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1. Introduction

In 1940, Ulam [1] raised the following stability
problem of functional equations: Assume one has
a function f(t) which is very close to solve an
equation. Is there an exact solution h(t) which
is relatively close to f(t)? More precisely, Ulam
raised the question: Given a group G1 and a
metric group (G2, ρ). Given ε > 0, does there
exist a δ > 0 such that if f : G1 → G2 sat-
isfies ρ (f(xy), f(x)f(y)) < δ for all x, y ∈ G1,
then a homomorphism h : G1 → G2 exists with
ρ (f(x), h(x)) < kε for all x ∈ G1 and some
k > 0? If the answer is affirmative, the equa-
tion h(xy) = h(x)h(y) is called stable in the sense
of Ulam. One year later, Hyers [2] gave an answer
to this problem for linear functional equations on
Banach spaces: Let G1, G2 be real Banach spaces
and ε > 0. Then, for each mapping f : G1 → G2

satisfying ‖f(x+ y)− f(x)− f(y)‖ ≤ ε for all
x, y ∈ G1, there exists a unique additive mapping
g : G1 → G2 such that ‖f(x)− h(x)‖ ≤ ε holds
for all x ∈ G1. The above result of Hyers [2] was
extended by Aoki [3] and Bourgin [4]. In 1978,

Rassias [5] provided a remarkable generalization,
which known as Hyers-Ulam-Rassias stability to-
day, by considering the constant ε as a variable in
Ulam’s problem (see for example [3, 6–8]). After
Hyers’ answer, a new concept of stability for func-
tional equations established, called today Hyers-
Ulam stability, and is one of the central topics in
mathematical analysis (see for example [9–12]).

The first result on Hyers-Ulam stability of dif-
ferential equations was given by Obloza [13, 14].
Thereafter, in 1998, Alsina and Ger [15] inves-
tigated the Hyers-Ulam stability for the linear
differential equation y′ = y. They proved that if
a differentiable function y : I → R satisfies

∣

∣y′ (t)− y (t)
∣

∣ ≤ ε

for all t ∈ I, then there exists a differentiable
function f : I → R satisfying f ′ (t) = f (t) for
any t ∈ I such that

|y (t)− f (t)| ≤ 3ε
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for all t ∈ I. Here, I is an open interval and ε > 0.

Furthermore, Miura et al. [16], Miura [17] and
Takahasi et al. [18] generalized the above result
of Alsina and Ger [15]. Indeed, they proved the
Hyers-Ulam stability of the dynamic equation
y′ = λy.

In 2004, Jung [19] obtained a similar result for the
differential equation ϕ (t) y = y. More later, the
result of the Hyers-Ulam stability for first-order
linear differential equations has been generalized
by Miura et al. [20], Takahasi et al. [21] and
Jung [22]. They studied the nonhomogeneous lin-
ear differential equation of first-order

y′ + p (t) y + q (t) = 0. (1)

In 2006, Jung [22] proved the Hyers-Ulam-Rassias
stability of Eq. (1). Also, Jung [23] studied the
generalized Hyers-Ulam stability of the differen-
tial equation of the form

ty′ (t) + αy (t) + βtrx0 = 0.

In 2008, Wang et al. [24] studied the first-order
nonhomogeneous linear differential equation

p (t) y′ − q (t) y − r (t) = 0. (2)

Using the method of the integral factor, they
proved the Hyers-Ulam stability of Eq. (2) and
extend the existing results. In 2008, Jung and
Rassias [25] generalized the Hyers-Ulam stability
of the Riccati equation of the form

y′ + g (t) y + h (t) y2 = k (t)

under the some additional conditions. In 2009
and 2010, Rus [26, 27] gave four types of Ulam
stability: Ulam-Hyers stability, generalized Ulam-
Hyers stability, Ulam-Hyers-Rassias stability and
generalized Ulam-Hyers-Rassias stability for the
ordinary differential equations

y′ = f (t, y (t)) (3)

and

y′ (t) = p (t) + f (t, y (t)) ,

respectively. Also, in 2010, by using the fixed
point method and adopting the idea used in

Cãdariu and Radu [9], Jung [28] proved the
Hyers-Ulam sability for Eq. (3) defined on a fi-
nite and closed interval, and he also investigated
the Hyers-Ulam-Rassias for Eq. (3). In 2013,
Li and Wang [29] obtained Hyers-Ulm-Rassias
and Ulam-Hyers stability results for the following
semilinear differential equations with impulses on
a compact interval:

y′ (t) = λy (t) + f (t, y (t)) .

In 2014, Qarawani [30] established the stability of
linear and nonlinear differential equations of first-
order in the sense of Hyers-Ulam-Rassia. Also, he
investigated stability and asymptotic stability in
the sense of Hyers-Ulam-Rassias for a Bernoulli’s
differential equation. Same year, Alqifiary [31]
gave a necessary and sufficient condition in order
that the first order linear system of differential
equations

y′ (t) +A (t) y (t) +B (t) = 0

has the Hyers-Ulam-Rassias stability and find
Hyers-Ulam stability constant under those condi-
tions. In 2017, Onitsuka and Shoji [32] studied
the Hyers-Ulam stability of the first-order linear
differential equation

y′ − ay = 0, (4)

where a is a nonzero reel number. They find
an explicit solution y (t) of Eq. (4) satisfying
|φ (t)− y (t)| ≤ ε/ |a| for all t ∈ R under the as-
sumption that a differential function φ (t) satisfies
|φ′ (t)− aφ (t)| ≤ ε for all t ∈ R.

Serious studies on the stability problem of differ-
ential equations have been started since 2000s.
Stability has been investigated for the differ-
ent classes of differential equations with differ-
ent approaches. For example, delay differential
equations are a special type of ordinary differen-
tial equations. To our knowledge, in 2010, the
first mathematicians who investigated the stabil-
ity of delay differential equations are Jung and
J.Brzdek [33]. Motivated by the above mentioned
outcomes on Hyers-Ulam stability, they investi-
gated the Hyers-Ulam stability of y′(t) = λy(t−τ)
for [−τ,∞) with an initial condition, where λ > 0
and τ > 0 are real constants. Thereafter, Otrocol
and Ilea [34] investigated Ulam-Hyers stability
and generalized Ulam-Hyers-Rassias for the fol-
lowing functional differential equation

y′ (t) = f (t, y (t) , y (g (t))) .
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In 2015, by using the fixed point method, Tunç
and Biçer [35] proved two new results on the
Hyers-Ulam-Rassias and the Hyers-Ulam stabil-
ity for the first-order delay differential equation

y′(t) = F (t, y(t), y(t− τ)).

Recently, in the last two decades, the theory time
scale and related dynamic equations have been
systematically studied. To our knowledge, only
in 2013, András and Mészáros [36] studied the
Ulam-Hyers stability of some linear and nonlin-
ear dynamic equations and integral equations on
time scales. They used both direct and opera-
tional methods. In 2013, Shen [37] established
the Ulam stability of the first-order linear dy-
namic equation

y∆ = p (t) y + f (t)

and its adjoint equation

x∆ = −p (t)xσ + f (t)

on a finite interval in the time scale by using the
integrating factor method. Same year, by using
the idea of time scale Zada et al. [38] studied
a relationship between the Hyers-Ulam stability
and dichotomy of the first-order linear dynamic
system

x∆ = Gx (t) .

In the last decade, there has been a significant
development in the theory of fractional differen-
tial equations. We refer to the papers [39–43] for
qualitative study of fractional equations, includ-
ing stability theory.

2. Preliminaries

As it is outlined in Introduction section, stabil-
ity problem of differential equations in the sense
of Hyers-Ulam was initiated by the papers of
Obloza [13,14]. Later Alsina and Ger [15] proved
that, with assuming I is an open interval of re-
als, every differentiable mapping y : I → R

satisfying |y′(x)− y(x)| ≤ ε for all x ∈ I and
for a given ε > 0, there exists a solution y0 of
the differential equation y′(x) = y(x) such that
|y(x)− y0(x)| ≤ 3ε for all x ∈ I. This result
was later extended by Takahasi, Miura and Miya-
jima [18] to the equation y′(x) = λy(x) in Banach
spaces, and [20, 44] to higher order linear differ-
ential equations with constant coefficients.

Recently Jung [28] proved Hyers-Ulam stability as
well as Hyers-Ulam-Rassias stability of the equa-
tion

y′ = f(t, y)

which extends the above mentioned results to
nonlinear differential equations. Jung also shoved
that some of his results are valid also on un-
bounded intervals. Jung’s technique has been
modified also for functional equations in the form

y′(t) = F (t, y(t), y(t− τ)) (5)

by Tun and Bier [35]. They obtained the following
significant result for delay differential equations.

Theorem 1. Let I0 := [t0 − τ, T ] for given real
numbers t0, T and τ with T > t0. Suppose that
the continous function F : I0 × R× R → R satis-
fies the Lipschitz condition

|F (t, x1, y1) F (t, x2, y2)| ≤ L1 |x1 − x2|

+ L2 |y1 − y2|

for all (t, x1, y1), (t, x2, y2) ∈ I0×R×R and some
L1, L2 > 0. Suppose also that Ψ : [t0 − τ, t0] → R

is a continuous function. Let ϕ : I0 → R be a
continuous and nondecreasing function satisfying

∣

∣

∣

∣

∫

t

t0

ϕ(s)s.

∣

∣

∣

∣

≤ Kϕ(t) (6)

for all t ∈ I0 and some K > 0 satisfying
0 < K (L1 + L2) < 1. If a continuous func-
tion y : I0 → R satisfies

{

|y′(t)− F (t, y(t), y(t− τ))| < ϕ(t), t ∈ [t0, T ],
|y(t)−Ψ(t)| < ϕ(t), t ∈ [t0 − τ, t0],

then there exists a unique continuous function
y0 : I0 → R satisfying Eq.

{

y′0(t) = F (t, y0(t), y0(t− τ)) , t ∈ [t0, T ],
y0(t) = Ψ(t), t ∈ [t0 − τ, t0]

and

|y(t)− y0(t)| ≤
K

1−K(L1 + L2)
ϕ(t)

for all t ∈ I0 and any number L with L > L1+L2.

In this paper, we will extend and improve these
result by proving the stability results for delay dif-
ferential equations for unbounded intervals. To
achive stability results on unbounded intervals,
we will use the inspiring techniques used in the
above mentioned papers [7] and [35].
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3. Main result

Before stating our main result, let us define the
Ulam-Hyers-Rassias stability precisely for the dif-
ferential equation (5).

For some ε ≥ 0, Ψ ∈ C[t0 − τ, t0] and t0, T ∈ R

with T > t0, assume that for any continous func-
tion f : [t0 − τ, T ] → R satisfying

{

|f ′(t)− F (t, f(t), f(t− τ))| < ε, t ∈ [t0, T ],
|f(t)−Ψ(t)| < ε, t ∈ [t0 − τ, t0].

If there exists a continuous function f0 : [t0 −
τ, T ] → R satisfying

{

f ′

0(t) = F (t, f0(t), f0(t− τ)) , t ∈ [t0, T ],
f0(t) = Ψ(t), t ∈ [t0 − τ, t0]

and

|f(t)− f0(t)| < K(ε), t ∈ [t0 − τ, T ],

where K(ε) is an expression of ε only, we say
that Eq. (5) has the Hyers-Ulam stability. If the
above statement is also true when we replace ε
and K(ε) by ϕ and Φ, where ϕ,Φ ∈ C[t0 − τ, T ]
are functions not depending f and f0 explicitly,
then we say that Eq. (5) has the Hyers-Ulam-
Rassias stability. These definitons may be ap-
plied to different classes of differential equations,
we refer to Jung [28], Tun and Bier [35] and ref-
erences cited therein for more detailed definitions
of Hyers-Ulam stability and Hyers-Ulam-Rassias
stability.

Our main result concerning the Ulam-Hyers-
Rassias stability of delay differential equations on
unbounded intervals reads as follows.

Theorem 2. For a given real number t0, let
I := [t0 − τ,∞). Let K, L1 and L2 be positive
constants with 0 < K (L1 + L2) < 1. Assume
that F : I × R× R → R is a continuous function
which satisfies the Lipschitz condition (6) for all
(t, x1, y1), (t, x2, y2) ∈ I×R×R. If a continuously
differentiable function y : I → R satisfies,

{

|y′(t)− F (t, y(t), y(t− τ))| < ϕ(t), t ∈ [t0,∞),
|y(t)−Ψ(t)| < ϕ(t), t ∈ [t0 − τ, t0],

(7)

where ϕ : I → (0,∞) is a continuous function sat-
isfying the condition (6) for all t ∈ I, then there
exists a unique continuous function y0 : I → R

which satisfies

{

y′0(t) = F (t, y0(t), y0(t− τ)) , t ∈ [t0,∞),
y0(t) = Ψ(t), t ∈ [t0 − τ, t0]

(8)

and

|y(t)− y0(t)| ≤
K

1−K(L1 + L2)
ϕ(t) (9)

for all t ∈ I.

Proof. For any n ∈ N, define the sets In :=
[t0, t0 + n]. Then according to Theorem 1, for
each n, there exists a unique continuous function
yn : In → R such that

yn(t) = y(t0) +

∫

t

t0

F (s, yn(s), yn(s− τ)) s. (10)

and

|y(t)− yn(t)| ≤
K

1−K(L1 + L2)
ϕ(t) (11)

for all t ∈ In. Keep in mind that y(t) = y0(t) =
Ψ(t) for t ∈ [t0 − τ, t0]. If t ∈ In, uniqueness of
the functions yn implies that

yn(t) = yn+1(t) = yn+2(t) = · · · . (12)

Now, for any t ∈ R, define the number n(t) ∈ N

as
n(t) := min {n ∈ N : t ∈ In} .

Moreover, we define the function y0 : R → R with

y0(t) = yn(t)(t) (13)

and we claim that y0 is continuous. To prove
this, for arbitrary t1 ∈ R, we choose the inte-
ger n1 := n(t1). Then n1 belongs to interior
of In+1 and there exists an ε > 0 such that
y0(t) = yn+1(t) for all t ∈ (t1 − ε, t1 + ε). Since
yn+1 is continuous at t1, so is y0. That is, y0 is
continuous at t1 for any t1 ∈ R.

Now, for arbitrary t ∈ I, we choose the number
n(t). Then, we have t ∈ In(t) and it follows from
(10) and (13) that

y0(t) = yn(t)(t)

= y(t0) +

∫

t

t0

F
(

s, yn(t)(s), yn(t)(s− τ)
)

s.

= y(t0) +

∫

t

t0

F (s, y0(s), y0(s− τ)) s..(14)

Here, the last equality is valid because n(s) ≤ n(t)
for any s ∈ In(t) and it follows from (12) and (13)
that

yn(t)(t)(s) = yn(s)(s) = y0(s).
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The equality (14) implies that the function y0 sat-
isfies the equations (8).

Now we will show that the function y0 satisfies
the inequality (9). Since t ∈ In(t) for all t ∈ I,
from (11) and (13), we have

|y(t)− y0(t)| =
∣

∣y(t)− yn(t)(t)
∣

∣

≤
K

1−K(L1 + L2)
ϕ(t)

for all t ∈ In.

Finally, we will now show that the function y0 is
unique. Let u0 : I → R be another continuous
function satisfies (8) and (9), with u0 in place of
y0, for all t ∈ I. For arbitrary t ∈ I, the restric-
tions y0|In(t)

(

= yn(t)
)

and u0|In(t)
both satisfy (8)

and (9) for all t ∈ In(t). Then, it follows from the
uniqueness of yn(t) = y0|In(t)

that

y0(t) = y0|In(t)
= u0|In(t)

= u0(t),

which completes the proof. �

4. Example

Example 1. For any λ1, λ2 > 0, consider the
following delay differential equation

y′(t) + λ1y(t) + λ2y(t− τ) = q(t) (15)

on the interval I := [t0 − τ,∞], where t0 and τ
are arbitrary real numbers. Since

F (t, y(t), y(t− τ)) = y(t) + y(t− τ)− q(t),

we have

|F (t, x1, y1) − F (t, x2, y2)|

= |λ1x1 + λ2y1 − q(t)

−λ1x2 − λ2y2 + q(t)|

= |λ1 (x1 − x2) + λ2 (y1 − y2)|

≤ λ1 |x1 − x2|+ λ2 |y1 − y2|

for all t ∈ I. So all the conditions of Theorem 2
are satisfied and we obtain stability of the differ-
ential equation (15) in the sense of Hyers-Ulam.

Now, if we define the function ϕ(t) := eλt

(K > 0), we have

∣

∣

∣

∣

∫

t

t0

ϕ(t)s.

∣

∣

∣

∣

=

∫

t

0
eλts.

=
1

λ

(

eλt − 1
)

≤
1

λ
eλt

=
1

λ
ϕ(t)

for all t ∈ I. Then, according to Theorem 2, the
equation (1) is stable in the sense of Hyers-Ulam-
Rassias.

It should be remarked that Theorem 2 guarantees
the stability of (15) for any T ≤ ∞, while the re-
sult of Tun and Bier [35] can guarantee stability
in only a bounded subset of I. In this example,
their result works only for T < ∞.
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