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PID controller has still been widely-used in industrial control applications be-
cause of its advantages such as functionality, simplicity, applicability, and easy
of use. To obtain desired system response in these industrial control appli-
cations, parameters of the PID controller should be well tuned by using con-
ventional tuning methods such as Ziegler-Nichols, Cohen-Coon, and Astrom-
Hagglund or by means of meta-heuristic optimization algorithms which con-
sider a fitness function including various parameters such as overshoot, settling
time, or steady-state error during the optimization process. Particle swarm op-
timization (PSO) algorithm is often used to tune parameters of PID controller,
and studies explaining the parameter tuning process of the PID controller are
available in the literature. In this study, effects of PSO algorithm parame-
ters, i.e. inertia weight, acceleration factors, and population size, on param-
eter tuning process of a PID controller for a second-order process plus delay-
time (SOPDT) model are analyzed. To demonstrate these effects, control of a
SOPDT model is performed by the tuned controller and system response, tran-
sient response characteristics, steady-state error, and error-based performance
metrics obtained from system response are provided.
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1. Introduction

Meta-heuristic optimization algorithms have at-
tracted attention in control system area, es-
pecially in controller design process. Because
these algorithms have been agreed as an alter-
native method of solving deterministic optimiza-
tion problems or stochastic programming whose
solution is not feasible in most cases even though
optimality is proven. Genetic algorithm (GA)
[1, 2], ant colony optimization (ACO) [3], cuckoo
search algorithm (CSA) [4], flower pollination al-
gorithm (FPA) [5], differential evolution [6], arti-
ficial bee colony algorithm (ABC) [8], and parti-
cle swarm optimization (PSO) [7, 9–11] are some
of meta-heuristic optimization algorithms used in
controller design process in control system area.

PID controller has been preferred in industrial
control applications to obtain desired transient
and steady-state response of the closed loop sys-
tem since 1940s. Either PID controller or its com-
binations have been included in almost 90% of the
industrial control applications [12] because of its
functionality, simplicity, applicability, and easy of
use [13]. A PID controller has three different pa-
rameters required to optimally tune in order to
obtain desired system response. Even though con-
ventional tuning methods such as Ziegler-Nichols
[14], Cohen-Coon, and Astrom- Hagglund [15]
methods are available in the literature, meta-
heuristic optimization algorithms considering a
predefined fitness function have become popular
in the tuning process.
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Although several meta-heuristic optimization al-
gorithms are available, PSO algorithm is com-
monly used in many control applications [16].
PSO algorithm was used to design an optimum
PID controller for an automatic voltage regulator
(AVR) system [9] by defining a performance cri-
terion W which contains overshoot, rise time, set-
tling time, and steady-state error obtained from
system response. In another study, to show the
effectiveness of PSO algorithm in control system
area, Solihin et. al designed a PID controller
for a DC motor model and compared the results
with Ziegler-Nichols tuning method [11]. The au-
thors used various fitness functions to see the ef-
fect of fitness function in the optimization process.
Zhao et. al [17] designed PID controllers for both
a first-order process plus delay-time (FOPDT)
model and a second-order process plus delay-
time (SOPDT) model by proposing a novel fit-
ness function which provides less overshoot and
control input. Speed control of a DC motor was
performed using PID controller whose parameters
were tuned by PSO algorithm and the perfor-
mance of the PID controller were compared to
another PID controller tuned by differential evo-
lution (DE) algorithm [18]. A comparative study
for PID controller design with different algorithms
was published in [19] where GA, DE, and PSO al-
gorithms were used to tune the parameters of the
PID controller.

Even though other studies related to PID con-
troller design based on PSO algorithm are avail-
able in the literature, we have not come across
with any study analyzing effects of PSO algorithm
parameters, yet. Therefore, variable parameters
of PSO algorithm such as inertia weight, acceler-
ation factors, and population size are taken into
account and effects of these variables on PID con-
troller parameter optimization process are ana-
lyzed in this study. During the optimization pro-
cess, a SOPDT model is used since most of the
high order processes can be modeled by either a
FOPDT model or a SOPDT model [20]. Both
visual and numerical results are provided in the
paper to see the effects of each variable on change
of fitness value, transient response characteristics,
steady-state error, and error-based performance
metrics.

The rest of this paper is organized as follows: Sec-
tion 2 presents a brief background about PID con-
troller and PSO algorithm, and introduces opti-
mization process of the PID controller. Simula-
tion results are given in Section 3 where the ef-
fects of inertia weight, acceleration factors, and
population size of PSO algorithm are analyzed

separately. In addition, the obtained system re-
sponses are provided in this section. Concluding
remarks are made in Section 4.

2. PID controller and optimization

2.1. PID controller

PID controller and its combinations have been
still preferred in many control applications to im-
prove system dynamic response in addition to
steady-state error, although being over 100 years
old. Because it has critical advantages such as
functionality, simplicity, applicability, and easy
of use [13]. A PID controller has three differ-
ent terms: proportional, integral, and derivative.
Each term has a gain called with the same name.
In other words, proportional, integral, and deriv-
ative terms have the gains KP , KI , and KD, re-
spectively. In this structure, the integral term in-
creases system type by adding a pole at the origin,
whereas the derivative term adds a finite zero to
the open loop transfer function. Therefore, both
the steady-state error and transient response of
the closed-loop system improve thanks to integral
and derivative terms, respectively.

Block diagram representation of a parallel form
PID controller is demonstrated in Figure 1 where
E(s) and U(s) are the error and control signals in
Laplace domain, respectively. The general trans-
fer function of a parallel form PID controller in
Laplace domain is:

U(s) = (Kp +
Ki

s
+Kds)E(s) (1)

sKD

1/sKI

KP

E(s) +++ U(s)

Figure 1. Block diagram of a PID
controller.

2.2. Particle swarm optimization

Particle swarm optimization develop by Kennedy
and Eberhart [21] is a stochastic evolutionary
optimization algorithm based on simulating the
movements of a swarm like fish schooling and bird
flocking. In order to model the movements of the
swarm, position and velocity update equations of
the particles are used. The equations of the ve-
locity and position are given below, respectively.
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where k is the iteration number, i is the number of
the particle, w is the inertia weight that directly
effect the velocity, c1 and c2 are the acceleration
factors called cognition and social constants, re-
spectively, r1 and r2 are the random numbers be-
tween 0 and 1, Pbest is the best local solution,
Gbest is the best global solution, and Vi and Xi

are the velocity and position of the particle i, re-
spectively.

When considered the velocity and position equa-
tions, it can be inferred that population size, in-
ertia weight w, and acceleration factors c1 and c2
effect the result of the algorithm. In general, c1
and c2 are set to 2 and the inertia weight w which
balances the global and local search is linearly de-
creased from about 0.9 to 0.4 [9].

The implementation of the PSO algorithm is de-
scribed as follows:

Step 1. Initialize the particles with random ve-
locities and positions.

Step 2. Evaluate and compare fitness values of
the particles in the population and obtain the lo-
cal best value (Pbest) of the population for current
iteration, keep the Pbest value in memory.

Step 3. Compare the Pbest value to global best
(Gbest) value, which is initially assigned to Pbest

value, and assign global best (Gbest) value to the
position of the particle with the best fitness func-
tion value.

Step 4. Update the velocities of the particles by
using Eq. 2

Step 5. Move each particle to their new position
by using Eq. 3

Step 6. Increase iteration number, go to step 2
and repeat the steps until the stopping criterion
is met.

2.3. Optimization of the controller

Three parameters of the PID controller, i.e. KP ,
KI , and KD, were tuned by using PSO algorithm
to find minimum fitness function value in Mat-
lab/Simulink platform. As the fitness function,
integral of time-weighted absolute error (ITAE)

which is as error based fitness function was uti-
lized. ITAE fitness function was preferred be-
cause it produces smaller overshoot and oscilla-
tions than the other error-based fitness function
such as integral of absolute error (IAE) and in-
tegral of squared error (ISE) [22, 23]. Although
ITAE value was used as the fitness function, both
IAE and ISE values were calculated in simulations
as error-based performance metrics in addition to
ITAE value. The equations of the mentioned met-
rics are:

ITAE =

∫ t

0
t |e(t)| dt (4)

IAE =

∫ t

0
|e(t)| dt (5)

ISE =

∫ t

0
e(t)2dt (6)

where e(t) is the error signal between reference
and actual signals.

A general schematic representation of the whole
system used in the parameter optimization pro-
cess of the PID controller is shown in Figure 2.
In this process, which was performed with a sam-
pling time Ts of 0.001s, a classical PID controller
without filter was utilized.KP , KI , and KD pa-
rameters of the PID controller were optimized by
PSO algorithm. The optimization process started
with initializing the particles with random veloc-
ities and positions. The number of the particles
were equal to population size and each particle
contains three parameters called K̂P , K̂I , and K̂D

representing the parameters of the PID controller.
As the second step, ITAE values of the particles
were evaluated and compared to obtain local best
value (Pbest) of the population for current iter-
ation and kept it in memory. Then, the Pbest

value of the population were compared to global
best (Gbest) value of the population, which is ini-
tially assigned to Pbest value, and the position of
the particle with the minimum ITAE fitness func-
tion value was assigned as the global best (Gbest)
value. The process went forward with updating
the velocities of the particles and obtaining new
positions for them. By using these new positions,
calculating Pbest and Gbest values were repeated
during 50 iterations. Since the algorithm starts
with randomly assigned velocities and positions,
the optimization process was performed 10 times
for each analyses explained in detail below, i.e.
effect of inertia weight, acceleration parameters,
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and population size. The optimization process
might be performed more than 10 trials. However,
it requires much more time to analyze effects of
these three different parameters. Moreover, when
the result figures containing fitness value (ITAE)
vs. iteration, i.e. Figures 3, 5, and 7, was consid-
ered, it was seen that the fitness values generally
aggregate to a common fitness value. Hence, we
decided that 10 trials were sufficient to rely on the
algorithm.

Mean, standard deviation, median, maximum and
minimum values of obtained fitness values were
considered for the 10 different trials of each anal-
ysis and the details are given in the next section.

PID SOPDT+-
yue

PSO

y

ITAE Fitness 
Function

Ref. 

KP KI KD

Optimization 
Process

Resultant PID parameters

Figure 2. Schematic representation
of the parameter optimization process
of the PID controller.

3. Simulation results

To analyze effects of PSO algorithm parameters
in PID controller design, simulation of a SOPDT
model was performed in Matlab/Simulink plat-
form. The transfer function of the SOPDT model
used in the study is:

G(s) =
0.3172

s2 + 1.007s+ 0.9515
e−0.27s (7)

Unity step reference input was provided to the
closed loop system given in Figure 2, and the best
controller parameters, i.e. KP , KI , and KD val-
ues, were searched considering minimum ITAE
fitness function value during 10 seconds simula-
tion.

First of all, effect of inertia weight w was consid-
ered in this section. Then effect of acceleration
factors c1 and c2 were analyzed. Finally, effect
of population size used in the PSO algorithm was
investigated.

3.1. Effect of inertia weight

The inertia weight w constructs a relation be-
tween the past and current velocities of the
swarms as seen in Eq. 2. Therefore, it ef-
fects the flying abilities of swarms to either in a
wide-range or in a narrow-range. Global and lo-
cal searching abilities are intended by wide and
narrow-range flying abilities. Therefore, larger
or smaller inertia weight determines the trade-
off between global and local searching abilities.
Smaller inertia weight is suggested to fine-tune
in a smaller search space, whereas larger inertia
weight is asked to global exploration in a larger
search space [24]. In general, the inertia weight
w is linearly decreased from about 0.9 to 0.4 de-
pending on the maximum and current iteration
numbers [9]. Eq. 8 is used to calculate the inertia
weight

ω = ωmax −
ωmax − ωmin

itermax
itercurrent (8)

where itermax and itercurrent represent the maxi-
mum and current iteration numbers, respectively.
ωmax and ωmin are set to 0.9 and 0.4, respectively.

To see the effect of the inertia value on a SOPDT,
various w values were used in optimization pro-
cess. 11 different w values from 0.05 to 1.0 in
addition to linearly decreased w value calculated
by using Eq. 8 were utilized in the parameter op-
timization process of the PID controller. Since
the PSO algorithm starts with random initial po-
sitions, the algorithm performed 10 times. All
trials were performed with stationary acceleration
factors c1 and c2, population size, and maximum
iteration number which are set to 2, 2, 10, and
50, respectively. The change of ITAE fitness val-
ues during the optimization process with different
w values are shown in Figure 3. In order to make
a fair comparison and provide a more possible vi-
sual figures, both the scales of x-axis and y-axis
were set to the same possible values in each sub-
figures. Therefore, some subfigures may not con-
tain the 10 different trial lines as in Figures 3(a),
(b), and (c) which consist of 9 different trial lines.
From the figures, the minimum fitness function
can not be observed clearly. Therefore, in addi-
tion to visual results, numerical results belonging
to optimization process are provided in Table 1,
where FV, Mean, SD, Median, Max, Min stand
for the best fitness value, the mean of the fitness
values, the standard deviation of the fitness val-
ues, the median of the fitness values, maximum of
the fitness values and minimum of the fitness val-
ues, respectively. It can be concluded from the ta-
ble that reaching to optimal solution, i. e. global
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best position, is more possible when w = 0.2 than
the other inertia weights, when considered the
standard deviation of the fitness values. Further-
more, the maximum ITAE fitness value obtained
with w = 0.2 is less than the other inertia weights.
As a result of the numerical results, the minimum
fitness value is 0.4477 and obtained when w = 0.2
for this SOPDT model during 10 seconds.

The best PID controller parameters for each w
value are given in Table 2. The obtained system
response using these controller parameters are
shown in Figure 4, where a zoomed region is also
demonstrated to see the transient response char-
acteristics more clearly. From the figure, it can
be concluded that satisfactory steady-state error
is obtained for each w value. However, transient
response obtained for each w is required a fur-
ther thought. Therefore, the transient response
characteristics, i.e. maximum overshoot (MO),
settling time (Ts), rise time (Tr), and peak time
(Tp), are also provided in Table 2 in addition to
steady-state error, and error-based performance
metrics, i.e. IAE, ISE, and ITAE. The minimum
steady-state error and ITAE performance metric
was obtained when w = 0.2. However, less over-
shoot and settling time occurred when w = 0.6
and w = 0.5, respectively. As a result, since the
fitness function of the PSO algorithm is ITAE fit-
ness value, the best controller parameters were
obtained when w = 0.2.

Table 1. Effect of inertia weight on
fitness value.

w FV Mean SD Median Max Min
0.05 0.4532 0.5672 0.2456 0.4946 1.2562 0.4532
0.1 0.4484 0.5775 0.2673 0.5007 1.3333 0.4484
0.2 0.4477 0.5082 0.1399 0.4593 0.9032 0.4477
0.3 0.4484 0.5627 0.2231 0.4644 1.1247 0.4484
0.4 0.4480 0.5420 0.2110 0.4629 1.1247 0.4480
0.5 0.4500 0.5394 0.2064 0.4887 1.1247 0.4500
0.6 0.4517 0.5382 0.2066 0.4797 1.1247 0.4517
0.7 0.4502 0.5541 0.2072 0.4890 1.1263 0.4502
0.8 0.4587 0.5651 0.2202 0.4915 1.1857 0.4587
0.9 0.4673 0.5947 0.2117 0.5300 1.1857 0.4673
1.0 0.5045 0.6177 0.1884 0.5612 1.1316 0.5045
LD 0.4488 0.5367 0.2071 0.4732 1.1247 0.4488

3.2. Effect of acceleration parameters

Effect of acceleration factors c1 and c2 on ITAE
fitness value and both transient and steady-state
response of the SOPDT are considered in this sec-
tion. c1 and c2 constants weight the acceleration
ratios of the particles towards the local (Pbest) and
global (Gbest) best positions, respectively. High
acceleration constant values may cause inconsis-
tent movement of the particle, i.e. the particles
may suddenly converge to the best global posi-
tion or past it towards other local best positions,

whereas low values may allow the particle to go
around far away from the global best position.
Therefore, the acceleration factors c1 and c2 are
set to 2.0 as a result of trial and error method in
most studies.

In this study, (c1, c2) acceleration constant pair
were set to (0, 4), (1, 3), (2, 2), (3, 1), and (4, 0) by
keeping inertia weight w and population size sta-
tionary at 0.2 and 10, respectively. w was set to
0.2, since minimum ITAE fitness value had been
obtained at that weight in the previous subsec-
tion.

The change of ITAE fitness values during the op-
timization process with different (c1, c2) pairs are
given in Figure 5 where the scales of each subfig-
ures are set to the same possible values to make
a fair comparison and provide a more possible vi-
sual figures. Numerical results of the optimization
process are also provided in Table 3, where FV,
Mean, SD, Median, Max, Min stand for the best
fitness value, the mean of the fitness values, the
standard deviation of the fitness values, the me-
dian of the fitness values, maximum of the fitness
values and minimum of the fitness values, respec-
tively. The minimum fitness value is 0.4477 and
obtained with (c1 = 2.0, c2 = 2.0) for this system
during 10 seconds. As a result of the numerical
result, c2 constant, which is related to the global
(Gbest) best position, has more effect on the fitness
value as expected. Because the minimum fitness
value is obtained with (c1 = 2.0, c2 = 2.0) and the
increase of the fitness value becomes more when
the weight of c2 constant is decreased.

The best PID controller parameters for each ac-
celeration constant pair are given in Table 4. The
obtained system response using these controller
parameters are demonstrated in Figure 6, where
a zoomed region is also given to see the transient
response characteristics more clearly. When con-
sidered the numerical results given in Table 4,
it can be concluded that the best controller pa-
rameters were obtained with (c1 = 2.0, c2 = 2.0)
pair according to defined fitness value, although
the best transient response obtained with (c1 =
0, c2 = 4.0).

Table 3. Effect of acceleration pa-
rameters on fitness value.

C1 C2 FV Mean SD Median Max Min
0 4 0.4492 0.5447 0.2049 0.4890 1.1247 0.4492
1 3 0.4493 0.5011 0.1022 0.4785 0.7873 0.4493
2 2 0.4477 0.5082 0.1399 0.4593 0.9032 0.4477
3 1 0.4507 0.7244 0.2060 0.7580 1.1466 0.4507
4 0 0.5513 2.1092 1.2775 1.5627 4.8274 0.5513
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Table 2. Effect of inertia weight on system dynamic response, steady-state error and perfor-
mance metrics.

Controller Parameters Transient Response Characteristics Error-based Metrics
w Kp Ki Kd MO (%) Ts Tr Tp Ess IAE ISE ITAE

0.05 12.5363 3.5191 7.7843 2.2481 2.5800 0.6900 1.5900 2.4e-06 0.8743 0.6988 0.4532
0.1 13.3055 3.5799 8.2060 2.2787 2.5600 0.6600 1.5200 3.7e-06 0.8604 0.6849 0.4484
0.2 13.6308 3.6244 8.3257 2.8301 2.5500 0.6400 1.5000 9.02e-07 0.8552 0.6791 0.4477
0.3 13.7343 3.6662 8.2867 3.6717 2.5500 0.6300 1.4900 3.1e-06 0.8539 0.6770 0.4484
0.4 13.3769 3.6077 8.1810 2.8409 2.5600 0.6600 1.5200 1.9e-06 0.8590 0.6833 0.4480
0.5 14.1622 3.6696 8.6112 3.0230 2.5100 0.6300 1.4500 3.7e-05 0.8485 0.6706 0.4500
0.6 12.6971 3.5296 7.8798 2.1768 2.5800 0.6900 1.5800 3.6e-06 0.8712 0.6958 0.4517
0.7 14.0695 3.6762 8.5284 3.2739 2.5200 0.6300 1.4600 5.0e-05 0.8495 0.6719 0.4502
0.8 14.1778 3.7780 8.2815 5.8517 2.5700 0.6100 1.4700 5.0e-05 0.8523 0.6695 0.4587
0.9 14.7846 3.8085 8.5959 6.0705 2.5300 0.5900 1.4300 1.4e-04 0.8467 0.6607 0.4673
1.0 16.5954 3.8457 10 4.0038 2.8600 0.5500 1.3100 3.0e-04 0.8385 0.6394 0.5045
LD 13.8335 3.6525 8.4119 3.1014 2.5400 0.6400 1.4800 3.3e-05 0.8524 0.6757 0.4488

Table 4. Effect of acceleration parameters on system dynamic response, steady-state error
and performance metrics.

Controller Parameters Transient Response Characteristics Error-based Metrics
C1 C2 Kp Ki Kd MO (%) Ts Tr Tp Ess IAE ISE ITAE
0 4 13.9362 3.6169 8.5811 2.1622 2.5200 0.6400 1.4700 5.6e-06 0.8519 0.6746 0.4492
1 3 13.1337 3.6020 8.0138 3.1200 2.5800 0.6700 1.5400 5.2e-06 0.8631 0.6874 0.4493
2 2 13.6308 3.6244 8.3257 2.8301 2.5500 0.6400 1.5000 9.0e-07 0.8552 0.6791 0.4477
3 1 13.0244 3.6075 7.9132 3.4741 2.5900 0.6700 1.5500 2.4e-06 0.8654 0.6892 0.4507
4 0 11.5784 3.7322 6.6511 8.6182 2.2400 0.6900 1.7100 2.1790e-04 0.9294 0.7175 0.5513

3.3. Effect of population size

In an optimization process, if the population size
is small, the algorithm require less computational
effort. On the other hand, the probability of pre-
mature convergence increases [25]. Therefore, re-
searches have a common idea of that the algo-
rithms provide poor solutions when the popula-
tion size is small [26] and require more computa-
tional effort when it is large [27].

In this section, the effect of population size pa-
rameter on the PSO algorithm is considered by
keeping inertia weight w and acceleration con-
stant pair stationary at 0.2 and (c1 = 2.0, c2 =
2.0), respectively. As in the previous subsection,
the PSO algorithm is performed for 10 times for
all population sizes and the results are recorded.

Figure 7 shows the change of ITAE fitness val-
ues during the optimization process with differ-
ent population sizes. It can be concluded from
the figure that the standard deviation of the ob-
tained fitness value is the smallest with the largest
population size. In other words, the probability
of converging global best position is higher than
the others. This result can be supported by Table
5, where FV, Mean, SD, Median, Max, Min stand
for the best fitness value, the mean of the fitness
values, the standard deviation of the fitness val-
ues, the median of the fitness values, maximum of

the fitness values and minimum of the fitness val-
ues, respectively. In addition to standard devia-
tion, the maximum value of ITAE value is getting
smaller while increasing the population size. On
the other hand, the required computation time
increases as the population size increase.

The obtained best PID controller parameters for
each population size are given in Table 6. The
obtained system response using these controller
parameters are demonstrated in Figure 8, where
a zoomed region is also provided. The transient
response characteristics obtained from system re-
sponse is also given in Table 6. That the best con-
troller parameters were obtained with the largest
population size is concluded from the numerical
results in the table. In addition to ITAE fitness
value, all transient response characteristics except
maximum overshoot is better when the popula-
tion size is equal to 50.

Table 5. Effect of population size on
fitness value.

Size FV Mean SD Median Max Min Time(s)
10 0.4477 0.5082 0.1399 0.4593 0.9032 0.4477 1023.1
25 0.4480 0.4538 0.0130 0.4483 0.4887 0.4480 2521.9
50 0.4477 0.4482 5.8e-04 0.4480 0.4494 0.4477 5375.5

4. Conclusion

In this paper, the effects of inertia weight, acceler-
ation factors, and population size of the PSO algo-
rithm during a PID controller design process for
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Table 6. Effect of population size on system dynamic response, steady-state error and perfor-
mance metrics.

Pop. Controller Parameters Transient Response Characteristics Error-based Metrics
Size Kp Ki Kd MO (%) Ts Tr Tp Ess IAE ISE ITAE
10 13.6308 3.6244 8.3257 2.8301 2.5500 0.6400 1.5000 9.0e-7 0.8552 0.6791 0.4477
25 13.3667 3.6044 8.1821 2.7809 2.5600 0.6600 1.5200 6.7e-7 0.8591 0.6835 0.4480
50 13.6532 3.6306 8.3249 2.9459 2.5500 0.6400 1.4900 4.8e-7 0.8548 0.6787 0.4477

a SOPDT model were separately analyzed. For
this SOPDT model, first the effect of the iner-
tia weight was observed and the best PID con-
troller parameters providing minimum ITAE fit-
ness value were obtained with the inertia weight
w = 0.2. Then, the effect of the acceleration fac-
tors were analyzed and it is concluded that the
importance of social constant c2 related to global
best solution is higher than the cognition constant
c1. However, the best solution of the optimization
process was obtained with (c1 = 2.0, c2 = 2.0) for
this system. At last, the effect of the population
size were considered by keeping the inertia weight
w and the acceleration constant pair stationary at
0.2 and (c1 = 2.0, c2 = 2.0), respectively. It was
observed that the probability of converging the
global best solution increases as the population
size increases. However, the required computa-
tion time increases.
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Figure 3. Fitness values obtained with different inertia weight for 10 different trial: Inertia
weight is 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and LD (linearly decreased from 0.9
to 0.4) in (a), (b), (c), (d), (e), (f), (g), (h), (i), (j) and (k), respectively.
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Figure 4. Obtained system responses with different inertia weights.
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Figure 6. Obtained system responses with different acceleration parameters.
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Figure 7. Fitness values obtained with different population size for 10 different trial. Popu-
lation size is 10, 25, and 50 in (a), (b), and (c), respectively.
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Figure 8. Obtained system responses with different population sizes.


