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An ordinary differential equation (ODE) can be split into simpler sub equations
and each of the sub equations is solved subsequently by a numerical method.
Such a procedure involves splitting error and numerical error caused by the
time stepping methods applied to sub equations. The aim of the paper is
to present an integral formula for the global error expansion of a splitting
procedure combined with any numerical ODE solver.
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1. Introduction

Consider an autonomous ODE system in a real
Banach space

du

dt
= (A+ B)u, u(0) = u0, (1)

where A and B are Lie operators allowing us to
write the formal solution as

u(t) = ϕA+B
t u0 = et(A+B)u0

=
∞
∑

k=0

tk

k!
(A+ B)ku0, (2)

The solutions of sub equations

du

dt
= Au and

du

dt
= Bu, (3)

can be merged within a small time step h by

un+1 = ehb1Beha1Aehb2B . . . ehamAehbm+1Bun,

or equivalently,

un+1 = (ϕB

hbm+1
◦ ϕA

ham
◦ . . . ϕB

hb2
◦ ϕA

ha1
◦ ϕB

hb1
)un,

where un and un+1 are approximations at t = tn
and t = tn+1 with h = tn+1 − tn. The reverse
orders of A and B as well as ai and bi should be
noticed. This happens when one applies Lie trans-
forms to their corresponding maps. This phenom-
ena is termed as Vertauschungssatz in the litera-
ture [1]. One of the sub problems in (3) (or both)
can be solved numerically. When a splitting pro-
cedure and a numerical solver are of pth and rth

order respectively, we are interested in the inte-
gral form of the leading term of the global error.

Although it is very classical subject of numeri-
cal analysis, the global error analysis of the nu-
merical solvers for ODEs has been discussed by
Viswanath [2] and Iserles [3] in different aspects.
Viswanath employed Lyapunov’s exponents to ex-
press error patterns of numerical solvers for hy-
perbolic problems. However, Iserles presented a
way of deriving an asymptotic formula for the
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global error in the numerical solution of highly
oscillatory problems.

Error bound for splitting schemes is an active
research area. The splitting of bounded opera-
tors was analyzed in [1, 4]. Jahnke and Lubich
[5] found error bounds for the Strang splitting
in the presence of unbounded operators, which
corresponds to splitting a time dependent PDE
without discretization of space operators. Hansen
and Ostermann [6] also presented error analysis
of splitting schemes for unbounded operators in
the content of semigroup theory. Apart from the
above mentioned approaches, Csomos and Farago
[7] discussed the interaction of the error caused
by numerical methods employed for sub problems
and splitting schemes. Our main task is to give
clear integral representation of this interaction. In
this work, we propose to approximate the global
error in terms of the local errors and the discrete
flow by a Riemann integral.

2. Preliminaries

We would like to explain some of notations which
will be used in the later sections. Consider the
initial value problem

y′ = f(t,y), y(t0) = y0, (4)

where y0 ∈ R
m and f : R+×R

m → R
m is contin-

uous. When a small perturbation is introduced
to the initial value y0, for the perturbed solution
ỹ(t), the error e(t) = y(t)−ỹ(t), evolves with [3,8]

e(t) = Ψ(t)Ψ−1(c)e(c) +O(e(c)2), t > c > 0, (5)

where Ψ(t) satisfies the variational equation

Ψ′(t) = J(t)Ψ(t), Ψ(0) = I, (6)

where J(t) =
∂f

∂y
. In order to use exponentials

in defining flows we firstly express (4) an au-
tonomous system as

dt1
dt

= 1, (7)

dy

dt
= f(t1,y), (8)

and then define a Lie operator as follows

L =
∂

∂t1
+ f(t1,y)

∂

∂y
, (9)

which enables us to express (4) as

du

dt
= Lu, u(0) = u0, (10)

where u = (t1, y)
T and the formal solution is

u(t) = ϕL
t (u0) = etLu0.

3. Motivation

The local error (le) of a numerical method un+1 =
R∆t(un) with step size ∆t for the initial value
problem

du

dt
= Lu, u(ti) = ui, (11)

is given by

∆tr+1
le(un) = R∆t(un)− ϕL

∆t(un) +O(∆tr+2).
(12)

The global error is defined as

en+1 = un+1 − u(tn+1),

= R∆t(un)− ϕL
∆t(u(tn)).

Therefore

en+1 =∆tr+1
le(un) + ϕL

∆t(un)− ϕL
∆t(u(tn))

+O(∆tr+2). (13)

The difference ϕL
∆t(un) − ϕL

∆t(u(tn)) can be in-
terpreted as the time evolution of a small per-
turbation to initial condition u(tn) within a time
interval of which length is ∆t. As a result of this
interpretation and considering (5), one obtains

ϕL
∆t(un)− ϕL

∆t(u(tn)) =Ψ(tn+1)Ψ
−1(tn)en

+O(‖e2n‖), (14)

where Ψ(t) is the solution of variational equation
of the corresponding initial value problem. There-
fore the first order difference equation for global
error is given by

en+1 =enΨ(tn+1)Ψ
−1(tn) + ∆tr+1

le(u(tn))

+O(∆tr+2). (15)
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A careful reader notices that u(tn) is substituted
in the term le instead of un. It might be as-
sumed that the difference is included in the term
O(∆tr+2) as Iserles pointed out in [3].

Assuming ei = 0, the solution of the linear differ-
ence equation is

en =∆tr+1Ψ(tn)

f−1
∑

k=i

Ψ−1(tk+1)(le(u(tk))

+O(∆tr+2)). (16)

For tf − ti = h = m∆t, the error can be written
in the integral form

e(tf ) =∆trΨ(tf )

∫ tf

ti

Ψ−1(τ +∆t)le(u(τ))dτ

+O(∆tr+1).

As an example, we derive the global error of Euler
method for the linear problem

du

dt
= −

1

t+ 1
u(t), u(ti) = ui. (17)

We will find an estimation for the actual error at
tf = ti + h with time step ∆t = h

m
. It is known

that local error coefficient for Euler method (in
terms of Lie Operator)

le(u(t)) = −1/2L2(u(t)) = −
u(t)

(t+ 1)2
. (18)

The variational flow is determined by solving

dΨ

dt
= J(t)Ψ, Ψ(ti) = 1, (19)

where J(t) = −
1

t+ 1
. Therefore,

e(tf ) =∆tΨ(tf )

∫ tf

ti

Ψ(τ +∆t)−1
le(u(t))dτ

+O(∆t2), (20)

e(tf ) =∆t
ti + 1

tf + 1

∫ tf

ti

τ + 1 +∆t

ti + 1

(

−u(τ)

(τ + 1)2

)

dτ

+O(∆t2), (21)

where u(τ) = ui
ti + 1

τ + 1
. Finally, one obtains the

formula

e(tf ) ≈ui∆t

(

1 + ti
1 + tf

)(

− 1/2
(∆t + 2 + 2 ti)

(1 + ti)
2

+ 1/2
(∆t + 2 + 2 tf )

(1 + tf )
2

)

, (22)

that predicts the global error at t = tf in terms
of initial value ui at t = ti and step size ∆t.

4. Global error of Lie Trotter Splitting

In this section, the above mentioned procedure is
modified to obtain the global error expansion of
any splitting procedure combined with any ODE
solver. For clarity, the derivation of the formulas
are given for Lie-Trotter that is widely used in the
literature. The extension to the higher splitting
schemes can be done in a similar way. Another
simplification is that one part is assumed to be
solved exactly and the other part is solved nu-
merically.

Consider the scheme

un+1 = [RA
∆t]

(m)(ϕB
h (un)), (23)

indicating that the sub equation u′ = Bu is
solved exactly in [tn, tn+1] and the sub equation
u′ = Au is solved by rth order numerical method
RA

∆t (r > 1)in [tn, tn+1] with step size ∆t = h
m

(m step in each sub interval). Such a procedure
involves the following two local errors

∆trleR(ϕ
B
h (un)) =[RA

∆t]
(m)(ϕB

h (un))− ϕA+B
h (un)

+O(∆tr+1),

h2leS(un) =ϕA
h ◦ ϕB

h (un)− ϕA+B
h (un)

+O(h3), (24)

where leS(un) = 1
2 [B,A] is the coefficient of the

leading term of the local splitting error (Lie Trot-
ter in this case). leR(ϕ

B
h (un)) should be consid-

ered as the global error of RA
∆t at tf = tn+1 start-

ing from ti = tn with step size ∆t. This kind of
global error terms of ODE solvers can be com-
puted by method described in the motivation sec-
tion. (See 20 in case of Euler method). The term
leR(ϕ

B
h (un)) also warns us to compute the error

of the method RA
∆t at the point ϕ

B
h (un) not at the

point un. This is the key issue in the derivation
error formulas for the splitting schemes.

Consider the partition 0 = t0 < t1 < t2 < ... < T
of the interval [0, T ]. The global error is defined
by
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en+1 = un+1 − u(tn+1)

= [RA
∆t]

(m) ◦ ϕB
h (un)− ϕ

(A+B)
h (u(tn)).

Adding and subtracting the terms (ϕA
h ◦ ϕB

h )(un)

and ϕ
(A+B)
h (un) yields

en+1 =[RA
∆t]

(m) ◦ ϕB
h (un)− (ϕA

h ◦ ϕB
h )(un)

+ (ϕA
h ◦ ϕB

h )(un)− ϕ
(A+B)
h (un)

+ ϕ
(A+B)
h (un)− ϕ

(A+B)
h (u(tn)).

Grouping the terms two by two and considering
(24) and (14) one can write

en+1 =∆trleR(ϕ
B
h (un)) + h2leS(un)

+ enΨ(tn+1)Ψ
−1(tn) +O(h3) +O(∆tr+1),

(25)

where Ψ is the solution of variational equation
that corresponds to the full equation (1).

After approximating the solution of this difference
equation as a Riemann integral, the global error
in the integral form is computed by

e(T ) =hΨ(T )

∫ T

0
Ψ−1(t+ h){

∆tr

h
leR

(

ϕB
h (u(t))

)

+
1

2
[B,A]}dt+O(h2) +O(∆tr+1h−1).

(26)

5. Numerical Example

In this section, we will show the sharpness of the
estimation of the global errors given by (26). As
a test equation we choose

du

dt
= −

u(t)

t+ 1
− u2(t), u(0) = 1, (27)

with exact solution

u(t) =
1

(ln(t+ 1) + 1)(t+ 1)
,

The sub equations

du

dt
= −

u(t)

t+ 1
, u(0) = u0,

and

du

dt
= −u2(t), u(0) = u0,

have the exact solutions uA(t) =
u0

t+ 1
and

uB(t) =
u0

1 + tu0
, respectively. One also needs

the variational flows of the equations (27) which
can be given as

Ψfull(t) =
1

(ln(t+ 1) + 1)2(t+ 1)
. (28)

When the part A is solved by first order Euler
method with step size ∆t = h

m
in [tn, tn+1] and

part B proceeds in time by its exact flow, the nu-
merical scheme is written as

un+1 = [RA
∆t]

(m) ◦ ϕB
h (un). (29)

Firstly the term leR

(

ϕB
h (u(t))

)

that is, the global
error of Euler time stepping at t + h starting
from t with initial condition ϕB

h (u(t)) is needed.
Luckily, the desired error formula, but with ini-
tial condition ui, has been already derived in
(22). Just only taking ti = t, tf = t + h and

ui = ϕB
h (u(t)) =

u(t)

1 + hu(t)
, one should see

∆tleR(ϕ
B
h (u(t))) = [RA

∆t]
(m)(ϕB

h (u(t)))

−(ϕA
h ◦ ϕB

h )(u(t)),

= u(t)(1+t)
2(1+hu(t))(1+t+h)

(

(∆t+2+2 τ)

−(1+t)2
+ (∆t+2+2 t+h)

(1+t+h)2

)

.

On the other hand, the leading coefficient of Lie
Trotter splitting for (27) is found to be

les(u(t)) =
1

2
[B,A]u(t) = −

1

2

u(t)2

t+ 1
. (30)

Finally, computing the integral (26) yields the es-
timation

e(T ) ≈hΨfull(T )

∫ T

0
Ψ−1

full(τ + h)

{

1

m
leR(ϕ

B
h (u(τ))) + leS(u(τ))

}

dτ. (31)

Table I presents the sharpness of the estimation
(31) for various ∆t and h at final T = 20.

Table 1. Comparison of actual er-
rors and estimated errors of Lie Trot-
ter at T = 20.

h = 0.1 h = 0.1 h = 0.01 h = 0.01
∆t=0.01 ∆t=0.001 ∆t=0.001 ∆t=0.0001

Actual error -1.909e-4 -1.445e-4 -1.899e-5 -1.438e-5
Estimated error -1.621e-4 -1.575e-4 -1.409e-5 -1.404e-5



40 M. Seydaoğlu / IJOCTA, Vol.9, No.1, pp.36-40 (2019)

6. Remarks and Conclusion

Splitting methods are becoming more and more
popular among practitioners of numerical meth-
ods for differential equations. These methods pro-
vide separate treatments of simpler sub equations
comparing to whole problem. However, the inter-
action of the errors caused by splitting procedure
and time stepping methods applied to sub prob-
lems should be considered because the interaction
might lead to order reduction in the long time run.
Such a derived formula enables us to estimate er-
ror behavior of a method so that suitable solvers
are employed. We choose a simple test problem
to give a clear description of the integral formula.
However in most of the applied problems, exact
flows of full equation and sub equations are not
available. In this case, derived formulas can be
used to obtain reasonable error bounds by tak-
ing appropriate norms of the given expressions.
However, in case of long time integration, asymp-
totic solutions and asymptotics expansions of the
corresponding integrals that can be computed by
some perturbation methods such as WKB give the
long time error behaviors of the numerical meth-
ods. Indeed, the presented formulas are derived
in search of suitable splitting algorithms for the
long time integration of highly oscillatory non lin-
ear equations.
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