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 In this study, a tool path optimization problem in Computer Numerical Control 

(CNC) milling machines is considered to increase the operational efficiency rates 

of a company. In this context, tool path optimization problem of the company is 

formulated based on the precedence constrained travelling salesman problem 

(PCTSP), where the general form of the TSP model is extended by taking the 

precedence of the tool operations into account. The objective of the model is to 

minimize total idle and unnecessary times of the tools for internal operations. To 

solve the considered problem, a recent optimization algorithm, called Satin 

Bowerbird Optimizer (SBO), is used. Since the SBO is first introduced for the 

global optimization problems, the original version of the SBO is modified for the 

PCTSP with discretization and local search procedures. In computational studies, 

first, the performance of the proposed algorithm is tested on a well-known PCTSP 

benchmark problems by comparing the proposed algorithm against two recently 

proposed meta-heuristic approaches. Results of the comparisons show that the 

proposed algorithm outperforms the other two competitive algorithms by finding 

better results. Then, the proposed algorithm is carried out to optimize the hole 

drilling processes of three different products produced by the company. For this 

case, with up to 4.05% improvement on the operational times was provided for the 

real-life problem of the company. As a consequence, it should be noted that the 

proposed solution approach for the tool path optimization is capable of providing 

considerable time reductions on the CNC internal operations for the company. 
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1. Introduction 

Nowadays, to achieve an effective and efficient 

production system for a company is very important due 

to the tough competition conditions. In this context, one 

of the most important factors that provide efficient 

production is increasing capacity utilization in 

operations, which directly affects factory production 

efficiency. With regards to the innovations in the field 

of mechanical engineering, Computer Numerical 

Control (CNC) machines are mostly employed in the 

various manufacturing process to increase production 

efficiency [1-3].  

The total production time for a part in CNC machines 

basically consists of two components: The machining 

time when the tool is actually cutting material and the 

non-productive time when the tool is travelling in the 

air or the tool is switched in the magazine [4]. 

Regarding the machining time, it should be noted that 

there exist many researches have been studied in the 

literature to reduce total production time by optimizing 

the machining parameters [5, 6]. On the other hand, 

fewer studies are introduced in the field of optimization 

to reduce non-productive times in CNC machines [4]. 

One of the critical issues in process planning of CNC 

machines to reduce non-productive times is tool path 

planning for machining since the tool path generation 

in current CAM technology is still based on the only 

geometric computations and away from being an 

optimum manufacturing process, which may lead a 

considerable increase on total production time [7]. The 

tool path planning is simply named in the literature as 

tool path optimization problem (TPOP) and results in 

travelling salesman problem (TSP) as each tool-path 

contour can be considered as a city coordinate to be 

visited [8]. Since the TSP is known as an NP-Hard 
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combinatorial problem, the TPOP can also be 

considered as a complicated problem to solve. 

The TPOP can be investigated as the extension of the 

hole drilling path optimization problem (HDPOP). The 

HDPOP simply considers the routing a single bit over 

a workpiece in such a way that all holes are visited in 

the fastest manner [9]. The HDPOP is classified into 

two versions concerning the number of tools required 

for the machining operations on the workpieces: 

• Single tool hole drilling path optimization 

problem (STHDPOP) 

• Multi-tool hole drilling path optimization problem 

(MTHDPOP) 

The STHDPOP is the most basic version, where every 

hole has to be drilled by a single specific tool. Due to 

only one type of tool is used, a tool switch is not 

required for the operations. However, the processing 

time of each hole can be different with respect to hole 

depth [9].  

In case the holes on a workpiece require different 

diameter or different type of finishing, the STHDPOP 

shade into the MTHDPOP. As a result of multiple tool 

usage, tool switch and tool travel times have to be taken 

into account [10, 11]. 

A detailed literature review on HDPOP is presented by 

Dewil et al. [9] and Abidin et al. [10], in which various 

heuristic approaches proposed to solve HDPOP are 

listed. Considering both single and multi-tool hole 

drilling path optimization problems, well-known 

simulated annealing algorithm [12], tabu search 

algorithm [13] ant colony optimization algorithm [11, 

14, 15], particle swarm optimization algorithm [16-18], 

genetic algorithm [19-23] are proposed. In addition to 

these algorithms, various recent algorithms are also 

implemented to HDPOP, such as biogeography based 

optimization [24], charged system search algorithm 

[25], hybrid cuckoo search-genetic algorithm [26], 

shuffled frog leaping algorithm [18], optimal foraging 

algorithm [27], etc. 

According to the review study of Abidin et al. [10], in 

which 41 papers are taken into account, the modelling 

approaches of HDPOP can be classified into three main 

groups: TSP based models, precedence constrained 

travelling salesman problem (PCTSP) based models, 

and travelling cutting tool problem (TCP) based 

models. From the reviewed papers, the TSP concept is 

the most widely used in modeling the HDPOP about 

92%, while 5% of them consider the PCTSP and 3% of 

them consider the TCP. A similar result is reported by 

Dewil et al. [9] that only 7 of 53 reviewed papers 

consider the PCTSP based model. 

In this study, TPOP in CNC milling machines of a 

company is taken into account to increase the internal 

operational efficiency of the machines. The 

mathematical model of the problem is formulated based 

on PCTSP. To solve the TPOP efficiently, a newly 

developed bio-inspired optimization algorithm called 

Satin Bowerbird Optimizer (SBO) is used. SBO is first 

introduced by Moosavi and Bardsiri [28] to efficiently 

estimate software development effort. Since the 

original version of the SBO is introduced for the global 

optimization problems, the SBO is modified with two 

components: Discretization procedure for representing 

a solution for TPOP, and local search procedure. In this 

context, the main contributions of the proposed study 

are as follows: 

• The TPOP is formulated based on the PCTSP. 

• To the author’ knowledge, this is the first 

application of the SBO in a combinatorial 

optimization problem. 

• The original version of the SBO is modified with 

discretization and local search procedures. 

• Detailed comparisons are presented for the 

proposed SBO with statistical significance tests. 

• A real-life application of the SBO to the TPOP is 

carried out by considering hole drilling processes 

of three different products produced by the 

company. 

The rest of the paper is organized as follows. In Section 

2, the TPOP is described with the considered 

assumptions. Mathematical formulation of the TPOP is 

presented in Section 3 as a mixed integer mathematical 

model. Details of the proposed algorithm are given in 

Section 4. Section 5 presents the computational results 

of the proposed algorithm. Finally, conclusions are 

given in Section 6. 

2. Problem definition 

The TPOP addressed in this study is the extension of 

the MTHDPOP in which precedences of the operations 

are taken into account. In literature, this problem is 

called a multi-tool hole drilling path optimization 

problem with precedence constraints (MTHDPOP-PC). 

In MTHDPOP-PC, a specific sequence of drilling 

operations is defined for each hole [24]. Figure 1 shows 

an illustrative tool operation for the MTHDPOP-PC, 

where operation 𝑖 has to be completed before operation 

𝑗. In this case, the operation 𝑖 can be defined as the 

precedence of operation 𝑗. 

 

 

Figure 1. Illustrative representation of precedence drilling 

operations. 

 

With regards to the precedence constraints, Figure 2a 

presents an example part of tool sequence for multi-tool 

hole drilling, where the sequence of operations for the 

holes are given in Table 1. According to the given 
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operational sequences, hole 1 (𝑜11) needs to be drilled 

by only tool 1, hole 2 (𝑜21 and 𝑜22) needs to be drilled 

by tools 1 and 2, respectively, and hole 3 (𝑜31, 𝑜32 and 

𝑜33) needs to be drilled by tools 1, 2, and 3 in that order. 

For better visualization, Figure 2b shows an operational 

precedence graph of the example, where 0 and 7 present 

the start and end of the hole drilling process. As a 

consequence of the example, it can be specified that the 

multi-tool hole drilling path optimization problem with 

precedence is identical to the well-known PCTSP since 

both of the problems shows the same characteristics. 

 
(a) Example part of multi-tool hole drilling. 

 

Tool 3Tool 2Tool 1

0

011

021

031

022

032

7

033

Technical sequence of operations for each hole

A possible sequence of tool travel path
 

(b) Technical sequence of operations. 

Figure 2. Example for the MTHDPOP-PC [24]. 

 

Table 1. Sequence of operations for illustrative example. 

Hole Tool Sequence Sequence of operation (𝒐𝒊𝒋) 

Hole 1 1 𝑜11 

Hole 2 1, 2 𝑜21 − 𝑜22 

Hole 3 1, 2, 3 𝑜31 − 𝑜32 − 𝑜33 

 

Based on the MTHDPOP-PC, the TPOP can be 

described as finding the best operational plan for the 

CNC milling machines that minimizes total idle and 

unnecessary times of the tools for internal operations 

regarding the following assumptions: 

• In addition to the hole making, different type of 

milling operations in CNC milling machines 

(such as reaming, boring, counterboring, tapping, 

etc.) are considered on the workpiece. 

• The production process of a workpiece starts and 

ends at the magazine. 

• Each milling operation may need a pre-process 

before it starts. In other words, a milling operation 

cannot be processed until its precedence 

operations are completed. 

• Each milling operation can be processed by only 

one type of tool and can be completed in one pass. 

• Tools can be used for multiple milling operations. 

• In case a tool switch operation is required between 

two milling operations, the spindle has to visit the 

magazine. 

3. Model formulation 

Since the MTHDPOP-PC is identical to the PCTSP, 

which is shown in the previous section, the 

mathematical model formulation of the TPOP is 

proposed based on the PCTSP model introduced by 

Kubo and Kasugai [29]. The proposed model is the 

extension of the well-known TSP model, where the 

general form of the TSP model is modified by taking 

the precedence of the tool operations into account. In 

this context, the proposed mathematical model of the 

TPOP is formulated as follows: 

Notations 

0 Tool magazine point in CNC machine 

𝑁 Number of points on the product to be processed in 

CNC machine. This can also be assumed as the 

number of milling operations operated in the CNC 

machine. 

𝑡𝑖𝑗 Travelling time from operation 𝑖 to operation 𝑗 

including processing time of operation 𝑖 and tool 

switch time at the magazine if the tool is switched; 

𝑖, 𝑗 = 0, … , 𝑁 

𝑝𝑖𝑗  Binary data and 1 if milling operation 𝑖 is 

precedence of milling operation 𝑗; 𝑖, 𝑗 = 1, … , 𝑁 

 

Decision Variables 

𝑥𝑖𝑗  Binary variable and equals to 1 if the tool travels 

from operation 𝑖 to operation 𝑗, 0 otherwise; 𝑖, 𝑗 =
0, … , 𝑁 

𝑢𝑖 Positive variable to avoid sub-tours; 𝑖 = 0, … , 𝑁. 

 

Model 

𝑀𝑖𝑛 𝑍 = ∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗

𝑁

𝑗=0

𝑁

𝑖=0

                                                   (1) 

s.t. 

∑ 𝑥𝑖𝑗

𝑁

𝑗=0
𝑖≠𝑗

= 1                                           𝑖 = 0, … , 𝑁        (2) 

∑ 𝑥𝑗𝑖

𝑁

𝑗=0
𝑖≠𝑗

= 1                                           𝑖 = 0, … , 𝑁        (3) 
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𝑢𝑖 − 𝑢𝑗 + 𝑁𝑥𝑖𝑗 ≤ 𝑁 − 1     𝑖 ≠ 𝑗     𝑖, 𝑗 = 1, … , 𝑁     (4) 

𝑢𝑗 − 𝑢𝑖 ≥ 1            𝑖, 𝑗 = 1, … , 𝑁     𝑝𝑖𝑗 = 1                (5) 

𝑥𝑖𝑗 ∈ {0,1}                                           𝑖, 𝑗 = 0, … , 𝑁     (6) 

𝑢𝑖 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                          𝑖 = 0, … , 𝑁        (7) 

 

Eq. (1) defines the objective function of the model 

which aims to minimize total operational times in CNC 

milling machine. Eq. (2) and Eq. (3) ensure that each 

operation is operated once in the CNC milling machine. 

Eq. (4) eliminates the sub-tour for the tool path. These 

constraints assign an auxiliary non-repetitive variable 

to each node for a Hamilton tour [30, 31]. Operational 

precedence for the tool is guaranteed by Eq. (5). 

Finally, the decision variables of the proposed model 

are defined in Eq. (6) and Eq. (7). 

4. Proposed algorithm 

The SBO is a recently proposed bio-inspired meta-

heuristic algorithm introduced by Moosavi and Bardsiri 

[28] to efficiently estimate software development 

effort. The SBO is inspired by the attraction of the male 

bowerbirds to the female bowerbirds for mating by 

constructing a bower, a structure built from sticks and 

twigs, and decorating the surrounding area. Based on 

the behavior of the bowerbirds, the SBO is structured 

as follows. 

Similar to other meta-heuristic algorithms, the SBO 

starts with a randomly generated population consists of 

𝑁𝐵 bowers. Let 𝑿𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝐷} represents the 

𝑖𝑡ℎ bower, where 𝐷 is the problem size. Each bower is 

generated by using the following equation 

 

𝑥𝑖,𝑘 = 𝑥𝑘
𝐿 + 𝑟𝑎𝑛𝑑(𝑥𝑘

𝑈 − 𝑥𝑘
𝐿)                                         (8) 

 

where 𝑖 = 1, … , 𝑁𝐵 and 𝑘 = 1, … , 𝐷. Here 𝑥𝑘
𝐿 and 𝑥𝑘

𝑈 

are the lower and upper bounds of parameter 𝑘, 

respectively. Finally, 𝑟𝑎𝑛𝑑 is a uniformly distributed 

random number.  

After the initialization step, the fitness of each bower is 

calculated by using equation (9), where 𝑓(𝑿𝑖) is the 

cost function of bower 𝑖. Then the bowers are sorted 

based on their fitness value in descending order. To 

prevent the experience of best bowerbird in population, 

elitism is applied for the population. To do this, the 

position of the best bower built by birds is identified as 

elite.  

 

𝑓𝑖𝑡𝑖 = {

1

1 + 𝑓(𝑿𝑖)
,      𝑓(𝑿𝑖) ≥ 0

1 + |𝑓(𝑿𝑖)|,    𝑓(𝑿𝑖) < 0

                              (9) 

 

In each iteration, SBO starts to generate a new 

population by calculating the probability of the bowers 

to identify their attractiveness. The probabilities of the 

bowers are calculated as shown in Equation (10). 

 

𝑃𝑟𝑜𝑏𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑁𝐵
𝑛=1

                                                      (10) 

 

Following the probability calculation step, new 

changes at any bower are calculated by using the 

Equations (11) and (12). In Equation (11), 𝑿𝑒𝑙𝑖𝑡𝑒  is the 

elite bower of the current population, and 𝑿𝑗 is the 

target bower, which is calculated by the roulette wheel 

selection procedure. Finally, 𝜆𝑘 is the attraction power 

in the goal bower, which is controlled by greatest step 

size parameter 𝛼. 

 

𝑥𝑖,𝑘
𝑛𝑒𝑤 = 𝑥𝑖,𝑘

𝑜𝑙𝑑 + 𝜆𝑘 ((
𝑥𝑗,𝑘 + 𝑥𝑒𝑙𝑖𝑡𝑒,𝑘

2
) − 𝑥𝑖,𝑘

𝑜𝑙𝑑)        (11) 

 

𝜆𝑘 =
𝛼

1 + 𝑃𝑟𝑜𝑏𝑗

                                                            (12) 

 

At the end of each cycle, a mutation procedure is 

carried out by applying random changes to the bowers 

with a certain probability, which is described as 

𝑃_𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 in this study. The random changes on the 

bower are determined by 

 

𝑥𝑖,𝑘
𝑛𝑒𝑤 = 𝑥𝑖,𝑘

𝑜𝑙𝑑 + (𝜎 × 𝑁(0,1))                                     (13) 

 

where 𝑁(0,1) is a standard normal distributed random 

number and 𝜎 is a proportion of space width which is 

calculated by using Equation 14. The 𝜎 in Equation 14 

is controlled by parameter 𝑧, which is the percent of the 

difference between the 𝑥𝑘
𝐿 and 𝑥𝑘

𝑈. 

 

𝜎 = 𝑧 × (𝑥𝑘
𝑈 − 𝑥𝑘

𝐿)                                                       (14) 

 

At the end of each iteration, the fitness values of newly 

generated bowers are evaluated. Then, the bowers from 

the old population and newly generated bowers are 

combined and re-sorted with respect to their fitness. 

The new population is formed by removing the last 𝑁𝐵 

bowers from the sorted population. Finally, the elite is 

updated if the first bower in the new population is fitter 

than the existing elite. 

According to the procedures of the SBO described 

above, Algorithm 1 presents the main steps of the 

algorithm. For more details for the SBO, readers can 

refer to [28] and access to the source code of the 

algorithm given by the authors. 

Since the original version of the SBOis introduced to 

optimize global optimization problems, this paper 

introduces a modified version of the SBO for the TPOP, 

which is called modified satin bowerbird optimizer 

(MSBO). The MSBO integrates two main procedures 

to SBO: Discretization and local search. The 

discretization procedure converts the continuous 

solution vector of the algorithm to the discrete solution 

vector considering the precedence constraints. In the 

local search procedure, two simple movement 
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operators are carried out to improve the solution quality 

of the newly generated solution vectors. The details of 

both discretization and local search procedures are 

given in the following sub-sections. 

 
Algorithm 1. Main steps of the SBO 

1 : Initialization 

2 : Fitness evaluation and sorting 

3 : Identify the best bower as the elite 

4 : Repeat 

5 :      Probability calculation 

6 :      For Each Bower 

7 :           Determination of new changes 

8 :           Mutation 

9 :      End For    

10 :      Evaluation of bowers 

11 :      Re-sorting and selection 

12 :      Update elite bower 

13 : Until the termination criterion is satisfied 

4.1. Discretization procedure 

One of the critical issue for the continuous meta-

heuristic algorithms while solving the combinatorial 

problems is discretization procedure to represent a 

solution for the considered problem. Since many 

problems require discrete search spaces, there exist 

several techniques to convert continuous solution to 

discrete solution, which can be classified into three 

main groups [32]: (i) rounding off generic technique, 

(ii) priority position techniques, (iii) specific 

techniques associated with meta-heuristic 

discretizations. In this study, the smallest position value 

rule, which is one of the priority position techniques 

introduced by [33], is used in the MSBO to convert a 

continuous solution vector to discrete solution vector. 

The smallest position value method converts the 

continuous values to a permutation order of the position 

values by sorting the positions with respect to 

ascending order of the position values. 

The smallest position value method provides a 

permutation order for a continuous solution vector. 

However, a feasible solution cannot always be 

produced for the TPOP by this method because of the 

precedences of some operations in the CNC machine. 

Therefore, the smallest position value is adapted to the 

TPOP with the following insertion rule. According to 

the position values in ascending order, a candidate 

position with the smallest position value can be inserted 

into the permutation order if and only if its precedence 

operations are inserted to the order previously. An 

example of the modified smallest position value rule for 

the TPOP is shown in Table 2, where the permutation 

order of the positions with respect to operational 

precedence is 4 − 5 − 2 − 3 − 1. 

 
Table 2. Example of the modified smallest position value 

rule. 

Position Index 1 2 3 4 5 

Position Value 0.75 0.29 0.95 0.12 0.36 

Precedence of Position (2, 3) (5) (4, 2) ( - ) ( 4 ) 

4.2. Local search 

After a permutation ordered solution is obtained in the 

discretization step for each bower, a local search 

procedure is carried out by consecutively applying two 

simple operators: 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝑥, 𝑦), and 𝑆𝑤𝑎𝑝(𝑥, 𝑦). In 

𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝑥, 𝑦)operator, a specific position (𝑥) in 

permutation order is inserted into another specific 

location (𝑦). In swap operation, locations of two 

specific positions (𝑥, 𝑦) are replaced. Figure 3 shows an 

illustrative example of both insertion and swap 

operations. For both the operators, the best 

improvement strategy is taken into account and each 

operator is repeated if any improvement is provided at 

the end of the search. 

 
𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(2,5)  𝑆𝑤𝑎𝑝(2,5) 

4 − (5) − 2 − 3 − (1)  4 − (5) − 2 − 3 − (1) 

 

 

  

4 − 2 − 3 − 5 − 1  4 − 1 − 2 − 3 − 5 

Figure 3. Example of insertion and swap operators. 

5. Computational results and discussion 

Computational studies for the MSBO are formed into 

two parts. In the first part, the performance of the 

MSBO is tested by comparing the proposed algorithm 

with SBO and also two recent meta-heuristic 

algorithms. In the second part, the MSBO is carried out 

for the real-life problem of the company. Moreover, 

managerial insights of the results are discussed in the 

last sub-section. 

All experiments are performed on a workstation 

equipped with a 3.4GHz Xeon E5-2643v3 and 64 GB 

RAM. However, a single thread is used for the 

algorithm runs. According to preliminary experiments, 

the parameter values of the MSBO are identified as 

follows: 𝛼 = 0.25, 𝑧 = 0.50 and, 𝑃_𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =
0.05. 

5.1. Performance analyses of the MSBO 

Since the PCTSP is also known as the sequential 

ordering problem (SOP), a well-known SOP dataset 

from the TSPLIB repository is used in order to test the 

performance of the proposed MSBO. The SOP dataset 

includes 41 different sized instances, where the number 

of nodes to be visited varies between 9-380. Each 

instance consists of a number of nodes and distances for 

each pair of nodes. The aim of the problem is to find a 

minimum Hamiltonian path from the first node to the 

last node with minimum length by considering the 

precedence constraints. Regarding the maximum TPOP 

size of the company, 27 of 41 instances from the dataset 

(up to 100 nodes) are used for the performance 

analyses. 

In this subsection, the MBSO is first compared with the 

SBO and two variants of the MBSO. To point out the 

effect of local search procedure on the solution quality, 
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the first variant of the MBSO considers only insertion 

operation in the local search part, which is named 

MSBOI. Similarly, the second variant considers only 

swap operation, which is named MSBOS. The 

algorithms are repeated 30 times for each instance, and 

the results of each instance are identified via the 

average result of 30 runs (mean), and the standard 

deviation of the results (std). Table 3 presents the 

results of the SBO, MSBOI, MSBOS, and MSBO. 

Furthermore Table 3 shows a statistical comparison of 

the algorithms based on paired t-test with a significance 

level of 0.05. For each pair of algorithms, the successful 

one is shown if there is a significant difference between 

the algorithm results. In this perspective, it should be 

clearly seen from Table 3 that the MSBOI and MSBO 

show better performance for all instances with respect 

to the SBO and MSBOS. On the other hand, the MSBO 

outperforms the MSBOI for three instances. However, 

the average results of the MBSO are mostly better than 

the average results of MSBOI. Thus, it should be 

concluded from Table 3 that the proposed MBSO 

outperforms the SBO, MSBOI, and MSBOS. 

 
Table 3. Comparisons of SBO and MSBO variants 

Instance 

SBO (A) 

 

MSBOI (B) 

 

MSBOS (C) 

 

MSBO (D) 

 

Statistical Comparisons 

Mean Std Mean Std Mean Std Mean Std A-B A-C A-D B-C B-D C-D 

br17.10 58.1 1.6  55.0 0.0  55.0 0.0  55.0 0.0  B C D - - - 

br17.12 58.9 3.8  55.0 0.0  55.0 0.0  55.0 0.0  B C D - - - 

                   
ESC07 2125.0 0.0  2125.0 0.0  2125.0 0.0  2125.0 0.0  - - - - - - 

ESC12 1722.6 49.2  1675.0 0.0  1675.0 0.0  1675.0 0.0  B C D - - - 

ESC25 3286.9 423.6  1723.9 38.9  1986.2 138.3  1711.6 28.2  B C D B - D 

ESC47 6626.3 815.3  2264.8 76.1  3104.9 143.8  2197.7 84.8  B C D B D D 

ESC63 123.8 16.5  62.0 0.0  64.2 0.7  62.0 0.0  B C D B - D 

ESC78 207887.0 497.9  18230.0 0.0  18347.8 79.9  18230.0 0.0  B C D B - D 

                   
ft53.1 12527.4 1011.2  7621.1 66.3  8350.7 196.8  7619.1 71.5  B C D B - D 

ft53.2 12984.8 1129.9  8083.3 25.7  8843.5 219.5  8084.5 32.1  B C D B - D 

ft53.3 14796.0 420.6  10284.8 36.8  10960.9 145.8  10273.1 23.3  B C D B - D 

ft53.4 16700.8 526.4  14425.0 0.0  14643.3 112.7  14425.0 0.0  B C D B - D 

                   
ft70.1 54076.0 1692.7  40344.1 190.90  42326.9 326.6  40386.9 229.3  B C D B - D 

ft70.2 54550.0 2196.0  41528.3 314.1  43778.0 317.1  41486.3 406.9  B C D B - D 

ft70.3 55101.6 1653.8  42889.6 194.7  46078.3 501.6  42822.4 201.7  B C D B - D 

ft70.4 58985.0 709.5  53606.1 64.7  54790.2 349.1  53616.8 66.3  B C D B - D 

                   
p43.1 28794.5 238.7  28144.5 13.7  28163.7 21.5  28140.0 0.0  B C D B - D 

p43.2 40474.5 13476.9  28482.2 3.1  28487.5 6.5  28480.7 1.7  B C D B D D 

p43.3 47183.0 12728.0  28838.0 5.4  28851.3 18.3  28836.7 3.8  B C D B - D 

p43.4 87072.7 9200.6  83005.0 0.0  83040.7 42.5  83005.0 0.0  B C D B - D 

                   
prob.42 623.5 55.3  302.8 17.4  357.1 15.0  259.7 5.4  B C D B D D 

                   
rbg048a 431.0 21.3  351.0 0.0  353.2 1.7  351.0 0.0  B C D B - D 

rbg050c 533.2 20.1  467.1 0.3  472.5 3.2  467.1 0.3  B C D B - D 

                   
ry48p.1 23246.1 2575.0  15861.4 100.3  16271.4 246.4  15829.7 75.4  B C D B - D 

ry48p.2 24065.5 1590.0  16686.4 44.5  17079.9 215.2  16705.4 51.3  B C D B - D 

ry48p.3 27496.1 1384.1  19894.0 0.0  20618.8 305.2  19894.0 0.0  B C D B - D 

ry48p.4 34109.2 899.2  31446.1 0.4  31605.0 136.3  31446.0 0.0  B C D B - D 

 

Another performance analysis for the MSBO is made 

by comparing the proposed algorithm with two recent 

meta-heuristic algorithms proposed for the PCTSP and 

SOP, which are Adaptive Evolutionary Algorithm 

(AEA) introduced by Sung and Jeong [34] and an 

improved Ant Colony System (ACS) introduced by 

Skinderowics [35]. Table 4 shows the available results 

of the AEA and ACS and comparisons between MBSO 

and other two algorithms, where “best” and “time” 

represent the best results and average computational 

time of the runs for a specified instance. To identify the 

better results for the comparisons, the smallest values 

in a row are written in bold. Table 4 additionally 

presents the best-known solutions of the instances, 

which are also known as optimal solution excepting 

“prob.100”, “ry48p.2”, and “ry48p.3”. Here, it should 

be noted that the two results of AEA given by the 

authors are less than the optimum solutions. Therefore, 

it is not notable to compare the MBSO with AEA for 

these instances. For the other instances, it can be seen 

from Table 4 that proposed MBSO outperforms the 

AEA for each instance. With regards to the ACS 

solutions, better results are obtained for most of the 

instances by the MBSO. 

For the computational times, it is reported by the Sung 

and Jeong [34] that the computational time of the AEA 

varies between 0.01-290.93 seconds for the considered 

problems. For the ACS, the authors report that the 

results are obtained with 60 seconds time limitation 

[35]. Regarding both the algorithm times, the CPU 

times of the MBSO, which are shown in Table 4, are 

acceptable for the real-life applications. 
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Table 4. Comparison of MSBO with AEA and ACS  

Instance 

Best-

Known 

AEA 

 

ACS 

 

MSBO 

Best Mean Mean Std Best Mean Time (s) Std 

br17.10 55 55 55.9  NA NA  55 55.0 1.82 0.0 

br17.12 55 55 55.0  NA NA  55 55.0 1.82 0.0 

            
ESC07 2125 2125 2125.0  NA NA  2125 2125.0 0.51 0.0 

ESC12 1675 1675 1720.6  NA NA  1675 1675.0 1.05 0.0 

ESC25 1681 2354 3378.4  NA NA  1681 1711.6 4.44 28.2 

ESC47 1288 4160 5648.3  NA NA  2026 2197.7 21.27 84.8 

ESC63 62 73 80.9  NA NA  62 62.0 46.38 0.0 

ESC78 18230 NA NA  NA NA  18230 18230.0 89.23 0.0 

            
ft53.1 7531 10619 11537.4  7702 46.1  7568 7619.1 27.98 71.5 

ft53.2 8026 11000 12092.1  8348 156.6  8026 8084.5 29.02 32.1 

ft53.3 10262 13231 13797.0  11271 605.5  10262 10273.1 29.45 23.3 

ft53.4 14425 15579 16263.3  14639 101.1  14425 14425.0 35.96 0.0 

            
ft70.1 39313 46390 48696.2  40054 223.6  39930 40386.9 79.03 229.3 

ft70.2 40419 46485 49162.1  41629 409  40587 41486.3 73.40 406.9 

ft70.3 42535 NA NA  43946 436.6  42535 42822.4 65.90 201.7 

ft70.4 53530 NA NA  55305 362.9  53530 53616.8 68.07 66.3 

            
p43.1 28140 28830 29107.0  NA NA  28140 28140.0 17.30 0.0 

p43.2 28480 28896 47979.5  NA NA  28480 28480.7 17.69 1.7 

p43.3 28835 28680* 29362.5  NA NA  28835 28836.7 17.20 3.8 

p43.4 83005 82960* 83393.5  NA NA  83005 83005.0 18.07 0.0 

            
prob.42 243 443 530.7  NA NA  248 259.7 15.67 5.4 

            
rbg048a 351 376 412.6  NA NA  351 351.0 25.46 0.0 

rbg050c 467 505 528.7  NA NA  467 467.1 28.26 0.3 

            
ry48p.1 15805 18650 21732.2  NA NA  15805 15829.7 24.95 75.4 

ry48p.2 16666 18499 22210.8  NA NA  16666 16705.4 24.45 51.3 

ry48p.3 19894 22480 25029.2  NA NA  19894 19894.0 23.60 0.0 

ry48p.4 31446 33961 34944.7  NA NA  31446 31446.0 24.80 0.0 

NA: Not available 
*Solution given in the related study is less than the optimal solution 

5.2. Application of the MSBO to real-life TPOP 

problem 

In the second part of the computational studies, the 

proposed MSBO is carried out for the real-life TPOP 

problem of the company. In this context, three different 

products produced over than thousands in a year by the 

company are taken into account. Solid models of the 

products 1, 2, and 3 are presented in Figure 4a, 4b, and 

4c respectively. Table 5 shows the number of milling 

operations and tools required to produce these products 

in CNC milling machines. 

 
Table 5. Operational requirements of the products. 

Product # of milling operations # of tools 

Product 1 22 9 

Product 2 58 6 

Product 3 37 11 

 

To compare the performance of the MSBO, first, the 

mathematical model of the problem is solved for each 

product by using Gurobi 7.5.1 solver on MPL 5.0 

software with 10 hours time limitation. The input data 

of the models are determined by using SolidCAM 

software, which is also used by the company for their 

production process. 

 
(a) Product 1. 

 

 
(b) Product 2 (which has non-symmetric two sides). 

 

 
(c) Product 3. 

Figure 4. Solid models of the products considered for 

computational studies. 
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Following the Gurobi computations, the MSBO is 

performed for the TPOP problems of the company. 

Results of the Gurobi solver and MBSO are shown in 

Table 6. Additionally, operational times of the 

productions carried out by the company are presented 

in Table 6, and percentage improvements provided by 

the Gurobi and MBSO are pointed out in the columns 

named “Imp%”. 

 

Table 6. Gurobi and MBSO results for three products. 

Product 

Operational time 

of company 

Gurobi Solution 

 

MBSO 

Result 

(Upper Bound) Imp% 

CPU 

Time (s) Best Imp% Mean Time (s) Std 

Product 1 108.92 108.48 0.40 108.52  108.48 0.40 108.48 6.34 0.0 

Product 2 78.78 77.03 2.22 36 000.00  75.59 4.05 75.61 56.07 ~0.0 

Product 3 110.71 109.69 0.92 36 000.00  109.69 0.92 109.7 35.03 ~0.0 

 

 

It should be concluded from Table 6 that an optimum 

solution is found by Gurobi for only product 1. For the 

other two problems, the computations are terminated at 

the end of the time limit and, upper bounds of the 

solution are taken into account for the comparisons. 

According to the Gurobi results, an improvement with 

up to 2.22% is provided for the drilling operations of 

the company. On the other hand, MBSO could find the 

optimum solution for product 1 and better result than 

the upper bound of the Gurobi solutions for product 2 

(with 4.05% improvement). Regarding the average 

computational times of the MBSO, it should be noted 

that better results can be obtained by the proposed 

algorithm in shorter CPU times with respect to the 

Gurobi solver. As a result of the computational studies 

for these parts, it should be noted that considerable 

variable cost savings are provided for the company 

since these products are produced over than thousands 

in a year. 

5.3. Managerial insights 

The computational results of the MBSO show the 

efficiency and the robustness of the proposed solution 

methodology. Similar to most of the meta-heuristic 

algorithm, the tuned parameter set directly affects the 

performance of the algorithm. Therefore, a preliminary 

study is made in order to find the best parameter values 

for the MBSO. On the other hand, computational 

studies on the SOP dataset show that the local search 

procedure significantly affects the performance of the 

MBSO. Particularly, MBSO with the insertion move, 

and the combination of insertion-swap move show 

superior performance. Although, these procedures 

increase the computational times of the algorithm, with 

reasonable time limits better results can be obtained by 

using both local searches.  

Another interesting observation of the results is the 

stability of the MBSO solutions. It can be clearly seen 

from the computations that the standard deviations of 

most of the results are 0. Comparing with the ACS 

results, a less standard deviation is observed by MBSO 

for 6 of 8 instances. 

When the results of the case-stud are analyzed, an 

improvement is provided by the MBSO for each case 

even though the number of problems is limited with 

three product types. For these experiments, the most 

significant saving is provided on the largest problem. 

Furthermore, the MBSO outperforms the Gurobi 

regarding both the results and CPU times. 

As a consequence, the MBSO can be efficiently used in 

the optimization of CNC operations at the tactical and 

operational decision-making level. In particular, the 

proposed MBSO is capable of finding the optimal or 

near-optimal solution for the real-life TPOPs for the 

CNC machines. Since an improvement on a process in 

mass production system provides considerable cost 

savings for the companies, the proposed study has a 

potential to take forward the researches on this field. In 

practice, considering that such production parts consist 

of numerous CNC operations, operational times and 

machining costs can be significantly reduced by the 

MBSO. 

6. Conclusion 

This paper addresses the TPOP in CNC milling 

machines to improve the internal operational efficiency 

of a company. To find the best tool path in the CNC 

machines, the mathematical model of the problem is 

formulated based on the assumptions of PCTSP. With 

this assumption, tool movement between two 

operational points is allowed if the successor operation 

is not the precedence of the predecessor operations. To 

efficiently solve the considered problem, a newly 

developed SBO is taken into account and modified its 

original version with discretization and local search 

procedures. The computational studies for the proposed 

MSBO are formed into two parts. In the first part, the 

MSBO is carried out on a well-known benchmark 

problem set introduced for the PCTSP, and compared 

with two recent meta-heuristic algorithms. Results of 

these computations show that the proposed MSBO is 

capable of finding efficient solution for the TPOP by 

finding better results with respect to the other two 

algorithms. Then, the proposed MSBO is applied for 

real-life drilling operations of three products. For this 

case, with up to 4.05% improvement on the operational 

times is achieved by the MSBO. 

As a future work, this study can be extended by 
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considering the following issues. In this study, MBSO 

is carried out for a set of PCTSP instances, in which the 

largest problem consists of 100 nodes. Thereupon, the 

proposed MBSO can be carried out for the larger 

PCTSPs, and its efficiency can be analyzed. On the 

other hand, the MBSO can be improved with additional 

search strategies since only insertion and swap 

operations are used in the MBSO. Finally, other bio-

inspired algorithms can be modified for the PCTSP, 

and detailed comparative analysis can be reported. 
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