ε ≥ δ0 > 0. Since xj is the
global minimum according to j−th values of the
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parameters ρj , εj , for any x ∈ D0 we have

F (xj , ρj , εj) =f(xj) + ρj

(

−2

ε3
t3 +

3

ε2
t2
)

‖xj − x0‖

≥f(xj) + ρj‖x
j − x0‖.

If j → ∞ then, ρj → ∞ and ρj‖x
j − x0‖ → ∞

(since xj 6∈ D0 and ‖xj − x0‖ > 0). Thus, f(x)
takes infinite values on D0 and it contradicts with
the boundedness of f on D0. From the Cases 1
and 2, we obtain the result. �

Theorem 3. Assume that for ε ∈ (0, ε0] the set

argmin
x∈Rn

F (x, ρ, ε) 6= ∅.

Let xj is generated by Algorithm when ηN < 1.
If {xj} has a limit point, then the limit point of
xj is the solution for (P ).

Proof. Let x∗ be a limit point of {xj}. From
Theorem 2, we have x∗ ∈ D0. Then, we obtain

f(x∗) = F (x∗, ρ, ε)

= F (x∗, ρ, 0)

≤ F (x, ρ, 0)

= f(x).

This completes the proof. �

5. Numerical Examples

In this section, we apply our algorithm to
test problems. The proposed algorithm is pro-
grammed in Matlab. Numerical results show the
efficiency of this method. The detailed results are
presented in the tables for all problems. For these
tables, we use some symbols in order to abbreviate
the expressions. The meanings of these symbols
are as follows:

j :The number of iterations,

xj :the local minimum point of the

jth iteration,

εj :smoothing parameter of the

jth iteration,

g(xj) :the value of the point xj under

the constraint functions,

F (xj , ρj , εj) :the value of the point xj under F ,

f(xj) :the value of the point xj under f .

Problem 1. Let us consider the Example in [34]

min f(x) = x21 + x22 − cos(17x1)− cos(17x2) + 3,

s.t. g1(x) = (x1 − 2)2 + x22 ≤ 1.62,

g2(x) = x21 + (x2 − 3)2 ≤ 2.72,

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2.

We choose x0 = (1, 1) as a starting point ρ0 =
10, ε0 = 0.01, η0 = 0.1 and N = 3. The
results are shown in the Table 1. Considering
(P̃ρ) the global minimum is obtained at a point
x∗ = (0.7254, 0.3993) with the corresponding value
1.8376. In the paper [34], the obtained global min-
imum point is x∗ = (0.72540669, 0.3992805) with
the corresponding value 1.837623. Our algorithm
finds the correct point as in [34].

Problem 2. Let us consider the Example in [35]

min f(x) = −x1 − x2,

s.t. x2 − 2x41 + 8x31 − 6x21 ≤ 2,

x2 − 4x41 + 32x31 − 88x21 + 96x1 ≤ 36,

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

We choose x0 = (0, 0) as a starting point ρ0 = 10,
ε0 = 0.01, η0 = 0.1 and N = 3. The re-
sults are shown in the Table 2. The global mini-
mum is obtained at a point x∗ = (2.3295, 3.1783)
with the corresponding value −5.5079. In the pa-
pers [35,36], the obtained global minimum point is
x∗ = (2.3289, 3.1883) with the corresponding value
−5.5091. Our algorithm find the correct point as
in [35,36].

Problem 3. Let us consider the example in [34],

min f(x) =1000− x21 − 2x22 − x23 − x1x2 − x1x3,

s.t. g1(x) =

3
∑

i=1

x2i = 25,

g2(x) = (x1 − 5)2 +
3

∑

i=2

x2i = 25,

g3(x) =
3

∑

i=1

(xi − 5)2 ≤ 25.

We choose x0 = (2, 2, 2) as a starting point ρ0 =
10, ε0 = 0.01, η0 = 0.1 and N = 3. The results
are shown in the Table 3. The global minimum is
obtained at a points x∗ = (2.5000, 4.2196, 0.9721)
with the corresponding value 944.2157. In the pa-
pers [34], the obtained global minimum point is
x∗ = (2.500000, 4.221305, 0.964666) with the cor-
responding value 944.2157. Our algorithm finds
the correct solution with the lower iteration num-
bers in comparison with the algorithm in [34].

Problem 4. Consider the example in [36],

min f(x) = −x21 + x22 + x23 − x1,

s.t. g1(x) = x21 + x22 + x23 ≤ 4,

g2(x) = min{x2 − x3, x3} ≤ 0.

We choose x0 = (−1.6,−1, 0.2) as a starting
point ρ0 = 10, ε0 = 0.01, η0 = 0.1 and
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Table 1. Table of minimization process of the Problem 1.

j xj ρj εj g1(x
j) g2(x

j) F (xj , ρj , εj) f(xj)

1 (0.7249, 0.4007) 10 0.01 −0.7737 −0.0083 1.8774 1.8522
2 (0.7252, 0.3996) 30 0.001 −0.7753 −0.0018 1.8446 1.8408
3 (0.7253, 0.3993) 90 0.0001 −0.7758 −0.0003 1.8388 1.8382
4 (0.7253, 0.3992) 270 1e− 05 −0.7758 −6.2645e− 05 1.8378 1.8377
5 (0.7253, 0.3992) 810 1e− 06 −0.7758 −1.0667e− 05 1.8376 1.8376

Table 2. Table of minimization process of the Problem 2.

j xj ρj εj g1(x
j) g2(x

j) F (xj , ρj , εj) f(xj)

1 (2.3307, 3.1477) 10 0.01 3.9592 508.57 −5.4454 −5.4784
2 (2.3297, 3.173) 30 0.001 3.9928 507.95 −5.4973 −5.5027
3 (2.3296, 3.1775) 90 0.0001 3.9988 507.85 −5.5062 −5.5071
4 (2.3295, 3.1783) 270 1e− 05 3.9998 507.83 −5.5079 −5.5079

Table 3. Table of minimization process of the Problem 3.

j xj ρj εj g1(x
j) g2(x

j) g3(x
j) Fp(x

j , ρj , εj) f(xj)

1 (2.5002, 4.2214, 0.9650) 10 0.01 0.0022 0.0001 −1.864 944.4134 944.2108
2 (2.5000, 4.2212, 0.9650) 30 0.001 7.17e− 05 3.26e− 06 −1.8625 944.2756 944.2155
3 (2.5000, 4.2212, 0.9650) 90 0.0001 1.73e− 05 −2.62e− 05 −1.8625 944.2341 944.2156
4 (2.5000, 4.2212, 0.9650) 270 1e− 05 3.92e− 06 −4.27e− 06 −1.8625 944.2157 944.2157

Table 4. Table of minimization process of the Problem 4.

j xj ρj εj g1(x
j) g2(x

j) F (xj , ρj , εj) f(xj)

1 (1.995,−0.0300, 0.0300) 10 0.01 −0.0180 −0.0601 −5.9393 −5.9733
2 (1.9991,−0.0094, 0.0094) 30 0.001 −0.0033 −0.0188 −5.9902 −5.9954
3 (1.9998,−0.0029, 0.0029) 90 0.0001 −0.0005 −0.0058 −5.9984 −5.9992
4 (2.0000,−0.0009, 0.0009) 270 1e− 05 −0.0001 −0.0018 −5.9997 −5.9999
5 (2.0000,−0.0009, 0.0009) 810 1e− 06 −1.6e− 05 −0.0018 −6.0000 −6.0000

N = 3. The results are shown in the Ta-
ble 4. The global minimum is obtained at a
point x∗ = (2,−0.0009, 0.0009) with the cor-
responding value −6.0000. In the papers [35,
36], the obtained global minimum point is x∗ =
(1.9889,−0.0001,−0.0111) with the corresponding
value −5.9446. Our algorithm finds the correct
point as in [35,36].

Problem 5. The Rosen-Suzuki problem in [34]

min f(x) =
4

∑

i=1

x2i − 5x1 − 21x3 + 7x4,

s.t. g1(x) = 2x21 +
3

∑

i=2

x2i + 2x1 + x2 + x4 ≤ 5,

g2(x) =

4
∑

i=1

x2i + x1 − x2 + x3 − x4 ≤ 8,

g3(x) =
2

∑

i=1

(

x22i−1 + 2x22i
)

− x1 − x4 ≤ 10.

First, we choose x0 = (0, 0, 0, 0), ρ0 = 10,
ε0 = 0.01, η0 = 0.1 and N = 3. The
results are shown in the Tables 5. The
global minimum is obtained at a point x∗ =
(0.1697, 0.8358, 2.0084,−0.9651) with the corre-
sponding value −44.2338. In the paper [19],
the obtained global minimum point is x∗ =
(0.1684621, 0.8539065, 2.000167,−0.9755604)
with the corresponding value −44.23040. In [34],
the obtained global minimum point is x∗ =
(0.170189, 0.835628, 2.008242,−0.95245) with the
corresponding value −44.2338. It can be seen that
our algorithm present numerically better result
than the algorithm in [34].
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Table 5. Table of minimization process of the Problem 5.

j xj ρj εj g1(x
j) g2(x

j) g3(x
j) F (xj , ρj , εj) f(xj)

1 (0.1682, 0.8338, 2.0070,−0.9661) 10 0.01 −0.0161 −0.0075 −1.8886 −44.1675 −44.2068
2 (0.1694, 0.8351, 2.0083,−0.9651) 30 0.001 −0.0030 −0.0017 −1.885 −44.2217 −44.2281
3 (0.1697, 0.8354, 2.0085,−0.9649) 90 0.0001 −0.0005 −0.0003 −1.8839 −44.2317 −44.2328
4 (0.1697, 0.8354, 2.0086,−0.9649) 270 1e− 05 −9.36e− 05 −5.85e− 05 −1.8837 −44.2335 −44.2337
5 (0.1697, 0.8354, 2.0086,−0.9649) 810 1e− 06 −5.60e− 05 −1.20e− 05 −1.8837 −44.2338 −44.2338

Problem 6. Consider the example in [35],

min f(x) =
π

n

[

10 sin2 πx1 + h(x) + (xn − 1)2
]

,

s.t.− 10 ≤ xi ≤ 10 i = 1, 2, . . . , n,

where h(x) =
∑n−1

i=1

[

(xi − 1)2(1 + 10 sin2 πxi+1)
]

.

For n = 3, 5, 7 we choose x0 = (6, 6, . . . , 6) as a
starting point ρ0 = 10, ε0 = 0.01, η0 = 0.1
and N = 3. The results are shown in the Table
6. The global minimum is obtained at a point
x∗ = (1, 1, . . . , 1) with the corresponding value 0.
In the paper [35], the obtained global minimum
point is x∗ = (1, 1, . . . , 1) with the corresponding
value 0. Our algorithm finds the correct point as
in [35].

Problem 7. Let us consider the Example in [34]

min f(x) = 10x2 + 2x3 + x4 + 3x3 + 4x6,

s.t. g1(x) = x1 + x2 = 10,

g2(x) = −x1 + x3 + x4 + x5 = 0,

g3(x) = −x2 − x3 + x5 + x6 = 0,

g4(x) = 10x1 − 2x3 + 3x4 − 2x5 ≤ 16,

g5(x) = x1 + 4x3 + x5 ≤ 10,

0 ≤ x1 ≤ 12, 0 ≤ x2 ≤ 18,

0 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 12,

0 ≤ x5 ≤ 1, 0 ≤ x6 ≤ 16.

We choose x0 = (0, 0, ..., 0) as a starting point
ρ0 = 10, ε0 = 0.01, η0 = 0.1 and N = 4 for the
Algorithm. The results are shown in the Table
7. In [34], in which three algorithms are offered
for a new smoothing technique, approximate so-
lution is found with 4, 3 and 13 iterations in the
Algorithms I, II and III, respectively. Note that
the solution is not found in Algorithm II of [34].
Whereas, an approximate solution is found with 4
iterations in our Algorithm.

6. Conclusion

In this study, we propose a new exact penalty
function and a new algorithm for continuous con-
strained optimization. By considering this new
penalty function approach, we construct a new
minimization algorithm. We apply the algorithm
on test problems and obtain satisfactory results.

We also propose a new smoothing approach for
non-smooth penalty functions and it provides
good approximations to the non-smooth penalty
functions. Moreover, it is easy applicable and has
easy formulation.

The results convince that the Algorithm can be
used for large scale optimization problems. By
applying the minimization algorithm, the opti-
mum value is found rapidly and the algorithm
presents high accuracy in finding the optimum
point. We use the auxiliary function method in
the algorithm as a global optimizaiton method
but anyone can use any other algorithms such
as DIRECT [38], Kriging-based techniques [39] or
heuristic algorithms [40,41].
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