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Increasing number of cores in a processor chip and decreasing cost of dis-
tributed memory based system setup have led to emerge of a new work theme
in which the main concern focused on the parallelization of the well-known
algorithmic approaches for utilizing the computational power of the current
architectures. In this study, the performances of the conventional parallel
and cooperative model based parallel Artificial Bee Colony (ABC) algorithms
on the deployment problem related to the wireless sensor networks were in-
vestigated. The results obtained from the experimental studies showed that
parallelized ABC algorithm with the cooperative model is capable of finding
similar or better coverage ratios with the increased convergence speeds than
its serial counterpart and parallelized implementation in which the emigrant is
chosen as the best food source in the current subcolony.
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1. Introduction

Wireless sensor networks including hundreds or
sometimes thousands of stationary or mobile
nodes have been used various times for indus-
trial or military projects [1, 2]. Each of the sen-
sor nodes is capable of sending or receiving data
packages and gathering information from the en-
vironment or objects being tracked. [1, 2]. How-
ever, sensor nodes have limited computing abili-
ties and storage spaces, their detection ranges are
restricted with properties of the sensing units and
finally required power for sensing and communi-
cation is maintained by a small battery which can
not be recharged or changed easily.

By considering all of these limitations and budget
constraints, the configuration and settlement of a
wireless sensor network should be made in order
to maximize the life or utilization time of the net-
work and the area of interest [1, 2]. The life time
and successfully covered area of a wireless sen-
sor network are directly related to the positions
of the sensor nodes. If all the sensor nodes are

deployed to the monitoring area in a straightfor-
ward manner that concerns the highest coverage
ratio, the requirements for changing the positions
of the mobile nodes by consuming extra energy
from the internal battery decrease and the overall
network life-time is substantially extended [1, 2].
With the increased understanding about the re-
lationship between the positions of the sensors
and efficiency of the network, studies on the de-
ployment of sensor nodes have attracted the re-
searchers and different approaches for solving the
sensor deployment problem have been proposed.

When the studies about the sensor deployment
problem are investigated, it is clearly seen that
evolutionary computing techniques are commonly
used. Bhondekar et al. used Genetic algorithm
(GA) as a placement methodology of sensor nodes
with different operating modes [3]. They tried
to optimize a fitness function in which opera-
tional energy, number of unconnected sensors,
number of overlapping cluster-in-charge, field cov-
erage and number of sensors per cluster-in-charge
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are used as constraints. While the operational en-
ergy, number of unconnected sensors, number of
overlapping cluster-in-charge constraints should
be minimized, field coverage and number of sen-
sors per cluster-in-charge constraints should be
maximized [3]. Okay and Ozdemir analyzed the
performances of the Multi-objective Evolutionary
Algorithm based on Decomposition (MOEA/D)
and Fast and Elitist Genetic Algorithm (NSGA-
II) on optimization of sensing coverage area and
total travel distances of the mobile nodes [4]. Ob-
tained results from the experimental studies with
25 mobile sensors tracking 50 targets distributed
to a 100m × 100m area showed that NSGA-II is
produced more robust deployments compared to
MOEA/D in terms of tracked objects [4].

Li and Lei proposed a sensor deployment tech-
nique based on the Particle Swarm Optimization
(PSO) algorithm called IPSO [5]. Distribution
of 40 mobile sensors to a 80m × 80m grid area
with IPSO algorithm significantly improved the
coverage ratio calculated with the probabilistic
detection model compared to the Virtual Force
(VF) algorithm [5]. One of the first studies about
the using ABC algorithm as a sensor deployment
technique has been carried out by Ugdata et al [6].
Ugdata et al. modeled sensor deployment prob-
lem as a data clustering problem and number of
sensor nodes was used on behalf of clusters and
locations of the sensor nodes were matched with
the centroids of clusters [6]. Ozturk et al. inves-
tigated solving capabilities of the ABC algorithm
for dynamic deployment problem of wireless net-
works with the two different studies [7, 8]. In the
first study of them, ABC algorithm was used in
order to maximize the coverage ratio of the net-
work containing 100 mobile sensors [7, 8]. In the
second study, they compared ABC algorithm with
the PSO algorithm on solving a dynamic deploy-
ment scenario in which 20 mobile sensors are tried
to be positioned at the suitable locations within
a 10, 000m2 square region [7,8]. Results from the
experimental studies showed that ABC algorithm
is capable of producing more qualified solutions
than the PSO algorithm. Yu et al. solved deploy-
ment problem by utilizing a modified ABC algo-
rithm named as FNF-BL-ABC [9]. In the FNF-
BL-ABC algorithm, the original equation of the
ABC algorithm used to generate candidate solu-
tions for onlooker bee phase was changed with the
forgetting (F) and neighbor (N) factors [9]. In
addition to these, they introduced a probabilis-
tic model called back propagation learning (BL)
for determining whether a solution is abandoned
or not in the scout bee phase. Simulation re-
sults in an ideal area and an area with obstacles

showed that TNF-BL-ABC algorithm produces
better coverage ratios than standard ABC algo-
rithm and increases the convergence speed [9].
Yadav et al. changed the search equation used
by the employed and onlooker bee phases of the
standard ABC algorithm and tested the proposed
ABC algorithm variant for dynamic positioning of
sensor networks [10].

In this study, the performances of the parallelized
ABC algorithms powered with the conventional
and cooperative emigrant creation strategies for
solving the deployment problem of sensor net-
works were analyzed. The improving effects of the
cooperative emigrant creation strategy already
seen in numerical optimization problems were also
investigated through sensor deployment problem.
The rest of the paper is organized as follows: In
the second section, definition of the sensor de-
ployment problem, coverage calculation and sen-
sor detection approach called binary detection are
given. Fundamental steps of the ABC algorithm
and its parallelization according to the mentioned
emigrant creation strategies are summarized in
third and fourth sections, respectively. Experi-
mental studies with different control parameters
are presented in fifth section. Finally, conclusions
and future works are given in the sixth section.

2. Deployment problem in wireless

sensor networks

When a wireless sensor network is established, the
main purposes of the settlement are to maximize
the utilization period of the network and the area
where the sensors successfully in communication
with each other by sending information obtained
from the tracked objects or environmental vari-
ables [5–9]. To maximize these two conflicting
objectives, exact positions of the mobile and sta-
tionary sensor nodes should be determined care-
fully. However, there is usually no priori infor-
mation about the area of interest or the targets
being tracked [5–9].

By considering all of these limitations, sensor de-
ployment can be defined as a problem for which
the coverage of the network is maximized by cor-
rectly positioning sensor nodes. When the sensor
nodes are deployed, the coverage ratio of the net-
work that shows the percentage of the successfully
covered area is calculated as in the Eq. (1). In
the Eq. (1), ci is the coverage of the ith sensor
in the set of sensors S and A is the size of the
area [5–9].

CR =

⋃

ci
A

, iǫS (1)
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If the area of interest is divided into equally sized
subareas or grids, and P is a point corresponds to
the corner of a grid at position (x, y), the Eu-
clidean distance between the point P and the
sensor si positioned at (xi, yi) is used to decide
whether point P is in detection range of sensor si
or not [5–9]. By taking the detection range of the
sensor si as r and the Euclidean distance between
the P and si as d(P, si), the coverage of point P
by si, cp(si), is equal to 1 if d(P, si) is less than r,
otherwise cp(si) is equal to 0. The binary sensor
detection model used in the coverage calculation
is given in the Eq. (2) for P and si [5–9].

ci =

{

1, d(P, ci) < r
0, d(P, ci) ≥ r

}

(2)

3. ABC algorithm and its adaptation

to sensor deployment problem

In a real honey bee colony, an intelligent foraging
behaviour is carried out by three groups of bees
called employed, onlooker and scout bees, respec-
tively [11–13]. Employed bees are responsible for
finding new food sources around the previously
visited ones and carry nectar to the hive. When
an employed bee turns back to the hive, she shares
the information about the nectar quality of the
memorized food source, location and distance to
the hive with the onlooker bees [11–13]. Onlooker
bees wait on the hive and select food sources intro-
duced by the employed bees. However, selection
of a food source by an onlooker is actually not a
random operation. If a food source introduced by
an employed is rich in terms of nectar, it is highly
possible that it attracts more onlooker bees com-
pared with the poor sources [11–13]. After an on-
looker bee selects a food source, she becomes an
employed and continues the foraging operation as
an employed. The final group of bees consists of
scout bees and scout bees randomly search the
environment to find an undiscovered food source.

By considering intelligent job division and for-
aging behaviours of bee colonies, Karaboga pro-
posed a new population based optimization algo-
rithm called ABC algorithm [11–13]. In ABC al-
gorithm, positions of the food sources correspond
to the possible solutions of the interested problem
and the nectar quality of a food source is directly
related to the appropriateness of the solution.
ABC algorithm starts its optimization operations
by randomly generating a set of food sources
[14–16]. Assume that there are SN different food
sources each of them contains D parameters, the
jth parameter of the ith food source, shortly xij ,

can be generated between lower bound xmin
j and

upper bound xmax
j as described in Eq. (3) [14–16].

xij = xmin
j + rand(0, 1)(xmax

j − xmin
j ) (3)

When solving sensor deployment problem, a food
source is matched with the positions of the sen-
sors belonging to the created network and a food
source or solution containing S wireless sensors
can be represented by a specialized D dimensional
vector in which each element is filled with loca-
tion information of the sensor. In Fig. 1, a food
source is illustrated for deployment of D wireless
sensors into a two dimensional area.
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Figure 1. Representation of a solu-
tion for sensor deployment problem.

After generating initial food sources, each food
source is associated only one employed bee. An
employed bee is responsible with producing a can-
didate solution in the vicinity of the memorized
food source by utilizing the Eq. (4) [17–19].

vij = xij + φij(xij − xkj) (4)

In Eq. (4), vij is the jth parameter of the candi-
date food source vi. It should be noted that vi is
same with the xi food source except the jth pa-
rameter. xij and xkj are the jth parameters of the
xi and xk solutions, respectively [19–23]. Finally,
θ is a random coefficient between −1 and 1. If
the fit(vi) fitness value of the vi solution calcu-
lated by using the obj(vi) objective function value
for a maximization problem as in the Eq. (5) is
higher than the fit(xi) fitness value of the xi food
source, xi food source is replaced with the vi food
source and the trial counter triali showing how
many times the xi food source is not improved is
set to zero. Otherwise, the same counter is in-
cremented by one and its value is used to make a
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decision whether that food source is consumed or
not [19–23].

fit(xi) =

{

1 + |obj(xi)|; obj(xi) > 0
1/(1 + obj(xi)); obj(xi) 6 0

}

(5)

When all the employed bees complete their opera-
tions and turn back to the hive, they share the in-
formation about the memorized food sources with
the onlooker bees as mentioned before. Onlooker
bees waiting on the hive select food sources and
become employed foragers. However, each solu-
tion introduced by employed bees does not have
equal chance for selection and qualified sources at-
tract more onlookers. The relationship between
choosability of a food source and its quality is
modeled in ABC algorithm by assigning selection
probability for each food source as calculated in
Eq. (6) [19–23]. In Eq. (6), p(xi) shows the se-
lection probability of the xi solution with fit(xi)
fitness value and it is clearly seen that p(xi) in-
creases with the higher values of fit(xi). After a
food source is chosen by an onlooker bee, this on-
looker becomes an employed and produce a can-
didate solution using Eq. (4) [19–23].

p(xi) =
fit(xi)

∑SN
j fit(xj)

(6)

If a food source is not improved within employed
and onlooker bee phases, a decision whether this
food source is still consumed in the next cycle or
not should be made to maintain the diversity of
the solution set. In ABC algorithm, this deci-
sion is made by comparing the trial counters of
the food sources with a control parameter called
limit. A food source for which its trial counter
exceeds the value of the limit parameter at most
is abandoned and a scout bee is sent from the hive
to discover a new food source as in the Eq. (3).
In order to adjust exploration and exploitation
characteristics of the algorithm, value of the limit
parameter should be chosen carefully. For deter-
mining appropriate limit parameter of SN food
sources when solving a D dimensional optimiza-
tion problem, the formulation in Eq. (7) can be
used [19–23].

⌈a× SN ×D⌉ and a ∈ Q+ (7)

By considering the properties of the employed,
onlooker and scout bee phases, the fundamental
steps of the ABC algorithm and cyclical relation-
ship between the mentioned bee phases are sum-
marized in the Fig. 2.

for i ← 1 ... SN do

if evalCounter < MFE then

Generate new solution x
new

 by using Eq. (4).

Calculate fitness value of new solution.

if fit(x
new

) > fit(x
i
) then

Change x
i
 with x

new

end if

evalCounter ← evalCounter + 1

end for

sentBees ← 0, current ← 1 

Find probability values for each source by using Eq. (6).

while sentBees ≠ SN and evalCounter < MFE do

if p
current

 > rand(0,1) then

Generate new solution x
new

 by using Eq. (4).

Calculate fitness value of new solution.

if fit(x
new

) > fit(x
i
) then

Change x
i
 with x

new

end if

evalCounter ← evalCounter + 1

end if
current ← ( current + 1 ) mod SN

end while

if evalCounter <  MFE then

Determine the abandoned food source using limit value.

Generate a new source for the abandoned one by using Eq. (3).

evalCounter ← evalCounter + 1

end if

Until MFE is reached.

//Scout bee phase

//Onlooker bee phase

//Employed bee phase

Assign values to limit and MFE parameters.

Set evalCounter to zero.

Initialization:

Generate SN initial food source by using Eq. (3).

end if

Repeat

sentBees ← sendBees + 1

1:
2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:
18:

19:

20:

21:

22:
23:

24:

25:

26:
27:
28:

29:
30:

31:
32:
33:

34:

35:

36:

37:

38:

//Employed bee phase

//Onlooker bee phase

//Scout bee phase

39:

40:

41:

Figure 2. Fundamental steps of the
ABC algorithm.

4. Parallelization of ABC algorithm

with conventional and cooperative

model

Population based optimization algorithms includ-
ing ABC algorithm are generally suitable for
parallelization on distributed or shared memory
based architectures. However, some steps of the
algorithms require sequential operations and a
limited set of modifications on the fundamental
workflow of them should be made when they are
tried to be parallelized. Dividing the whole colony
into equally sized small colonies and evaluating
them simultaneously on the different computing
units are probably the most preferred paralleliza-
tion approach [24–26]. However, number of bees
in computing units is usually not enough com-
pared to the serial implementations on single com-
puting unit and parallelization does not go be-
yond a method that only focusing improvement
on the execution times [24–26].
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In order to address the problem to do with the
number of bees in computing units, some solu-
tions or individuals are migrated between sub-
colonies. The best solutions in each subcolony
are the appropriate emigrant candidates and they
usually change with the worst solutions in the
neighbor subcolonies. This type of migration
schema is the common part of the studies devoted
to the parallelization and can be thought as the
conventional approach [24–26]. However, if the
best solutions can not be improved between sub-
sequent migration periods, two or more copies of
the same emigrant can be seen in the neighbor
subcolony.

For increasing the efficiency of the emigrant so-
lution and ensuring that the different emigrants
are sent, an emigrant solution should be powered
with other solution or solutions before it is sent
to the neighbor subcolony. The mentioned idea
about powering the best solution in a subcolony
before migration is the main motivation of the co-
operative model. In cooperative model, the best
food source in a subcolony is strengthened by the
more convenient parameters of the randomly cho-
sen food source in the same subcolony. The Fig. 3
below illustrates the fundamental steps of the co-
operative model in which neighborhood between
subcolonies is determined by the ring topology.

if migPeriod is reached then

if evalCounter < MFE then

x
random

 ← a random source in the (subColony)th subcolony.

x
best

, x
coop

 ← the best source in the (subColony)th subcolony.

for i ← 1 ... D do

Change x
coop,i

 with x
random,i

if fit(x
coop

) < fit(x
best

) then

evalCounter ← evalCounter + 1

Change x
coop,i

 with x
best,i

end for

Send x
coop

 to the ((subColony + 1) mod numOfSubCol)th subcolony.

Until MFE is reached

end if

After completion of a phase-triple

Assign values to limit and MFE parameters.

Set evalCounter to zero and define a migPeriod.

Initialization:

Generate SN initial food source by using Eq. (1).

Calculate the fitness value of x
coop

Repeat

1:
2:

3:

4:

6:

7:

8:

9:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

Determine numOfSubCol.5:

subColony ← index of current subcolony.10:

Figure 3. Fundamental steps of the
parallel ABC algorithm with cooper-
ative model.

As seen from the fundamental steps of the parallel
ABC algorithm with cooperative model, the best
food source chosen as an emigrant for the current
migration period is modified with the parameters
of the randomly selected food source. If the ith

parameter of the randomly selected food source
increases the fitness value of the best food source,
the ith parameter of the best food source is re-
placed with the corresponding parameter of the
randomly selected food source. By utilizing this
type of emigrant creation schema, the probability
of sending qualified food sources as emigrants and
the chance for consumption more qualified solu-
tions are significantly increased.

However, it should be noted that generation of co-
operative emigrant requires D times more fitness
evaluations compared to the conventional emi-
grant creation schema. If the migration period
and neighborhood topology are chosen by consid-
ering the computational burden of the cooperative
emigrant creation approach, the speedup and ef-
ficiency values of the parallelized ABC algorithm
with cooperative model get closer to the speedup
and efficiency values of the parallelized ABC al-
gorithm in which the emigrant is determined as
the local best food source in the subcolony and
then it is sent to the neighbor subcolony without
modification.

5. Experimental studies

In order to analyze the performance of the conven-
tional and cooperative emigrant creation schema
for solving the sensor deployment problem, a set
of experimental studies has bee carried out with
100 mobile sensors that should be positioned at
the suitable locations on a 100m × 100m area
by considering the maximization of the coverage.
For serial ABC algorithm, sABC algorithm, par-
allel ABC algorithm with the conventional em-
igrant creation strategy, pABC algorithm, and
parallel ABC algorithm with the cooperative em-
igrant creation strategy, coop-pABC algorithm,
the colony size was set to 20 and the limit param-
eter was chosen as 100 for the experiments [7, 8].

Neighborhood topology of the pABC and coop-
pABC algorithms was ring and for each subcolony
only one emigrant was generated. When an em-
igrant was sent to its neighbor subcolony, it was
replaced with the worst solution found in the
neighbor subcolony. The migration period (mi-
gration rate) that determines the frequency of
the communication between subcolonies was set
to 20 which means that after completion of a
20 employed-onlooker-scout bee phase triple, sub-
colonies exchange their emigrants according to the
used neighborhood topology. sABC algorithm,
pABC and coop-pABC algorithms with four sub-
colonies were tested independently until the max-
imum evaluation number reached to 1, 000, 2, 000
and 10, 000 on a system equipped with Intel i5 750



6 S. Aslan / IJOCTA, Vol.9, No.1, pp.1-10 (2019)

processor and 4 GB of RAM. sABC, pABC and
coop-pABC algorithms were coded in C program-
ming language and the required synchronization
between subcolonies or processor cores were main-
tained by using the built-in function in pthreads
library. Each of the algorithm was run 20 differ-
ent times with random seeds and the means best
coverage ratios and standard deviations related to
the 20 runs were recorded and given in the Tables
1-3.

When the results given in the Tables 1-3 are in-
vestigated it is clearly seen that the the coop-
pABC algorithm is capable of producing better
mean coverage ratios compared to the pABC al-
gorithm for all of the three experimental cases and
the sABC algorithm for the two of three different
experimental cases. By starting distribution of
the cooperative emigrants, parallelized ABC al-
gorithm improves the qualities of the solutions in
each subcolony. Even though the differences be-
tween mean best coverage ratios of the algorithms
are relatively small, the complex structure of the
deployment problem and the difficulty on improv-
ing coverage value after determining positions of
the some sensors should be remembered.

Table 1. Coverage values obtained
by the sABC and pABC.

Evaluations
sABC pABC

Mean Std.Dev. Mean Std.Dev.

1,000 0.88257 0.00410 0.87507 0.00594

2,000 0.91207 0.00638 0.90887 0.00483

10,000 0.96755 0.00226 0.96904 0.00372

Table 2. Coverage values obtained
by the sABC and coop-pABC.

Evaluations
sABC coop-pABC

Mean Std.Dev. Mean Std.Dev

1,000 0.88257 0.00410 0.87970 0.00457

2,000 0.91207 0.00638 0.91530 0.00362

10,000 0.96755 0.00226 0.97063 0.00553

Table 3. Coverage values obtained
by the pABC and coop-pABC.

Evaluations
pABC coop-pABC

Mean Std.Dev. Mean Std.Dev

1,000 0.87507 0.00594 0.87970 0.00457

2,000 0.90887 0.00483 0.91530 0.00362

10,000 0.96904 0.00372 0.97063 0.00553

One of the main purposed with the paralleliza-
tion of an algorithm is actually decreasing the
execution times compared to the its serial imple-
mentation while protecting the qualities of the fi-
nal solutions or results. For measuring the gain
in the execution times, two important metrics
called speedup and efficiency are commonly used.

Speedup measure can be explained as a ratio be-
tween average execution times between serial and
parallel implementations of the same algorithm
and its maximum value can be equal to the num-
ber of cores or computing nodes of the cluster. If
the speedup value of the parallelization is equal
to the number of core or computing nodes, it is
said that parallelization is linear. Efficiency met-
ric is defined as a ratio between speedup and num-
ber of computing units used in the parallelization
schema.

If the parallelization overhead stemmed from the
mechanism such as synchronization, mutual ex-
clusion can not be neglected, the maximum value
of the efficiency can be relatively close to one. In
Tables 4-7, average execution times of the sABC,
pABC and coop-pABC algorithms, speedup and
efficiency values for parallel implementations are
given. As seen from the results given in Tables 4-
7, conventional emigrant creation strategy reaches
more desired speedup and efficiency values when
compared to the cooperative emigrant creation
strategy based parallelization approach. If the re-
duction in execution time is the main concern of
the parallelization, the migration period should
be carefully chosen to balance the qualities of the
final solutions and speedup-efficiency values.

Table 4. Average execution times
for sABC and pABC.

Evaluations
sABC pABC

Mean Std.Dev. Mean Std.Dev.

1,000 48.63031 2.01138 13.39241 0.60145

2,000 94.37129 3.73157 27.23307 1.18997

10,000 437.05957 11.35073 124.54752 3.29203

Table 5. Speedup and efficiency val-
ues of pABC.

Evaluations
ABC and pABC Algorithms

Speedup Efficiency

1,000 3.63118 0.90779

2,000 3.46531 0.86633

10,000 3.50917 0.87729

Table 6. Average execution times
for sABC and coop-pABC.

Evaluations
sABC coop-pABC

Mean Std.Dev. Mean Std.Dev.

1,000 48.63031 2.01138 18.78291 0.69383

2,000 94.37129 3.73157 37.47984 1.55957

10,000 437.05957 11.35073 187.71349 3.48997



Deployment in wireless sensor networks by parallel and cooperative parallel artificial bee colony ... 7

 

1.00

0.95

0.90

0.85

0.80

0.75
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sABC
coop-pABC

(a)

 

1.00

0.95

0.90

0.85

0.80

0.75  
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

pABC
coop-pABC

(b)

Figure 4. Convergence curves of sABC and coop-pABC (a) and pABC and coop-pABC (b).

Table 7. Speedup and efficiency val-
ues for coop-pABC.

Evaluations
ABC and coop-pABC Algorithms

Speedup Efficiency

1,000 2.58907 0.64726

2,000 2.51792 0.62948

10,000 2.32833 0.58208

Another comparison between sABC and parallel
ABC algorithms can be made about the conver-
gence characteristics of them illustrated in Fig. 4
below. When the convergence curves given in Fig.
4 are investigated, it is clearly seen that conver-
gence performance of the coop-pABC algorithm is
better than the convergence performances of the
sABC and pABC algorithms. Although the initial
mean best coverage values of parallel ABC algo-
rithms is less than the initial mean best coverage
value of sABC algorithm, they reached sABC al-
gorithm before completion of the first 1, 000 eval-
uations and then start to produce more eligible
mean best coverage values than sABC algorithm.

In order to make a visual investigation how the
sensors are positioned by the sABC, pABC and
coop-pABC algorithms and how the areas being
covered change for the different termination con-
ditions, the Figs. 5-10 should be utilized. As
easily seen from the Figs. 5-10, successfully cover-
aged areas by the algorithms are rational with the
total number of evaluations. With the completion
of the 1, 000 evaluations, both serial and parallel
implementations of the ABC algorithm produce
deployments in which some sensors are located
relatively close positions and coverage areas of
them are overlapped. However, when the number
of evaluations is set to 10, 000, overlapped sensors

are scattered more robustly and coop-pABC algo-
rithm outperforms sABC and pABC algorithms
in terms of mean best coverage ratios.

Deciding whether coop-pABC algorithm can be
interchangeable with the sABC or pABC algo-
rithms, an information extracted from a statis-
tical test should be utilized. For this purpose, a
nonparametric test called Wilcoxon signed rank
test is used with the significance level (p) less
than 0.05. From the test results given in the
Table 8 for 10, 000 fitness evaluations, it is seen
that there is no significant difference between se-
rial and parallel implementations of the ABC al-
gorithm even though coop-pABC algorithm pro-
duces better mean best coverage values and par-
allel implementations can be used on behalf of
sABC algorithm if the running environments are
designed for utilizing the multi-core or multi-node
based architectures.

Table 8. Statistical comparison be-
tween ABC algorithms.

Test statistics sABC/coop-pABC pABC/coop-pABC

Z-Value -1.784925 -1.274946

p-Value 0.074274 0.202328

Sign. - -

6. Conclusion

In this study, ABC algorithm was parallelized for
running on a multi-core processor and it perfor-
mance was tested on solving wireless sensor de-
ployment problem. Parallelized ABC algorithm
by dividing the whole bee colony into subcolonies
running simultaneously was powered with the co-
operative emigrant creation approach and the re-
sults obtained with the mentioned ABC algo-
rithm were compared to the results obtained with
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Figure 5. The
best coverage of
sABC for 1,000
evaluations

Figure 6. The
best coverage of
pABC for 1,000
evaluations

Figure 7. The
best coverage of
coop-pABC for
1,000 eveluations

Figure 8. The
best coverage of
sABC for 10,000
evaluations

Figure 9. The
best coverage of
pABC for 10,000
evaluations

Figure 10. The
best coverage of
coop-pABC for
10,000 eveluations

standard serial and conventional parallel ABC
algorithms. Comparative studies showed that
cooperative model is still capable of increasing
convergence speed and improving solution qual-
ities of parallel ABC algorithm for sensor deploy-
ment problem as seen in the numerical benchmark
problems by adding extra computational burden
that changes directly with the migration period
to the execution time of the algorithm.
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