
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.9, No.3, pp.86-94 (2019)

http://doi.org/10.11121/ijocta.01.2019.00644

RESEARCH ARTICLE

Approximate controllability of nonlocal non-autonomous Sobolev

type evolution equations

Arshi Meraj* and Dwijendra Narain Pandey

Department of Mathematics, Indian Institute of Technology Roorkee, Uttarakhand, India, PIN - 247667
arshimeraj@gmail.com, dwij.iitk@gmail.com

ARTICLE INFO ABSTRACT

Article History:
Received 26 July 2018

Accepted 16 May 2019

Available 30 July 2019

The aim of this article is to investigate the existence of mild solutions as
well as approximate controllability of non-autonomous Sobolev type differential
equations with the nonlocal condition. To prove our results, we will take the
help of Krasnoselskii fixed point technique, evolution system and controllability
of the corresponding linear system.Keywords:

Krasnoselskii fixed point theorem

Evolution system

Approximate controllability

Sobolev type differential equations

AMS Classification 2010:
93B05; 34G20; 34K30

1. Introduction

In this article, we discuss the approximate
controllability of nonlocal Sobolev type non-
autonomous evolution equations in a separable
Hilbert space X:

d

dt
[Ex(t)] +A(t)x(t) = F(t, x(t)) + Bu(t),

t ∈ (0, b],

x(0) + G(x) = x0, x0 ∈ D(E), (1)

where A(t), E are X-valued linear operators with
domains are subsets ofX, and F isX-valued func-
tion defined over J × X, G is D(E)-valued func-
tion defined over C(J,X), J = [0, b]. The control
function u ∈ L2(J,U), U is a Hilbert space and B

is X-valued linear and bounded operator defined
over U.

The Sobolev type differential equations appears
in several fields such as thermodynamics [1], fluid
flow via fissured rocks [2], and mechanics of soil

[3]. Brill [4] first established the existence of solu-
tion for a semilinear Sobolev differential equation
in a Banach space. Lightbourne et al. [5] studied
a partial differential equation of Sobolev type.

Generalization of classical initial condition which
is known as nonlocal condition is more effective to
obtain better results. Nonlocal Cauchy problem
was first considered by Byszewski [6].

Controllability is an important issue in engineer-
ing and mathematical control theory. The prob-
lem of exact controllability is to show that there
exists a control function, that steers the solution
of the system from its initial state to the given fi-
nal state. However in approximate controllability,
it is possible to steer the solution of the system
from its initial state to arbitrary small neighbour-
hood of the the final state. Mostly the problem
of controllability for various kinds of differential,
integro-differential equations and impulsive differ-
ential equations are studied for autonomous sys-
tems. For more details, we refer to [7] - [13].

The existence of mild solutions for a non-
autonomous nonlocal integro-differential equation
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is investigated by Yan [14] via Banach contrac-
tion principle, Schauder’s fixed point theorem
and the theory of evolution families. Haloi et
al. [15] generalized the above results for non-
autonomous differential equations with deviated
arguments by the use of theory of analytic semi-
group and Banach fixed point theorem. Alka
et al. [16] generalized the results of [15] for in-
stantaneous impulsive non-autonomous differen-
tial equations with iterated deviating arguments.
Hamdy [17] studied sufficient conditions for con-
trollability of autonomous Sobolev type fractional
integro-differential equations with the help of
Schauder’s fixed point theorem and the theory
of compact semigroup. Mahmudov [18] discussed
the approximate controllability of autonomous
fractional Sobolev type differential system in Ba-
nach space with the help of Schauder’s fixed point
theorem. Recently, Haloi [19] established suffi-
cient conditions for approximate controllability of
non-autonomous nonlocal delay differential sys-
tems with deviating arguments by using theory of
compact semigroup and Krasnoselskii fixed point
theorem.

To the best of our knowledge, no work yet
available on approximate controllability of non-
autonomous Sobolev type differential systems, in-
spired by this, we consider the system (1) to find
the sufficient conditions for the approximate con-
trollability.

The remaining part of the article is organized as
following. Section 2 is concerned with some basic
notations and definitions, also we will introduce
the expression for mild solutions of the system (1).
In section 3, we will study our main results. In
section 4, we will present an example to illustrate
our results. In last section 5, we will discuss the
conclusions.

2. Preliminaries

This section is concerned with some basic as-
sumptions, definitions and theorems required to
prove our objectives. For more details, we re-
fer [7], [20] and [21]. Let us denote C(J,X)
for the complete norm space of all continuous
maps from J to X, for a finite constant r > 0,
let Ωr = {x ∈ C(J,X) : ‖x(t)‖ 6 r, t ∈ J}.
Lp(J,X)(1 6 p < ∞) is the Banach space of all
Bochner integrable functions from J to X with

norm ‖x‖Lp(J,X) = (
∫ b

0 ‖x(t)‖pdt)
1

p .

Now, we impose the following restrictions (see [4],
[20], [21]).

(A1) The operator A(t) is closed, domain of
A(t) is dense in X and independent of t.

(A2) For Re(ϑ) 6 0, t ∈ J , the resolvent opera-
tor of A(t) exists and satisfies ‖R(ϑ; t)‖ 6

ς
|ϑ|+1 , for some positive constant ς.

(A3) For each fixed τ3 ∈ J , there are constants
K > 0, ρ ∈ (0, 1] such that ‖[A(τ1) −
A(τ2)]A

−1(τ3)‖ 6 K|τ1 − τ2|
ρ for any

τ1, τ2 ∈ J.

(S1) E is closed, bijective operator, and
D(E) ⊂ D(A).

(S2) E
−1 : X → D(E) is compact.

The assumptions (A1), (A2) imply that −A(t)
generates an analytic semigroup in B(X), where
the symbol B(X) stands for Banach space of
all bounded linear operators on X. The closed
graph theorem with the above assumptions imply
that the linear operator −A(t)E−1 : X → X is
bounded, and so for each t ∈ J , −A(t)E−1 gener-
ates a semigroup of bounded linear operators and
hence a unique evolution system {S(t1, t2) : 0 6

t2 6 t1 6 b} on X, which satisfies (see [14], [20],
[21]):

(i) S(t1, t2) ∈ B(X) and is continuous
strongly in t1, t2 for 0 6 t2 6 t1 6 b.

(ii) S(t1, t2)x ∈ D(A), x ∈ X, 0 6 t2 6 t1 6

b.
(iii) S(t1, t2)S(t2, t3) = S(t1, t3), 0 6 t3 6

t2 6 t1 6 b.
(iv) S(η, η) is identity operator, for η ∈ J .
(v) ‖S(t1, t2)‖ 6 M, 0 6 t2 6 t1 6 b, for

some positive constant M.
(vi) For each fixed t2, {S(t1, t2), t2 < t1} is

uniformly continuous in uniform operator
norm.

(vii) For 0 6 t2 < t1 6 b, the derivative
∂S(t1,t2)

∂t1
exists in strong operator topol-

ogy, is strongly continuous in t1. More-
over,

∂S(t1, t2)

∂t1
+A(t1)S(t1, t2) = 0, 0 6 t2 < t1 6 b.

Theorem 1. ( [4, 20]) Let F is a uniformly
Hölder continuous function on J with exponent
β ∈ (0, 1], and the assumptions (A1)-(A3), (S1)-
(S2) hold, then the unique solution for the linear
Cauchy problem

d

dt
[Ex(t)] +A(t)x(t) = F(t), t ∈ J,

x(0) = x0 ∈ D(E), (2)

is given by
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x(t) = E
−1S(t, 0)Ex0

+

∫ t

0
E
−1S(t, s)F(s)ds. (3)

Definition 1. A mild solution of (1) is a func-
tion x ∈ C(J,X) satisfying the following integral
equation

x(̺) = E
−1S(̺, 0)E(x0 − G(x))

+

∫ ̺

0
E
−1S(̺, η)[F(η, x(η)) + Bu(η)]dη,

̺ ∈ J.

For the control u and initial data x0, use x
b(x0, u)

to denote the state value at time b. The set
R(b, x0) = {xb(x0, u) : u ∈ L2(J,U)}, is called
the reachable set at time b.

Definition 2. ( [8]) If R(b, x0) is dense in X, the
system (1) is called approximately controllable on
J .

Consider the linear control system:

d

dt
[Ex(t)] +A(t)x(t) = Bu(t), t ∈ J,

x(0) = x0. (4)

Corresponding to (4), the controllability operator
is given as

Γb
0 =

∫ b

0
V(b, η)BB∗V∗(b, η)dη, (5)

where V(t, s) := E
−1S(t, s), ∗ denotes the adjoint

of the operator. Notice that Γb
0 is a bounded lin-

ear operator.

Theorem 2. ( [8]) The necessary and sufficient
conditions for the linear system (4) to be approx-
imately controllable on J is that, δR(δ,Γb

0) → 0
as δ → 0+ in the strong operator topology, where
R(δ,Γb

0) := (δI + Γb
0)

−1, δ > 0.

Now, we recall the Krasnoselskii fixed point tech-
nique.

Theorem 3. ( [22]) Let S is a convex bounded
closed subset of a Banach space X. Suppose that
F1, F2 be be two X-valued operators defined on
S such that such that F1x + F2y ∈ S whenever
x, y ∈ S, F1 is continuous and compact, and F2

is contraction map. Then F1+F2 has a fixed point
in S.

3. Main results

In this section, we prove the existence of mild so-
lutions and approximate controllability of (1). For

x ∈ C(J,X), consider the control function for the
system (1) as following :

u(t) = uλ(t, x) = B
∗V∗(b, t)R(λ,Γb

0)p(x), (6)

with

p(x) = xb − V(b, 0)E(x0 − G(x))

−

∫ b

0
V(b, η)F(η, x(η))dη. (7)

For any λ > 0, define Fλ on C(J,X) as following:

(Fλx)(̺) = (Φλx)(̺) + (Ψλx)(̺), ̺ ∈ J, (8)

where

(Φλx)(̺) = V(̺, 0)E(x0 − G(x))

+

∫ ̺

0
V(̺, η)F(η, x(η))dη,

(Ψλx)(̺) =

∫ ̺

0
V(̺, η)Buλ(η)dη. (9)

Now, we state the assumptions that are useful to
prove our objective.

(H1) S(t, s), is a compact evolution system
whenever t− s > 0 (0 6 s < t 6 b).

(H2) The function F(·, x) from J to X is
Lebesgue measurable for every fixed x ∈
X, and the function F(t, ·) from X to X

is continuous for every fixed t ∈ J , and
for all ̺ ∈ J , η1, η2,∈ X , we have

‖F(̺, η1)−F(̺, η2)‖ 6 L1‖η1 − η2‖,

for some constant L1 > 0.
(H3) The function G from C(J,X) to D(E) is

continuous and there is a constant L2 > 0
such that

‖E(G(x1)− G(x2))‖ 6 L2‖x1 − x2‖,

∀x1 , x2 ∈ C(J,X).

(H4) (A1)-(A3) and (S1), (S2) hold.

For convenience, we use the following notations:

N1 = sup
t∈J

‖F(t, 0)‖, K1 = (L1r +N1)b,

M1 = ‖B‖, M2 = ‖E−1‖.

Lemma 1. If the assumption (H2) holds,
then for x ∈ Ωr and ̺ ∈ J we have
∫ ̺

0 ‖F(η, x(η))‖dη 6 K1.

Proof. By assumption (H2), we get



Approximate controllability of nonlocal non-autonomous Sobolev type evolution equations 89

∫ ̺

0
‖F(η, x(η))‖dη 6

∫ ̺

0

(

‖F(η, x(η))

−F(η, 0)‖+ ‖F(η, 0)‖

)

dη

6

∫ ̺

0
(L1‖x‖+N1)dη

6 (L1r +N1)b = K1.

�

Theorem 4. Let the assumptions (H1)-(H4)
hold and the functions E(G(0)) is bounded, then
a mild solution to the system (1) exists, provided
that

Λ := M2M(L2 + L1b) < 1. (10)

Proof. The proof is divided into the following
steps :

Step I: For λ > 0, we have a constant R (de-
pends on λ), satisfying Fλ(ΩR) ⊂ ΩR.
For any positive constant r and x ∈ Ωr, if t ∈ J ,
then by using (6), (H3) and Lemma (1), we have

uλ(t, x) = B
∗V∗(b, t)R(λ,Γb

0)

[

xb

−V(b, 0)E(x0 − G(x))

−

∫ b

0
V(b, η)F(η, x(η))dη

]

‖uλ(t, x)‖ 6
M1M2M

λ

[

‖xb‖+M2M(‖Ex0‖

+‖E(G(x)− G(0))‖+ ‖EG(0)‖)

+M2MK1

]

6
M1M2M

λ

[

‖xb‖+M2M(‖Ex0‖

+L2r + ‖EG(0)‖) +M2MK1

]

:= K2, (11)

and from (8), (11), we obtain

(Fλx)(t) = V(t, 0)E(x0 − G(x))

+

∫ t

0
V(t, η)F(η, x(η))dη

+

∫ t

0
V(t, η)Buλ(η, x)dη

‖(Fλx)(t)‖ 6 ‖V(t, 0)‖(‖E(x0)‖+ ‖EG(x)‖)

+

∫ t

0
‖V(t, η)‖‖F(η, x(η))‖dη

+

∫ t

0
‖V(t, η)‖‖B‖‖uλ(η, x)‖dη

6 M2M(‖Ex0‖+ L2r + ‖EG(0)‖)

+M2MK1

+M2MM1K2b. (12)

This implies, for large enough r > 0, Fλ(Ωr) ⊂ Ωr

holds.

Step II: Φλ : ΩR → ΩR is contraction.
For x, y ∈ ΩR and t ∈ J , using (H2) and (H3) we
obtain

‖(Φλx)(t)− (Φλy)(t)‖ 6 ‖V(t, 0)E(G(x)

−G(y))‖

+

∫ t

0
‖V(t, s)‖

‖F(s, x(s))

−F(s, y(s))‖ds

6 M2ML2‖x− y‖

+M2M
∫ t

0
L1‖x− y‖ds

6 M2ML2‖x− y‖

+M2ML1b‖x− y‖

6 M2M(L2 + L1b)

‖x− y‖

= Λ‖x− y‖. (13)

Since Λ < 1, therefore Φλ is contraction.

Step III: Ψλ is continuous in ΩR.
Consider {xn} be a sequence in ΩR with
limn→∞ xn = x in ΩR. From continuity of non-
linear term F with respect to state variable, we
have

lim
n→∞

F(η, xn(η)) = F(η, x(η)), for each η ∈ J.

So, we can conclude that

sup
η∈J

‖F(η, xn(η))−F(η, x(η))‖ → 0 as n → ∞.

(14)

For t ∈ J , (S1), (H3), and (14) yield the following
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‖p(xn)− p(x)‖ 6 M2M‖EG(xn)− EG(x)‖

+M2M

∫ b

0
‖F(ζ, xn(ζ))

−F(ζ, x(ζ))‖dζ

6 M2M‖EG(xn)− EG(x)‖

+M2Mb sup
ζ∈J

‖F(ζ, xn(ζ))

−F(ζ, x(ζ))‖

→ 0 as n → ∞, (15)

therefore (6) implies that

‖uλ(η, xn)− uλ(η, x)‖ → 0 as n → ∞, (16)

and so

‖(Ψλxn)(t)− (Ψλx)(t)‖ 6 M2MM1b

sup
η∈J

‖uλ(η, xn)

−uλ(η, x)‖

→ 0 as n → ∞,

which means Ψλ is continuous in ΩR.

Step IV: Ψλ : ΩR → ΩR is compact. For this we
need to show :

(i): The set {(Ψλx)(̺) : x ∈ ΩR} is relatively
compact subset of X, for each ̺ ∈ J .
For ̺ = 0, obviously the set {(Ψλx)(0) : x ∈
ΩR} = {0} is compact subset of X. For fixed

̺ ∈ (0, b], and ξ ∈ (0, ̺), consider an operator Ψξ
λ

on ΩR as following

(Ψξ
λx)(̺) =

∫ ̺−ξ

0
V(̺, η)Buλ(η, x)dη

=

∫ ̺−ξ

0
E
−1S(̺, ̺− ξ)

S(̺− ξ, η)Buλ(η, x)dη

= E
−1S(̺, ̺− ξ)

∫ ̺−ξ

0
S(̺− ξ, η)Buλ(η, x)dη

= E
−1S(̺, ̺− ξ)y(̺, ξ).

Since E−1 and S(̺, ̺−ξ) are compact, and y(̺, ξ)

is bounded on ΩR, we get {(Ψξ
λx)(̺) : x ∈ ΩR} is

relatively compact subset of X. Also

‖(Ψλx)(̺)− (Ψξ
λx)(̺)‖ 6

∫ ̺

̺−ξ

‖V(̺, η)B

uλ(η, x)‖dη

6 M2MM1ξ‖uλ‖

→ 0 as ξ → 0.

Hence, {(Ψλx)(̺) : x ∈ ΩR} is relatively compact
subset of X.

(ii): Now, we show {Ψλx : x ∈ ΩR} is equicon-
tinuous. For any x ∈ ΩR and 0 6 ̺1 < ̺2 6 b,
we have

‖(Ψλx)(̺2)− (Ψλx)(̺1)‖ =

∥

∥

∥

∥

∫ ̺2

0
E
−1S(̺2, η)

Buλ(η, x)dη

−

∫ ̺1

0
E
−1S(̺1, η)

Buλ(η, x)dη

∥

∥

∥

∥

6

∥

∥

∥

∥

∫ ̺1

0
E
−1[S(̺2, η)

−S(̺1, η)]

Buλ(η, x)dη

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ ̺2

̺1

E
−1S(̺2, η)

Buλ(η, x)dη

∥

∥

∥

∥

6 J1 + J2.

For ̺1 = 0, it is easy to see that J1 = 0. When
̺1 > 0, let ε > 0 small enough, we obtain

J1 6

∥

∥

∥

∥

∫ ̺1−ε

0
E
−1[S(̺2, η)− S(̺1, η)]

Buλ(η, x)dη

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ ̺1

̺1−ε

E
−1[S(̺2, η)− S(̺1, η)]

Buλ(η, x)dη

∥

∥

∥

∥

6 M2M1(̺1 − ε)‖uλ‖

sup
η∈[0,̺1−ε]

‖S(̺2, η)− S(̺1, η)‖

+2M2MM1ε‖uλ‖

J2 6 M2MM1‖uλ‖(̺2 − ̺1)
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Hence, J1, J2 → as ̺2 → ̺1, ε → 0. As a re-
sult ‖(Ψλx)(̺2) − (Ψλx)(̺1)‖ → 0 independently
of x ∈ ΩR as ̺2 → ̺1, which means that Ψλ :
ΩR → ΩR is equicontinuous. Thus, by Arzela-
Ascoli theorem, Ψλ is compact on ΩR.

Therefore Krasnoselskii fixed point theorem im-
plies that Fλ has a fixed point, which is a mild
solution to the problem (1). �

Now, we are ready to discuss the approximate con-
trollability of the system (1). In order to prove it,
the following hypotheses are also required:

(H5) δR(δ,Γb
0) → 0 whenever δ → 0+ in strong

operator topology.
(H6) There exist constants L3 > 0 and L4 > 0,

such that

‖EG(x)‖ 6 L3, ∀x ∈ C(J,X),

‖F(t, x)‖ 6 L4, ∀(t, x) ∈ J ×X.

Theorem 5. If the assumptions of Theorem 4 as
well as hypotheses (H5) and (H6) are satisfied,
then (1) is approximately controllable on J .

Proof. Theorem 4 guaranteed that Fλ has a fixed
point in ΩR. Let xλ is a mild solution of (1) under
the control uλ(t, xλ) given by (6) and satisfies

xλ(b) = V(b, 0)E(x0 − G(xλ))

+

∫ b

0
V(b, η)[F(η, xλ(η))

+Buλ(η, xλ)]dη

= xb − p(xλ) +

∫ b

0
V(b, η)

Buλ(η, xλ)dη

= xb − p(xλ) +

∫ b

0
V(b, η)

BB
∗V∗(b, η)R(λ,Γb

0)p(xλ)dη

= xb − p(xλ) + Γb
0R(λ,Γb

0)p(xλ)

= xb − [I − Γb
0(λI + Γb

0)
−1]p(xλ)

= xb − λR(λ,Γb
0)p(xλ), (17)

where

p(xλ) = xb − V(b, 0)E(x0 − G(xλ))

−

∫ b

0
V(b, η)F(η, xλ(η))dη.

According to the compactness of E−1, S(t, s), and
the uniform boundedness of EG, we see that there
exists a subsequence of {V(b, 0)EG(xλ) : λ > 0},
still denoted by it, converges to some xg ∈ X as
λ → 0. Since F is uniformly bounded, we get

∫ b

0
‖F(η, xλ(η))‖

2dη 6 L2
4b.

Hence F(·, xλ(·)) is a bounded sequence in
L2(J,X). So, {F(·, xλ(·)) : λ > 0} has a sub-
sequence, still denoted by it, converges weakly to
some F(·) ∈ L2(J,X). Define

̟ = xb − V(b, 0)Ex0 + xg −

∫ b

0
V(b, s)F(s)ds.

Now, we get

‖p(xλ)−̟‖ 6 ‖V(b, 0)EG(xλ)− xg‖

+M

∫ b

0
‖F(s, xλ(s))−F(s)‖ds

→ 0 as λ → 0+. (18)

From (17), (18), and (H5), we obtain

‖xλ(b)− xb‖ 6 ‖λR(λ,Γb
0)p(xλ)‖

6 ‖λR(λ,Γb
0)̟‖

+‖λR(λ,Γb
0)‖‖p(xλ)−̟‖

6 ‖λR(λ,Γb
0)̟‖+ ‖p(xλ)−̟‖

→ 0 as λ → 0+.

Hence, (1) is approximately controllable. �

4. Example

Consider a control system governed by the follow-
ing partial differential equation :

∂

∂t
[x(t, z)− xzz(t, z)] + [a(t, z) +

∂2

∂z2
]x(t, z)

= µ(t, z) + sinx(t, z),

z ∈ (0, π), t ∈ (0, 1];

x(t, 0) = x(t, π) = 0, t ∈ [0, 1];

x(0, z) +
et

c(1 + et)
cosx(t, z) = x0(z),

z ∈ (0, π); (19)

where X = U = L2([0, 1] × [0, π],R), x0(z) ∈
D(E), a(t, z) ∈ C1([0, π] × [0, 1],R), J = [0, 1],
i.e. b = 1, and c is positive constant. Define

A(t)x(t, z) = [a(t, z) +
∂2

∂z2
]x(t, z),

Ex = x− xzz, (20)

where D(A(t)), D(E) is given by H2(0, π) ∩
H1

0 (0, π). Therefore, −A(t) generates a com-
pact evolution system of bounded linear operators
W (t, s) on X and is given by (see [19])
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W (t, s)x = T (t− s)e
∫ t

s
a(τ)dτx, x ∈ D(A(t)).

(21)

Here

T (t)x =
∞
∑

n=1

e−n2t < x, en > en,

with en(z) =
√

2
π
sin(nz), 0 6 z 6 π, n =

1, 2, . . . .

The operator E can be written as following (see
[5])

Ex =
∞
∑

n=1

(1 + n2) < x, en > en, x ∈ D(E). (22)

Furthermore for x ∈ X, we have

E
−1x =

∞
∑

n=1

1

1 + n2
< x, en > en, (23)

which is compact. So, the operator −A(t)E−1

generates a compact evolution system of bounded
linear operators that is given as

S(t, s)x = U(t− s)e
∫ t

s
a(τ)dτx, (24)

where

U(t)x =
∞
∑

n=1

e
−n2

1+n2 t < x, en > en.

Hence assumptions (H1), (H4) hold. By putting
x(t) = x(t, ·) which means x(t)(z) = x(t, z), t ∈
[0, 1], z ∈ [0, π] and u(t) = µ(t, ·) is continuous.
Let the bounded linear operator B : U → X is
defined as Bu(t)(z) = µ(t, z). Further

F(t, x(t))(z) = sinx(t, z),

G(x) =
et

c(1 + et)
cosx.

So, the system (19) can be formulated into the
abstract form of (1). Note that EG(x) =

2et

c(1+et) cosx. Observe that the functions F ,G

satisfies the assumptions (H2), (H3), and also
F ,EG are uniformly bounded. Now it is needed
to check the approximately controllability of the
associated linear system, for this we show that

B
∗V∗(b, s)x = 0, s ∈ [0, b) ⇒ x = 0, (25)

where V(t, s) = E
−1S(t, s). Notice that S and

E
−1 are self adjoint. Indeed,

B
∗V∗(b, s)x = V∗(b, s)x = S∗(b, s)(E−1)∗x

= S(b, s)E−1x

= e
∫ b

s
a(τ)dτ

∞
∑

n=1

e
−n2

1+n2 (b−s)

< E
−1x, en > en

= e
∫ b

s
a(τ)dτ

∞
∑

n=1

1

1 + n2
e

−n2

1+n2 (b−s)

< x, en > en. (26)

This implies that the condition (25) holds, and
hence the assumption (H5). Thus by Theorem 5,
the system (19) is approximately controllable on
J.

5. Conclusion

In this work, we have obtained that the mild so-
lutions for non-autonomous Sobolev differential
equations with nonlocal condition exist mainly by
the help of evolution system of bounded linear op-
erators and Krasnoselskii fixed point technique.
Also we have determined the sufficient conditions
for approximate controllability by using the con-
trollability of corresponding linear system. The
results developed in this article can be extended
to the study of existence of mild solutions and ap-
proximate controllability for neutral and impulsive
differential systems. Moreover the obtained re-
sults also can be generalized for fractional Sobolev,
neutral and impulsive differential systems.
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