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1. Introduction

The Hermite-Hadamard inequality, which is the
first fundamental result for convex mappings with
a natural geometrical interpretation and many ap-
plications, has drawn attention much interest in
elementary mathematics.

The inequalities discovered by C. Hermite and J.
Hadamard for convex functions are considerable
significant in the literature (see, e.g., [17, p.137],
[2]). These inequalities state that if f : I → R is a
convex function on the interval I of real numbers
and a, b ∈ I with a < b, then

f

(

a+ b

2

)

≤
1

b− a

b
∫

a

f(x)dx (1)

≤
f (a) + f (b)

2
.

Both inequalities hold in the reversed direction if
f is concave.

In [6], Fejér obtained the following inequality
which is the weighted generalization of Hermite-
Hadamard inequality (1):

Let f : [a, b] → R be convex function. Then the
inequality

f

(

a+ b

2

)

b
∫

a

g(x) ≤

b
∫

a

f(x)g(x)dx

≤
f (a) + f (b)

2

b
∫

a

g(x)dx

holds, where g : [a, b] → R is nonnegative, inte-
grable and symmetric to (a+ b)/2.

A number of mathematicians have devoted their
efforts to generalise, refine, counterpart and ex-
tend these two inequalities for different classes
of functions, (see, for example, [1]- [5], [8]- [11],
[13], [14], [16], [19]- [26]) and the references cited
therein.

The remainder of this work is organized
as follows: we first give the definitions
of Riemann-Liouville fractional integrals and
present some Hermite-Hadamard type inequali-
ties for Riemann-Liouville fractional integral op-
erators in Section 2. In the main section, we
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first establish a new weighted version of Hermite-
Hadamard inequality for Riemann-Liouville frac-
tional integrals. Moreover, we obtain some refine-
ments of this result using the symmetric weighted
function. We give also some special cases of these
inequalities. In the last section, we give some con-
clusions and future directions of research.

2. Preliminaries

In the following we will give some necessary def-
initions and mathematical preliminaries of frac-
tional calculus theory which are used further in
this paper.

Definition 1. Let f ∈ L1[a, b]. The Riemann-
Liouville integrals Jα

a+f and Jα

b−
f of order α > 0

with a ≥ 0 are defined by

Jα

a+f(x) =
1

Γ(α)

∫

x

a

(x− t)α−1 f(t)dt, x > a

and

Jα

b−f(x) =
1

Γ(α)

∫

b

x

(t− x)α−1 f(t)dt, x < b

respectively. Here, Γ(α) is the Gamma function
and J0

a+f(x) = J0
b−
f(x) = f(x).

It is remarkable that Sarikaya et al. [20] first
give the following interesting integral inequalities
of Hermite-Hadamard type involving Riemann-
Liouville fractional integrals.

Theorem 1. Let f : [a, b] → R be a positive func-
tion with 0 ≤ a < b and f ∈ L1 [a, b] . If f is a
convex function on [a, b], then the following in-
equalities for fractional integrals hold:

f

(

a+ b

2

)

≤
Γ(α+ 1)

2 (b− a)α
[

Jα

a+f(b) + Jα

b−f(a)
]

(2)

≤
f (a) + f (b)

2

with α > 0.

Hermite-Hadamard-Fejér inequality for Riemann-
Liouville fractional integral operators was given
by İşcan in [11], as follows:

Let f : [a, b] → R be convex function with with
a < b and f ∈ L [a, b]. If g : [a, b] → R is non-
negative, integrable and symmetric with respect
to a+b

2 i.e. g(a+ b−x) = g(x), then the following
inequalities hold

f

(

a+ b

2

)

[

Jα

a+(g)(b) + Jα

b−(g)(a)
]

≤
[

Jα

a+(fg)(b) + Jα

b−(fg)(a)
]

≤
f(a) + f(b)

2

[

Jα

a+(g)(b) + Jα

b−(g)(a)
]

.

For more information for fractional calculus,
please refer to ( [7], [12], [15], [18]).

Now we give the following lemma:

Lemma 1. [22,25] Let f : [a, b] → R be a convex
function and h be defined by

h(t) =
1

2

[

f

(

a+ b

2
−

t

2

)

+ f

(

a+ b

2
+

t

2

)]

.

Then h is convex, increasing on [0, b− a] and for
all t ∈ [0, b− a] ,

f

(

a+ b

2

)

≤ h(t) ≤
f(a) + f(b)

2
.

In [22], Xiang obtained following important in-
equalities for the Riemann-Liouville fractional in-
tegrals utilizing the Lemma 1:

Theorem 2. Let f : [a, b] → R be a positive func-
tion with a < b and f ∈ L1 [a, b]. If f is a convex
function on [a, b], then WH is convex and mono-
tonically increasing on [0, 1] and

f

(

a+ b

2

)

= WH(0) ≤ WH(t) ≤ WH(1) (3)

=
Γ (1 + α)

2 (b− a)α
[(Jα

a+
f) (b) + (Jα

b−
f) (a)]

with α > 0 where

WH(t) =
α

2 (b− a)α

b
∫

a

f

(

tx+ (1− t)
a+ b

2

)

×
(

(b− x)α−1 + (x− a)α−1
)

dx.

Theorem 3. Let f : [a, b] → R be a positive func-
tion with a < b and f ∈ L1 [a, b]. If f is a convex
function on [a, b], then WP is convex and mono-
tonically increasing on [0, 1] and
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Γ (1 + α)

2 (b− a)α
[(Jα

a+
f) (b) + (Jα

b−
f) (a)] (4)

= WP (0) ≤ WP (t) ≤ WP (1) =
f(a) + f(b)

2

with α > 0 where

WP (t)

=
α

4 (b− a)α

b
∫

a

[

f

((

1 + t

2

)

a+

(

1− t

2

)

x

)

×

(

(

2b− a− x

2

)α−1

+

(

x− a

2

)α−1
)

+ f

((

1 + t

2

)

b+

(

1− t

2

)

x

)

×

(

(

b− x

2

)α−1

+

(

x+ b− 2a

2

)α−1
)]

dx.

In this study, we establish some refinements
of Hermite-Hadamard type inequalities utilizing
fractional integrals which generalize the inequali-
ties (2), (3) and (4).

3. Refinements of Hermite Hadamard

Type Inequalities

In this section, we will present refinements
of Hermite-Hadamard type inequalities via
Riemann-Liouville fractional integral operators .

The following Lemma will be frequently used to
prove our results.

Lemma 2. [9] Let f : [a, b] → R be con-
vex function with a < b and f ∈ L [a, b] . Let
A,B,C,D ∈ [a, b] with A + B = C + D and
|C −D| ≤ |A−B|. Then,

f(C) + f(D) ≤ f(A) + f(B).

Theorem 4. Let f : [a, b] → R be convex
function with a < b and f ∈ L [a, b] . Let the
weight function w : [a, b] → R be continuous
and symmetric about the point

(

a+b

2 , w
(

a+b

2

))

,

i.e. 1
2 [w(s) + w(a+ b− s)] = w

(

a+b

2

)

. Then, we
have the following inequality

f

(

w

(

a+ b

2

))

(5)

≤
Γ (1 + α)

2 (b− a)α
[Jα

a+
f (w (b)) + Jα

b−
f (w (a))]

and if the function w is monotonic on [a, b] , then
we have

Γ (1 + α)

2 (b− a)α
[Jα

a+
f (w (b)) + Jα

b−
f (w (a))]

≤
f (w (a)) + f (w (b))

2
(6)

with α > 0.

Proof. By the hypothesis of symmetricity of the
function w, we have

2w

(

a+ b

2

)

= w(s) + w(a+ b− s)

and we also have

∣

∣

∣

∣

w

(

a+ b

2

)

− w

(

a+ b

2

)∣

∣

∣

∣

≤ |w(s)− w(a+ b− s)|

for s ∈ [a, b] . Applying Lemma 2, we obtain

2f

(

w

(

a+ b

2

))

(7)

≤ f (w(s)) + f (w(a+ b− s)) .

Multiplying by (s−a)α−1

Γ(α) both sides of (7) and in-

tegrating with respect to s on [a, b], we deduce
that

2 (b− a)α

Γ (1 + α)
f

(

w

(

a+ b

2

))

≤ Jα

a+
f (w (b)) + Jα

b−
f (w (a))

which completes the proof of the inequality (5).

By the monotonicity w, we have

|w(s)− w(a+ b− s)| ≤ |w(a)− w(b)|

for s ∈ [a, b] and by symmetricity of the function
w, we have

w(s) + w(a+ b− s) = w(a) + w(b)

for s ∈ [a, b] . Applying Lemma 2, we get

f (w(s)) + f (w(a+ b− s)) (8)

≤ f (w (a)) + f (w (b)) .
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Multiplying both sides of (8) by (s−a)α−1

Γ(α) and in-

tegrating with respect to s on [a, b] and dividing

both sides by 2(b−a)α

Γ(1+α) , we obtain the desired in-

equality (6). �

Remark 1. If we choose w(t) = t in Theorem 4,
then the inequalities (5) and (6) reduce to left and
right hand sides of the inequality (2), respectively.

Remark 2. If we choose α = 1 in Theorem
4, then Theorem 4 reduces to Theorem 1 proved
in [9].

Theorem 5. Let the weight function w : [a, b] →
R be continuous and symmetric about the point
(

a+b

2 , w
(

a+b

2

))

, i.e. 1
2 [w(s) + w(a+ b− s)] =

w
(

a+b

2

)

. If f : [a, b] → R is a convex function
on [a, b], then WHw is convex and monotonically
increasing on [0, 1] and we have the following in-
equalities

f

(

w

(

a+ b

2

))

(9)

= WHw(0) ≤ WHw(t) ≤ WHw(1)

=
Γ (1 + α)

2 (b− a)α
[Jα

a+
f (w (b)) + Jα

b−
f (w (a))]

with α > 0 where

WHw(t)

=
α

2 (b− a)α

b
∫

a

f

(

tw(x) + (1− t)w

(

a+ b

2

))

×
(

(b− x)α−1 + (x− a)α−1
)

dx.

Proof. Firstly, for t1, t2, β ∈ [0, 1] , we have

WHw((1− β) t1 + βt2)

=
α

2 (b− a)α

b
∫

a

f

((

w(x)− w

(

a+ b

2

))

× [(1− β)t1 + βt2] + w

(

a+ b

2

))

×
[

(b− x)α−1 + (x− a)α−1
]

dx

=
α

2 (b− a)α

b
∫

a

f ((1− β)

×

[(

w(x)− w

(

a+ b

2

))

t1 + w

(

a+ b

2

)]

+β

(

w(x)− w

(

a+ b

2

))

t2 + w

(

a+ b

2

))

×
[

(b− x)α−1 + (x− a)α−1
]

dx.

Since f is convex, we have

WHw((1− β) t1 + βt2)

≤
α (1− β)

2 (b− a)α

×

∫

b

a

f

((

w(x)− w

(

a+ b

2

))

t1 + w

(

a+ b

2

))

×
[

(b− x)α−1 + (x− a)α−1
]

dx

+
αβ

2 (b− a)α

×

∫

b

a

f

((

w(x)− w

(

a+ b

2

))

t2 + w

(

a+ b

2

))

×
[

(b− x)α−1 + (x− a)α−1
]

dx

= (1− β)WHw(t1) + βWHw(t2).

Hence, we get WHw is convex on [0, 1] . On the
other hand, we have

WHw(t)

=
α

2 (b− a)α

a+b

2
∫

a

f

(

tw(x) + (1− t)w

(

a+ b

2

))

×
(

(b− x)α−1 + (x− a)α−1
)

dx

+
α

2 (b− a)α

b
∫

a+b

2

f

(

tw(x) + (1− t)w

(

a+ b

2

))

×
(

(b− x)α−1 + (x− a)α−1
)

dx
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=
α

2 (b− a)α

×

a+b

2
∫

a

f

(

tw(x) + (1− t)w

(

a+ b

2

))

×
(

(b− x)α−1 + (x− a)α−1
)

dx

+
α

2 (b− a)α

×

a+b

2
∫

a

f

(

tw(a+ b− x) + (1− t)w

(

a+ b

2

))

×
(

(b− x)α−1 + (x− a)α−1
)

dx.

(10)

Let t1 < t2, t1, t2,∈ [0, 1] . By the symmetricity of
the function w, we have

[

t1w(x) + (1− t1)w

(

a+ b

2

)]

+

[

t1w(a+ b− x) + (1− t1)w

(

a+ b

2

)]

=

[

t2w(x) + (1− t2)w

(

a+ b

2

)]

+

[

t2w(a+ b− x) + (1− t2)w

(

a+ b

2

)]

and

∣

∣

∣

∣

[

t1w(x) + (1− t1)w

(

a+ b

2

)]

−

[

t1w(a+ b− x) + (1− t1)w

(

a+ b

2

)]
∣

∣

∣

∣

= t1 |w(x)− w(a+ b− x)|

≤ t2 |w(x)− w(a+ b− x)|

=

∣

∣

∣

∣

[

t2w(x) + (1− t2)w

(

a+ b

2

)]

−

[

t2w(a+ b− x) + (1− t2)w

(

a+ b

2

)]∣

∣

∣

∣

for x ∈ [a, b] . Hence, applying Lemma 2, we have

f

(

t1w(x) + (1− t1)w

(

a+ b

2

))

(11)

+f

(

t1w(a+ b− x) + (1− t1)w

(

a+ b

2

))

≤ f

(

t2w(x) + (1− t2)w

(

a+ b

2

))

+f

(

t2w(a+ b− x) + (1− t2)w

(

a+ b

2

))

.

Multiplying both sides of (11) by

α

2 (b− a)α

[

(b− x)α−1 + (x− a)α−1
]

and integrating with respect to s on
[

a, a+b

2

]

, then
by considering the equality (10), we deduce that
WHw(t1) ≤ WHw(t2). Thus, WHw is monotoni-
cally increasing on [0, 1] . Using the facts that

WHw(0) = f

(

w

(

a+ b

2

))

and

WHw(1) =
Γ (1 + α)

2 (b− a)α
[Jα

a+
f (w (b)) + Jα

b−
f (w (a))]

then we obtain the desired result. Thus, the proof
is completed. �

Remark 3. If we choose w(t) = t in Theorem
5, then the inequality (9) reduces to the inequality
(3).

Remark 4. If we choose α = 1 in Theorem
5, then Theorem 5 reduces to Theorem 2 proved
in [9].

Theorem 6. Let the weight function w : [a, b] →
R be continuous and monotonic on [a, b] and let w
be symmetric about the point

(

a+b

2 , w
(

a+b

2

))

, i.e.
1
2 [w(s) + w(a+ b− s)] = w

(

a+b

2

)

. If f : [a, b] →
R is a convex function on [a, b], then WPw is con-
vex and monotonically increasing on [0, 1] and we
have the following inequalities

Γ (1 + α)

2 (b− a)α
[Jα

a+
f (w (b)) + Jα

b−
f (w (a))]

= WPw(0) ≤ WPw(t) ≤ WPw(1) (12)

=
f (w (a)) + f (w (b))

2

with α > 0 where
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WPw(t)

=
α

4 (b− a)α

b
∫

a

f

(

(1− t)w

(

a+ x

2

)

+ tw (a)

)

×

(

(

2b− a− x

2

)α−1

+

(

x− a

2

)α−1
)

dx

+
α

4 (b− a)α

b
∫

a

f

(

(1− t)w

(

x+ b

2

)

+ tw (b)

)

×

(

(

b− x

2

)α−1

+

(

x+ b− 2a

2

)α−1
)

dx.

Proof. By the way similar to in Theorem, it can
be easily proved by convexity of f that WPw is
convex on [0, 1] . Using change of variable, we have

WPw(t) (13)

=
α

2 (b− a)α

a+b

2
∫

a

f ((1− t)w (s) + tw (a))

×
(

(b− s)α−1 + (u− s)α−1
)

ds

+
α

2 (b− a)α

×

a+b

2
∫

a

f ((1− t)w (a+ b− s) + tw (b))

×
(

(b− s)α−1 + (s− a)α−1
)

ds.

Let t1 < t2, t1, t2,∈ [0, 1] . Since w is symmetric
to a+b

2 ,

w(s) + w(a+ b− s) = 2w

(

a+ b

2

)

(14)

and w is monotonic, we have

|w(s)− w(a+ b− s)| ≤ |w(a)− w(b)| (15)

for s ∈ [a, b] . By the equality (14) and the in-
equality (15), we have

[(1− t1)w (s) + t1w (a)]

+ [(1− t1)w (a+ b− s) + t1w (b)]

= [(1− t2)w (s) + t2w (a)]

+ [(1− t2)w (a+ b− s) + t2w (b)]

and

|[(1− t1)w (s) + t1w (a)]

− [(1− t1)w (a+ b− s) + t1w (b)]|

= |(1− t1) [w (s)− w (a+ b− s)]

+ t1 [w (a)− w (b)]|

≤ (1− t1) |w (s)− w (a+ b− s)|

+t1 |w (a)− w (b)|

≤ (1− t2) |w (s)− w (a+ b− s)|

+t2 |w (a)− w (b)|

= |[(1− t2)w (s) + t2w (a)]

− [(1− t2)w (a+ b− s) + t2w (b)]|

for s ∈
[

a, a+b

2

]

. Therefore, applying Lemma 2,
we have

f ((1− t1)w (s) + t1w (a)) (16)

+f ((1− t1)w (a+ b− s) + t1w (b))

≤ f ((1− t2)w (s) + t2w (a))

+f ((1− t2)w (a+ b− s) + t2w (b)) .

Multiplying both sides of (16) by

α

2 (b− a)α

[

(b− s)α−1 + (s− a)α−1
]

and integrating with respect to s on
[

a, a+b

2

]

,
then by considering the equality (13), we deduce
that WPw(t1) ≤ WPw(t2). Hence, WPw is mono-
tonically increasing on [0, 1] . This completes the
proof. �

Remark 5. If we choose w(t) = t in Theorem 6,
then the inequality (12) reduces to the inequality
(4).

Remark 6. If we choose α = 1 in Theorem
6, then Theorem 6 reduces to Theorem 3 proved
in [9].

4. Conclusion

In this paper, we present some new weighted re-
finements of Hermite-Hadamard inequalities for
Riemann-Liouville fractional integrals. For fur-
ther studies we propose to consider the Hermite-
Hadamard type inequalities for other fractional
integral operators
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