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1. Introduction

It is well known that convexity plays an important
and central role in many areas, such as economic,
finance, optimization, and game theory. Due to
its diverse applications this concept has been ex-
tended and generalized in several directions.

One of the most well-known inequalities in math-
ematics for convex functions is the so called
Hermite-Hadamard integral inequality
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2

)
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b−a

b
∫

a

f(x)dx ≤ f(a)+f(b)
2 , (1)

where f is a real continuous convex function on
the finite interval [a, b]. If the function f is con-
cave, then (1) holds in the reverse direction (see
[1]).

The above double inequality has attracted many
researchers, various generalizations, refinements,
extensions and variants have appeared in the lit-
erature, see [2–9] and references cited therein.

Kirmaci et al. [10] presented some results con-
nected with inequality (1)
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Recently, Sarikaya et al [11], gave the fractional
analogue of (1)

f
(

a+b
2

)

≤ Γ(α+1)
2(b−a)α

[(Jα
a+f) (b) + (Jα

b−f) (a)]

≤ f(a)+f(b)
2 . (2)

Zhu et al [12] established the following result con-
nected with inequality (2).
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Motivated by the above results, in this paper, we
introduce the class of extended s-(α,m)-preinvex
functions. We establish a new fractional integral
identity and derive some new fractional Hermite-
Hadamard type inequalities for functions whose
derivatives are in this novel class of functions.

2. Preliminaries

In this section we recall some definitions and lem-
mas

Definition 1. [13] A function f : I → R is said
to be convex, if

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f(y)

holds for all x, y ∈ I and all t ∈ [0, 1].

Definition 2. [14] A nonnegative function f :
I → R is said to be P -convex, if

f (tx+ (1− t) y) ≤ f (x) + f(y)

holds for all x, y ∈ I and all t ∈ [0, 1].

Definition 3. [15] A nonnegative function f :
I → R is said to be Godunova-Levin function, if

f (tx+ (1− t) y) ≤
f (x)

t
+

f(y)

1− t

holds for all x, y ∈ I and all t ∈ (0, 1).

Definition 4. [16] A nonnegative function f :
I → R is said to be s-Godunova-Levin function,
where s ∈ [0, 1], if

f (tx+ (1− t) y) ≤
f (x)

ts
+

f(y)

(1− t)s

holds for all x, y ∈ I and all t ∈ (0, 1).

Definition 5. [17] A nonnegative function f :
I → R is said to be α-Godunova-Levin function,
where α ∈ (0, 1], if

f (tx+ (1− t) y) ≤
f (x)

tα
+

f(y)

1− tα

holds for all x, y ∈ I and all t ∈ (0, 1).

Definition 6. [18] A nonnegative function f :
I ⊂ [0,∞) → R is said to be α-convex in the first
sense for some fixed α ∈ (0, 1], if

f(tx+ (1− t)y) ≤ tαf(x) + (1− tα)f(y)

holds for all x, y ∈ I and t ∈ [0, 1].

Definition 7. [19] A nonnegative function f :
I ⊂ [0,∞) → R is said to be s-convex in the sec-
ond sense for some fixed s ∈ (0, 1], if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)

holds for all x, y ∈ I and t ∈ [0, 1].

Definition 8. [20] A nonnegative function f :
I ⊂ [0,∞) → R is said to be extended s-convex
for some fixed s ∈ [−1, 1], if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)

holds for all x, y ∈ I and t ∈ (0, 1).

Definition 9. [21] A function f : [0, b] → R is
said to be m-convex, where m ∈ (0, 1],if

f (tx+m (1− t) y) ≤ tf (x) +m (1− t) f(y)

holds for all x, y ∈ I, and t ∈ [0, 1].

Definition 10. [22] A function f : [0, b] → R is
said to be (α,m)-convex, where α,m ∈ (0, 1],if

f (tx+m (1− t) y) ≤ tαf (x) +m (1− tα) f(y)

holds for all x, y ∈ I, and t ∈ [0, 1].

Definition 11. [23] A function f : [0, b] → R is
said to be (s,m)-convex, where α,m ∈ (0, 1],if

f (tx+m (1− t) y) ≤ tsf (x) +m (1− t)s f(y)

holds for all x, y ∈ I, and t ∈ [0, 1].

Definition 12. [24] A function f : I → R

is said to be (α,m)-Godunova-Levin functions of
first kind, where α,m ∈ (0, 1], if

f (tx+m (1− t) y) ≤
f (x)

tα
+m

f(y)

1− tα

holds for all x, y ∈ I and all t ∈ (0, 1).

Definition 13. [24] A function f : I → R

is said to be (s,m)-Godunova-Levin functions of
first kind, where s ∈ [0, 1] and m ∈ (0, 1], if

f (tx+m (1− t) y) ≤
f (x)

ts
+m

f(y)

(1− t)s

holds for all x, y ∈ I and all t ∈ (0, 1).
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Definition 14. [25] A nonnegative function
f : I ⊂ [0,∞) → [0,∞) is said to be s-(α,m)-
convex in the second sense where α,m ∈ [0, 1] and
s ∈ (0, 1], if the following inequality

f (tx+ (1− t) y) ≤ (1− tα)sf(x)+m (tα)s f(
y

m
)

holds for all x, y ∈ I and t ∈ [0, 1].

Definition 15. [26] A set K ⊆ R
n is said an in-

vex with respect to the bifunction η : K×K → R
n,

if for all x, y ∈ K, we have

x+ tη (y, x) ∈ K.

In what follows we assume that K ⊆ R be an in-
vex set with respect to the bifunction η : K×K →
R.

Definition 16. [26] A function f : K → R is
said to be preinvex with respect to η, if

f (x+ tη (y, x)) ≤ (1− t) f (x) + tf(y)

holds for all x, y ∈ K and all t ∈ [0, 1].

Definition 17. [27] A nonnegative function f :
K → R is said to be P -preinvex function with
respect to η, if

f (x+ tη (y, x)) ≤ f (x) + f(y)

holds for all x, y ∈ K and all t ∈ [0, 1].

Definition 18. [27] A nonnegative function f :
K → R is said to be Godunova-Levin preinvex
function with respect to η, if

f (x+ tη (y, x)) ≤
f (x)

t
+

f(y)

1− t

holds for all x, y ∈ K and all t ∈ (0, 1).

Definition 19. [28] A nonnegative function f :
K → R is said to be s-Godunova-Levin preinvex
function with respect to η, where s ∈ [0, 1], if

f (x+ tη (y, x)) ≤
f (x)

ts
+

f(y)

(1− t)s

holds for all x, y ∈ K and all t ∈ (0, 1).

Definition 20. [29] A nonnegative function f :
K ⊂ [0,∞) → R is said to be α-preivex in the first
sense with respect to η for some fixed α ∈ (0, 1],
if

f (x+ tη (y, x)) ≤ (1− tα)f(x) + tαf(y)

holds for all x, y ∈ K and t ∈ [0, 1].

Definition 21. [30] A nonnegative function f :
K ⊂ [0,∞) → R is said to be s-preinvex in
the second sense with respect to η for some fixed
s ∈ (0, 1], if

f (x+ tη (y, x)) ≤ (1− t)sf(x) + tsf(y)

holds for all x, y ∈ K and t ∈ [0, 1].

Definition 22. [31] A function f : K ⊂
[0, b∗] → R is said to be m-preinvex with respect
to η where b∗ > 0 and m ∈ (0, 1], if

f (x+ tη (y, x)) ≤ (1− t) f (x) +mtf(
y

m
)

holds for all x, y ∈ K, and t ∈ [0, 1].

Definition 23. [31] A function f : K → R

is said to be (α,m)-preinvex with respect to η for
some fixed α ∈ (0, 1], and m ∈ (0, 1], if

f (x+ tη (y, x)) ≤ (1− tα) f (x) +mtαf(
y

m
)

holds for all x, y ∈ K, and t ∈ [0, 1].

Definition 24. [32] A function f : K ⊂
[0, b∗] → R is said to be (s,m)-preinvex with re-
spect to η for some fixed α ∈ (0, 1]where b∗ > 0
and m ∈ (0, 1], if

f (x+ tη (y, x)) ≤ (1− t)s f (x) +mtsf(
y

m
)

holds for all x, y ∈ K, and t ∈ [0, 1].

Lemma 1. [33] For t, n ∈ [0, 1] , we have

(1− t)n ≤ 21−n − tn.

Lemma 2. [34] For any 0 ≤ a < b and fixed
p ≥ 1, we have

(b− a)p ≤ bp − ap.

We also recall that the incomplete beta function
is defined as follows:

Bx(α, β) =

x
∫

0

tα−1(1− t)β−1dx
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for x ∈ [0, 1] and α, β > 0, where B1(α, β) =
B(α, β) is the beta function.

3. Main results

In what follows we assume that [a, a+ η (b, a)] ⊂
K ⊂ [0, b∗] where b∗ > 0 such that K is an invex
set with respect to the bifunction η : K×K → R.

Definition 25. A nonnegative function f : K →
[0,∞) is said to be extended s-(α,m)-preinvex in
the second sense where α,m ∈ (0, 1] and s ∈
[−1, 1], if the following inequality

f (x+ tη (y, x)) ≤ (1− tα)sf(x) +m (tα)s f(
y

m
)

holds for all x, y ∈ I and t ∈ [0, 1].

Remark 1. Definition 25 includes all the defini-
tions cited above, except for Definition 15.

Lemma 3. Let f : [a, a+ η (b, a)] → R

be a differentiable mapping on (a, a+ η (b, a))
with η (b, a) > 0, and assume that f ′ ∈
L ([a, a+ η (b, a)]), then the following equality
holds

Γ (δ + 1)

2ηδ (b, a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)

(3)

=
η (b, a)

2





1
∫

0

kf ′ (a+ tη (b, a)) dt

−

1
∫

0

(

tδ − (1− t)δ
)

f ′ (a+ tη (b, a)) dt



 ,

where

k =

{

1 if 0 ≤ t < 1
2 ,

−1if 1
2 ≤ t < 1.

(4)

Proof. Let

I =

1
∫

0

kf ′ (a+ tη (b, a)) dt

−

1
∫

0

(

tδ − (1− t)δ
)

f ′ (a+ tη (b, a)) dt

= I1 − I2, (5)

where

I1 =

1
∫

0

kf ′ (a+ tη (b, a)) dt, (6)

and

I2 =

1
∫

0

(

tδ − (1− t)δ
)

f ′ (a+ tη (b, a)) dt, (7)

k is defined by (3).

Clearly,

I1 =
2

η (b, a)

[

f
(

2a+η(b,a)
2

)

− (f (a) + f (a+ η (b, a)))] . (8)

Now, by integration by parts, I2 gives

I2 = 1
η(b,a)f (a+ η (b, a)) + 1

η(b,a)f (a)

− δ
η(b,a)





1
∫

0

tδ−1f (a+ tη (b, a)) dt

+

1
∫

0

(1− t)δ−1 f (a+ tη (b, a)) dt





= 1
η(b,a)f (a+ η (b, a)) + 1

η(b,a)f (a)

− α
ηδ+1(b,a)







a+η(a,b)
∫

a

(u− a)δ−1 f (u) du

+

a+η(a,b)
∫

a

(η (b, a) + a− u)δ−1 f (u) du







= 1
η(b,a)f (a+ η (b, a)) + 1

η(b,a)f (a)

− Γ(δ+1)
ηδ+1(b,a)

((

Iδa+f
)

(a+ η (b, a))

+
(

Iδ
(a+η(b,a))−

f
)

(a)
)

. (9)

Combining (8), (9) and (5), we obtain the desired
equality in (3). �

Theorem 1. Let f : [a, a+ η (b, a)] → R be a
positive differentiable mapping on (a, a+ η (b, a))
with η (b, a) > 0 and f ′ ∈ L ([a, a+ η (b, a)]). If
|f ′| is extended s-(α,m)-preinvex function where
α,m ∈ (0, 1] and s ∈ (−1, 1], then the following
fractional inequality holds for αs+ δ 6= −1
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∣

∣

∣

∣

Γ (δ + 1)

2ηδ (b, a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤
η (b, a)

2

(

21−s − 1
αs+1 + 22−s

δ+1

(

1−
(

1
2

)δ
)

− 1
αs+δ+1 −B (αs+ 1, δ + 1)

)

∣

∣f ′(a)
∣

∣

+m
(

1
αs+1 + 2B 1

2

(αs+ 1, δ + 1)

−B (αs+ 1, δ + 1)

+ 1
αs+δ+1

(

1− 1
2αs+δ

)

)

∣

∣f ′
(

b
m

)∣

∣ ,

where B (., .) and B 1

2

(., .) are the beta and the in-

complete beta functions respectively.

Proof. From Lemma 3, and properties of modu-
lus we have

∣

∣

∣

∣

Γ (δ + 1)

2ηδ (b, a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤
η (b, a)

2





1
∫

0

∣

∣f ′ (ta+ (1− t) b)
∣

∣ dt

+

1

2
∫

0

(

(1− t)δ − tδ
)

∣

∣f ′ (ta+ (1− t) b)
∣

∣ dt

+

1
∫

1

2

(

tδ − (1− t)δ
)

∣

∣f ′ (ta+ (1− t) b)
∣

∣ dt






.

(10)

Since |f ′| is extended s-(α,m)-preinvex function,
(10) gives

∣

∣

∣

∣

Γ (δ + 1)

2ηδ (b, a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤
η (b, a)

2





1
∫

0

(1− tα)s

×
∣

∣f ′(a)
∣

∣+m (tα)s
∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

dt

+

1

2
∫

0

(

(1− t)δ − tδ
)

(

(1− tα)s
∣

∣f ′(a)
∣

∣

+mtαs
∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

)

dt

+

1
∫

1

2

(

tδ − (1− t)δ
)

(

(1− tα)s
∣

∣f ′(a)
∣

∣

+mtαs
∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

)

dt

)

. (11)

Now, applying Lemma 1 for (11), we get

∣

∣

∣

∣

Γ (δ + 1)

2ηδ (b, a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤
η (b, a)

2









1
∫

0

(

21−s − tαs
)

dt

+

1

2
∫

0

(

21−s
(

(1− t)δ − tδ
)

×
(

tαs+δ − tαs (1− t)δ
))

dt

+

1
∫

1

2

(

21−s
(

tδ − (1− t)δ
)

− tαs+δ

−tαs (1− t)δ
)

dt
)

∣

∣f ′(a)
∣

∣

+m







1

2
∫

0

(

tαs (1− t)δ − tαs+δ
)

dt

+

1
∫

1

2

(

tαs+δ − tαs (1− t)δ
)

dt

+

1
∫

0

tαsdt









∣

∣f ′
(

b
m

)∣

∣

=
η (b, a)

2

((

21−s − 1
αs+1 + 22−s

δ+1

(

1−
(

1
2

)δ
)

− 1
αs+δ+1 −B (αs+ 1, δ + 1)

)

∣

∣f ′(a)
∣

∣

+m
(

1
αs+1 + 2B 1

2

(αs+ 1, δ + 1)

−B (αs+ 1, δ + 1)

× 1
αs+δ+1

(

1− 1
2αs+δ

)

)

∣

∣f ′
(

b
m

)∣

∣

)

,
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which is the desired result. �

Remark 2. Theorem 1 will be reduces to Theo-
rem 2.3 from [12], if we choose s = α = m = 1
and η (b, a) = b− a.

Theorem 2. Let f : [a, a+ η (b, a)] → R be a
positive differentiable mapping on (a, a+ η (b, a))
with η (b, a) > 0 and f ′ ∈ L ([a, a+ η (b, a)]).
If |f ′|q q > 1 with 1

p
+ 1

q
= 1, is extended s-

(α,m)-preinvex function, where α,m ∈ (0, 1] and
s ∈ [−1, 1], and q > 1, then the following frac-
tional inequality holds for sα 6= −1

∣

∣

∣

Γ(δ+1)
2ηα(b,a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤ η(b,a)
2

((

(21−s − 1
sα+1)

∣

∣f ′(a)
∣

∣

q

+ m
sα+1

∣

∣f ′
(

b
m

)∣

∣

q
) 1

q

+
(

1
δp+1

(

1−
(

1
2

)δp
)) 1

p

×
(((

1
2s − 1

(sα+1)2sα+1

)

∣

∣f ′(a)
∣

∣

q

+ m
(sα+1)2sα+1

∣

∣f ′
(

b
m

)∣

∣

q
) 1

q

×
((

1
2s − 2sα+1

−1
(sα+1)2sα+1

)

∣

∣f ′(a)
∣

∣

q

+ m 2sα+1
−1

(sα+1)2sα+1

∣

∣f ′
(

b
m

)∣

∣

q
) 1

q

))

.

Proof. From Lemma 3, properties of modulus,
Hölder inequality, and Lemma 2, we have

∣

∣

∣

Γ(δ+1)
2ηδ(b,a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤ η(b,a)
2











1
∫

0

dt





1− 1

q

×





1
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt





1

q

+







1

2
∫

0

(

(1− t)δ − tδ
)p

dt







1

p

×







1

2
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q

+







1
∫

1

2

(

(1− t)δ − tδ
)p

dt







1

p

×







1
∫

1

2

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q









≤ η(b,a)
2











1
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt





1

q

+







1

2
∫

0

(

(1− t)δp − tδp
)

dt







1

p

×







1

2
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q

+







1
∫

1

2

(

tδp − (1− t)δp
)

dt







1

p

×







1
∫

1

2

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q









= η(b,a)
2











1
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt





1

q

+
(

1
δp+1

(

1− 1
2δp

)

) 1

p

×















1

2
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q

+







1
∫

1

2

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q

















.

Using the fact that |f ′|q is extended s-preinvex
function, and Lemma 1, (3) gives
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∣

∣

∣

Γ(δ+1)
2ηα(b,a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤ η(b,a)
2









1
∫

0

(21−s − tsα)
∣

∣f ′(a)
∣

∣

q

+m (tsα)

∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

q

dt

)
1

q

+

(

1
δp+1

(

1−

(

1

2

)δp
)) 1

p

×













1

2
∫

0

(21−s − tsα)
∣

∣f ′(a)
∣

∣

q

+m (tsα)

∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

q

dt

)
1

q

×







1
∫

1

2

(21−s − tsα)
∣

∣f ′(a)
∣

∣

q

+m (tsα)

∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

q

dt

)
1

q

))

= η(b,a)
2

((

(21−s −
1

sα+ 1
)
∣

∣f ′(a)
∣

∣

q

+m
1

sα+ 1

∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

q) 1

q

+

(

1
δp+1

(

1−

(

1

2

)δp
)) 1

p

×

(((

1

2s
− 1

(sα+1)2sα+1

)

∣

∣f ′(a)
∣

∣

q

+m
(

1
(sα+1)2sα+1

)

∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

q) 1

q

×

((

1

2s
− 2sα+1

−1
(sα+1)2sα+1

)

∣

∣f ′(a)
∣

∣

q

+m
(

2sα+1
−1

(sα+1)2sα+1

)

∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

q) 1

q

))

which is the desired result. �
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