RESEARCH ARTICLE

On Hermite-Hadamard type inequalities for S_{φ}–preinvex functions by using Riemann-Liouville fractional integrals

Seda Kılınç*, Abdullah Akkurt and Hüseyin Yıldırım

Kahramanmaraş Sütçü İmam University, Department of Mathematics, Kahramanmaraş, Turkey
sedaaa_kilinc@hotmail.com, abdullahmat@gmail.com, hyildir@ksu.edu.tr

This paper is dedicated to the memory of our colleague, Dr. Hatice Yaldız, who recently passed away.

ARTICLE INFO

Article History:
Received 10 October 2017
Accepted 10 December 2018
Available 31 July 2019

Keywords:
Fractional integral
Riemann-Liouville fractional integral
Integral inequalities

AMS Classification 2010:
26A33; 26D10; 26D15; 41A55

1. Introduction

Fractional calculus (see [1–3]) arise in the mathematical modeling of various problems in sciences and engineering such as mathematics, physics, chemistry and biology.

Many authors have been working to fractional integral operators (see [4–7]) due to many applications in different areas of Mathematics, Engineering and Physics, etc (see [8, 9]). Also, these operators have allow to extended results about integral inequalities of many types (see [4, 10, 11]), for instance, Hermite-Hadamard integral inequalities (see [12–14]), Ostrowski type inequalities (see [7]).

In particular, in recent years, several extensions and generalizations have been considered for classical convexity (see [13,15,16]). A significant generalizations of convex functions is that of invex functions introduced by Hanson (see [17]).

In this work we derive several new inequalities of Hermite-Hadamard type for S_{φ}–preinvex function of first and second sense by using fractional integrals.

In this article, we define and recall some basic concepts and results. Let \mathbb{R}^n be the finite dimensional Euclidian space, also $0 \leq \varphi \leq \frac{\pi}{2}$ be a continuous function.

In the following, we give some basic concepts and results.

Definition 1. ([7,8]). Let $f \in L_1[a,b]$. Then Riemann-Liouville fractional integrals $J^\alpha_a f$ and $J^\alpha_b f$ of order $\alpha > 0$ with $a \geq 0$ are defined by

$$J^\alpha_a f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-\tau)^{\alpha-1} f(\tau) \, d\tau, \quad (1)$$

and

$$J^\alpha_b f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (\tau-x)^{\alpha-1} f(\tau) \, d\tau, \quad (2)$$

where Γ is the classical Gamma function.

Definition 2. If $K_{\varphi\eta}$ in \mathbb{R}^n set, is said to be $\varphi-$invex at u according to φ, if there exists a bi-function $\eta(.,.): K_{\varphi\eta} \times K_{\varphi\eta} \rightarrow \mathbb{R}^n$, so that,

$$u + \tau e^{\varphi \eta}(u,v) \in K_{\varphi\eta}, \forall u,v \in K_{\varphi\eta}, \tau \in [0,1].$$
The \(\varphi \)--\ invex set \(K_{\varphi \eta} \) is also called \(\varphi \eta \)--\ connected set. Note that the convex set with \(\varphi = 0 \) and \(\eta(u, v) = v - u \) is a \(\varphi \)--\ invex set, but the converse is not true.

Theorem 1

Let \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a convex function defined on the interval \(I = [a, b] \) of real numbers where \(a < b \). Then, the following double inequality

\[
f\left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2},
\]

the above double inequality is known as Hermite-Hadamard type of inequality in the literature.

Let \(\mathbb{R} \) be the set of real numbers. During the article \(I = [a, b] \subset \mathbb{R} \) be the interval unless otherwise specified, also let \(0 \leq \varphi \leq \frac{\pi}{2} \) be a continuous function.

Lemma 1

Suppose a function \(K_{\varphi \eta} \subseteq \mathbb{R}^n \) and \(\varphi : K_{\varphi \eta} \rightarrow \mathbb{R} \), the \(f : [a, b] \rightarrow \mathbb{R} \) be twice differentiable function on \((a, b) \) with \(a < b \). \(\eta(\ldots) : K_{\varphi \eta} \times K_{\varphi \eta} \rightarrow \mathbb{R}^n \), The \(\varphi \)--\ invex set \(K_{\varphi \eta} \) and \(0 \leq \varphi \leq \frac{\pi}{2} \) be a continuous function. Let \(f'' \in L[a, b] \), afterward, we get the following equality for fractional integrals:

\[
\frac{2^{n-1} \Gamma(\alpha+1)}{(e^{\varphi \eta(b,a)})^\alpha} \left[J_{a^+}^{\alpha, \varphi} \left(a + \frac{e^{\varphi \eta(b,a)}}{2} \right) \right] f(a) \\
+ J_{a^+}^{\alpha, \varphi} \left(a + \frac{e^{\varphi \eta(b,a)}}{2} \right) f(b) - f \left(a + \frac{e^{\varphi \eta(b,a)}}{2} \right) \\
= \frac{|e^{\varphi \eta(b,a)}|^2}{8(\alpha+1)} \int_0^1 (1-\tau)^{\alpha+1} \left[f''(a + \frac{1-\tau}{2} e^{\varphi \eta(b,a)}) \right] d\tau \\
+ f'' \left(a + \frac{1+\tau}{2} e^{\varphi \eta(b,a)} \right) \right) \}
\]

Proof

Let,

\[
I_1 = \int_0^1 (1-\tau)^{\alpha+1} \left[f''(a + \frac{1-\tau}{2} e^{\varphi \eta(b,a)}) \right] d\tau \\
I_2 = \int_0^1 (1-\tau)^{\alpha+1} \left[f''(a + \frac{1+\tau}{2} e^{\varphi \eta(b,a)}) \right] d\tau
\]

Integration by part respectively:

\[
I_1 = \int_0^1 (1-\tau)^{\alpha+1} f''(a + \frac{1-\tau}{2} e^{\varphi \eta(b,a)}) \, d\tau \\
= \frac{1}{2} \int_0^1 (1-\tau)^{\alpha+1} f'(a + \frac{\tau}{2} e^{\varphi \eta(b,a)}) \, d\tau \\
= \frac{1}{2} \int_0^1 (1-\tau)^{\alpha+1} f'(a + \frac{\tau}{2} e^{\varphi \eta(b,a)}) \, d\tau \\
- \frac{1}{2} \int_0^1 (1-\tau)^{\alpha+1} f'(a) \, d\tau \\
= \frac{2}{\alpha+1} \int_0^1 (1-\tau)^{\alpha+1} f'(a) \, d\tau
\]

Using \(I_1 \) and \(I_2 \) in (3), and afterwards multiplying both sides by \(\frac{(e^{\varphi \eta(b,a)})^\alpha}{8(\alpha+1)} \) the proof is done. \(\square \)

If we take \(\alpha = 1 \) in Lemma 1, we obtain to following result.

Lemma 2

Let \(K_{\varphi \eta} \subseteq \mathbb{R}^n \) and \(\varphi : K_{\varphi \eta} \rightarrow \mathbb{R} \), the \(f : [a, b] \rightarrow \mathbb{R} \) be twice differentiable function on \((a, b) \) with \(a < b \). Let \(f'' \in L[a, b] \), afterward, \(\eta(\ldots) : K_{\varphi \eta} \times K_{\varphi \eta} \rightarrow \mathbb{R}^n \), the \(\varphi \)--\ invex set \(K_{\varphi \eta} \) and \(0 \leq \varphi \leq \frac{\pi}{2} \) be a continuous function. We get the following equality for fractional integrals:

\[
\int_a^{e^{\varphi \eta(b,a)}} e^{\varphi \eta(b,a)} f(x) \, dx - f \left(a + \frac{e^{\varphi \eta(b,a)}}{2} \right) \\
= \frac{|e^{\varphi \eta(b,a)}|^2}{16} \int_0^1 (1-\tau)^2 \left[f''(a + \frac{1-\tau}{2} e^{\varphi \eta(b,a)}) + f''(a + \frac{1+\tau}{2} e^{\varphi \eta(b,a)}) \right] \, d\tau.
\]

If we take \(\eta(b,a) = b - a \), \(\varphi = 0 \), then we have,

\[[a, a + e^{\varphi \eta(b,a)}] = [a, a + \eta(b,a)] = [a, b]. \]
2. Inequalities for S_{φ}-preinvex of second sense

In order to obtain main results introduced by [18] the s_{φ}-preinvex function of second sense.

Definition 3. [18] A function f on the set $K_{\varphi\eta}$ is said to be s_{φ}-preinvex function of second sense according to φ and η, we get

$$f(u + \tau e^{i\varphi} \eta(v, u)) \leq (1 - \tau)^s f(u) + \tau^s f(v), \quad (4)$$

where $\forall u, v \in K_{\varphi\eta}, \tau \in (0, 1]$.

Theorem 2. Suppose a function $K_{\varphi\eta} \subseteq \mathbb{R}^n$ be an open set according to bistunction $\eta(., .): K_{\varphi\eta} \times K_{\varphi\eta} \to \mathbb{R}^n$, The φ-invex set $K_{\varphi\eta}$ where $\eta(b, a) > 0$. Also $\varphi: K_{\varphi\eta} \to \mathbb{R}$. Let $f''(\alpha \in \mathbb{R}, f'' \in L_1[a, a + e^{i\varphi}\eta(b, a)]$ and $|f''|$ is s_{φ}-preinvex function of second sense, afterward, we get the following inequality for fractional integrals:

$$\left| \int_{\alpha}^{a + e^{i\varphi}\eta(b, a)} f(a) \right| \leq \frac{2^{\alpha+1}\Gamma(\alpha+1)}{|e^{i\varphi}\eta(b, a)|^\alpha} \left| \int_0^{a + e^{i\varphi}\eta(b, a)} f'(a) \right| \leq \frac{2^{\alpha+1}\Gamma(\alpha+1)}{|e^{i\varphi}\eta(b, a)|^\alpha} \left| \int_0^{a + e^{i\varphi}\eta(b, a)} f''(a) \right|$$

Proof. Via Lemma [1] and the fact that $|f''|$ is s_{φ}-preinvex function of second sense, we get

$$\left| \int_{\alpha}^{a + e^{i\varphi}\eta(b, a)} f(a) \right| \leq \frac{2^{\alpha+1}\Gamma(\alpha+1)}{|e^{i\varphi}\eta(b, a)|^\alpha} \left| \int_0^{a + e^{i\varphi}\eta(b, a)} f'(a) \right| \leq \frac{2^{\alpha+1}\Gamma(\alpha+1)}{|e^{i\varphi}\eta(b, a)|^\alpha} \left| \int_0^{a + e^{i\varphi}\eta(b, a)} f''(a) \right|$$

where $\int_0^1 (1 - \tau)^{\alpha+1} (1 + \tau)^s d\tau \leq \int_0^1 (1 + \tau)^s d\tau$

the above selection will be accepted, namely,

$$\left| \frac{|e^{i\varphi}\eta(b, a)|^2}{2^{\alpha+1}\Gamma(\alpha+1)} \left| \int_0^{a + e^{i\varphi}\eta(b, a)} f'(a) \right| \right| \leq \frac{2^{\alpha+1}\Gamma(\alpha+1)}{|e^{i\varphi}\eta(b, a)|^\alpha} \left| \int_0^{a + e^{i\varphi}\eta(b, a)} f''(a) \right|$$

Theorem 3. Suppose a function $K_{\varphi\eta} \subseteq \mathbb{R}^n$ and $\varphi: K_{\varphi\eta} \to \mathbb{R}, f: [a, b] \to \mathbb{R}$ be twice differentiable function on (a, b) with $a < b, \eta(., .): K_{\varphi\eta} \times K_{\varphi\eta} \to \mathbb{R}^n$. Also \mathbb{R}^n be the finite dimensional Euclidian space. The φ-invex set $K_{\varphi\eta}$. Let $f'' \in L[a, b]$ and $|f''|$ is s_{φ}-preinvex function of second sense, afterward, we get the following inequality for fractional integrals:

$$\left| \int_{\alpha}^{a + e^{i\varphi}\eta(b, a)} f(a) \right| \leq \frac{2^{\alpha+1}\Gamma(\alpha+1)}{|e^{i\varphi}\eta(b, a)|^\alpha} \left| \int_0^{a + e^{i\varphi}\eta(b, a)} f'(a) \right| \leq \frac{2^{\alpha+1}\Gamma(\alpha+1)}{|e^{i\varphi}\eta(b, a)|^\alpha} \left| \int_0^{a + e^{i\varphi}\eta(b, a)} f''(a) \right|$$

where $\int_0^1 (1 - \tau)^{\alpha+1} (1 + \tau)^s d\tau \leq \int_0^1 (1 + \tau)^s d\tau$
Proof. From Lemma [I] Holder’s inequality and the fact that $|f''|^q$ is s_{φ}-preinvex function of second sense, we get

$$
\left|\frac{2^{n-1}\Gamma(a+1)}{(e^{s_{\varphi}\eta(b,a)})^n}\int_{a}^{b} f(x)^q \, dx - J \left(\frac{a^{s_{\varphi}\eta(b,a)}}{e^{s_{\varphi}\eta(b,a)}}\right) \right| \\
\leq \frac{|f''|^{q+1}}{2^{1+(q-1)(a-1)}} \left[f(a) + f(b) \right] \\
+ \frac{1}{2^{1+(q-1)(a-1)}} \left[f'' \left(\frac{a^{s_{\varphi}\eta(b,a)}}{e^{s_{\varphi}\eta(b,a)}}\right) + f'' \left(\frac{b^{s_{\varphi}\eta(b,a)}}{e^{s_{\varphi}\eta(b,a)}}\right) \right].
$$

Second sense, afterward, we get the following inequality for fractional integrals:

$$
\left|\frac{2^{n-1}\Gamma(a+1)}{(e^{s_{\varphi}\eta(b,a)})^n}\int_{a}^{b} f(x)^q \, dx - J \left(\frac{a^{s_{\varphi}\eta(b,a)}}{e^{s_{\varphi}\eta(b,a)}}\right) \right| \\
\leq \frac{|f''|^{q+1}}{2^{1+(q-1)(a-1)}} \left[f(a) + f(b) \right] \\
+ \frac{1}{2^{1+(q-1)(a-1)}} \left[f'' \left(\frac{a^{s_{\varphi}\eta(b,a)}}{e^{s_{\varphi}\eta(b,a)}}\right) + f'' \left(\frac{b^{s_{\varphi}\eta(b,a)}}{e^{s_{\varphi}\eta(b,a)}}\right) \right].
$$

Proof. From Lemma [I] power-mean inequality and the fact that $|f''|^q$ is s_{φ}-preinvex function of second sense, we get

$$
\left|\frac{2^{n-1}\Gamma(a+1)}{(e^{s_{\varphi}\eta(b,a)})^n}\int_{a}^{b} f(x)^q \, dx - J \left(\frac{a^{s_{\varphi}\eta(b,a)}}{e^{s_{\varphi}\eta(b,a)}}\right) \right| \\
\leq \frac{|f''|^{q+1}}{2^{1+(q-1)(a-1)}} \left[f(a) + f(b) \right] \\
+ \frac{1}{2^{1+(q-1)(a-1)}} \left[f'' \left(\frac{a^{s_{\varphi}\eta(b,a)}}{e^{s_{\varphi}\eta(b,a)}}\right) + f'' \left(\frac{b^{s_{\varphi}\eta(b,a)}}{e^{s_{\varphi}\eta(b,a)}}\right) \right].
$$

Theorem 4. Suppose a function $K_{\varphi} \subseteq \mathbb{R}^n$ and $\varphi : K_{\varphi} \to \mathbb{R}$, $f : [a, b] \to \mathbb{R}$ be twice differentiable function on (a, b) with $a < b$, $\eta(\cdot, \cdot) : K_{\varphi} \times K_{\varphi} \to \mathbb{R}$. Also \mathbb{R}^n be the finite dimensional Euclidean space. The φ-invex set K_{φ}. Let $f'' \in L[a, b]$ and $|f''|^q$ is s_{φ}-preinvex function of first sense,
which completes the proof of Theorem.

\[\Box \]

Remark 1. If we take \(\varphi = 0 \) in Theorem 4, we obtain the results in [7].

3. Inequalities for \(s_\varphi \)-convex functions of first sense

In order to obtain main results introduced by [13], the \(s_\varphi \)-preinvex function of first sense.

Definition 4. [18] Suppose a function \(f \) on the set \(K_{\varphi n} \) is said to be \(s_\varphi \)-preinvex function of first sense according to \(\varphi \) and \(\eta \), let

\[
 f(u + \tau e^{i\varphi} \eta(v, u)) \leq (1 - \tau^q) f(u) + \tau^q f(v),
\]

\(\forall u, v \in K_{\varphi n}, \tau \in [0, 1]. \)

Theorem 5. Suppose a function \(K_{\varphi n} \subseteq \mathbb{R}^n \) and \(\varphi : K_{\varphi n} \to \mathbb{R} \), the \(f : [a, b] \to \mathbb{R} \) be twice differentiable function on \(a, b \) with \(a < b \), \(\eta(\cdot, \cdot) : K_{\varphi n} \times K_{\varphi n} \to \mathbb{R} \). Also \(\mathbb{R}^n \) be the finite dimensional Euclidean space. The \(\varphi \)-invex set \(K_{\varphi n} \). Let \(f'' \in L[a, b] \) and \(|f''| \) is \(s_\varphi \)-preinvex function of second sense, afterward, we get the following inequality for fractional integrals:

\[
\left| \frac{2^{n-1} \Gamma((n+1)/2)}{\Gamma((n+1)/2)} \right| \left[J^{\varphi, \alpha} \left(\frac{e^{i\varphi} \eta(a, b)}{2} \right) - f(a) \right] + J^{\varphi, \alpha} \left(\frac{e^{i\varphi} \eta(a, b)}{2} \right) \left| f(b) \right| - f \left(\frac{e^{i\varphi} \eta(a, b)}{2} \right) \left| \right| \leq \left| \frac{e^{i\varphi} \eta(a, b)}{2} \right| \left| \left| f''(a) \right| + |f''(b)| \right|.
\]

Proof. From Lemma 1 and the fact that \(|f''| \) is \(s_\varphi \)-preinvex function of first sense, we get

\[
\left| \frac{2^{n-1} \Gamma((n+1)/2)}{\Gamma((n+1)/2)} \right| \left[J^{\varphi, \alpha} \left(\frac{e^{i\varphi} \eta(a, b)}{2} \right) - f(a) \right] + J^{\varphi, \alpha} \left(\frac{e^{i\varphi} \eta(a, b)}{2} \right) \left| f(b) \right| - f \left(\frac{e^{i\varphi} \eta(a, b)}{2} \right) \left| \right| \leq \left| \frac{e^{i\varphi} \eta(a, b)}{2} \right| \left| \left| f''(a) \right| + |f''(b)| \right| \leq \left| \frac{e^{i\varphi} \eta(a, b)}{2} \right| \left| \left| f''(a) \right| + |f''(b)| \right|.
\]

\[\Box \]

Theorem 6. Suppose a function \(K_{\varphi n} \subseteq \mathbb{R}^n \) and \(\varphi : K_{\varphi n} \to \mathbb{R} \), the \(f : [a, b] \to \mathbb{R} \) be twice differentiable function on \(a, b \) with \(a < b \), \(\eta(\cdot, \cdot) : K_{\varphi n} \times K_{\varphi n} \to \mathbb{R} \). Also \(\mathbb{R}^n \) be the finite dimensional Euclidean space. The \(\varphi \)-invex set \(K_{\varphi n} \). If \(f'' \in L[a, b] \) and \(|f''| \) is \(s_\varphi \)-preinvex function of second sense, afterward, we get the following inequality for fractional integrals:

\[
\left| \frac{2^{n-1} \Gamma((n+1)/2)}{\Gamma((n+1)/2)} \right| \left[J^{\alpha, \varphi} \left(\frac{e^{i\varphi} \eta(a, b)}{2} \right) - f(a) \right] + \left[J^{\alpha, \varphi} \left(\frac{e^{i\varphi} \eta(a, b)}{2} \right) \right] \left| \right| + \left| \frac{e^{i\varphi} \eta(a, b)}{2} \right| \left| \left| f''(a) \right| + |f''(b)| \right| \leq \left| \frac{e^{i\varphi} \eta(a, b)}{2} \right| \left| \left| f''(a) \right| + |f''(b)| \right|.
\]

Proof. From Lemma 1 and Hölder inequality and the fact that \(|f''| \) is \(s_\varphi \)-preinvex function of second sense, we get

\[
\left| \frac{2^{n-1} \Gamma((n+1)/2)}{\Gamma((n+1)/2)} \right| \left[J^{\alpha, \varphi} \left(\frac{e^{i\varphi} \eta(a, b)}{2} \right) - f(a) \right] + \left[J^{\alpha, \varphi} \left(\frac{e^{i\varphi} \eta(a, b)}{2} \right) \right] \left| \right| + \left| \frac{e^{i\varphi} \eta(a, b)}{2} \right| \left| \left| f''(a) \right| + |f''(b)| \right| \leq \left| \frac{e^{i\varphi} \eta(a, b)}{2} \right| \left| \left| f''(a) \right| + |f''(b)| \right|.
\]
Proof. From Lemma 1, power-mean inequality and the fact that $|f''|^{q}$ is s_{φ}-preinvex function of second sense, we get

$$
\left| J_{0}^{1} (1 - \tau)^{-\alpha+1} \right| \frac{2^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)} \left(f(a)^{\alpha} + \frac{s_{\varphi}(b-a)}{2^{\alpha+1}} f(b) \right) \frac{1}{\Gamma(\alpha+\beta+1)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)} - f(a) = \frac{2^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)} \left(f(a)^{\alpha} + \frac{s_{\varphi}(b-a)}{2^{\alpha+1}} f(b) \right) \frac{1}{\Gamma(\alpha+\beta+1)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)} - f(a) \leq \frac{2^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)} \left(f(a)^{\alpha} + \frac{s_{\varphi}(b-a)}{2^{\alpha+1}} f(b) \right) \frac{1}{\Gamma(\alpha+\beta+1)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)} - f(a) \leq \frac{2^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)} \left(f(a)^{\alpha} + \frac{s_{\varphi}(b-a)}{2^{\alpha+1}} f(b) \right) \frac{1}{\Gamma(\alpha+\beta+1)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)} - f(a) \leq \frac{2^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)} \left(f(a)^{\alpha} + \frac{s_{\varphi}(b-a)}{2^{\alpha+1}} f(b) \right) \frac{1}{\Gamma(\alpha+\beta+1)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)} - f(a)
$$

which completes the proof of Theorem.

Theorem 7. Suppose a function $K_{\varphi} \subseteq \mathbb{R}^{n}$ and $\varphi : K_{\varphi} \rightarrow \mathbb{R}$, the $f : [a, b] \rightarrow \mathbb{R}$ be twice differentiable function on (a, b) with $a < b$, $\eta(\cdot) : K_{\varphi} \times K_{\varphi} \rightarrow \mathbb{R}^{n}$. Also \mathbb{R}^{n} be the finite dimensional Euclidean space. The φ-invers set K_{φ}. Let $f'' \in L[a, b]$ and $|f''|^{q}$ is s_{φ}-preinvex function of second sense, afterward, we get the following inequality for fractional integrals:

$$
\left| J_{0}^{1} (1 - \tau)^{-\alpha+1} \right| \frac{2^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)} \left(f(a)^{\alpha} + \frac{s_{\varphi}(b-a)}{2^{\alpha+1}} f(b) \right) \frac{1}{\Gamma(\alpha+\beta+1)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)} - f(a) = \frac{2^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)} \left(f(a)^{\alpha} + \frac{s_{\varphi}(b-a)}{2^{\alpha+1}} f(b) \right) \frac{1}{\Gamma(\alpha+\beta+1)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)} - f(a) \leq \frac{2^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)} \left(f(a)^{\alpha} + \frac{s_{\varphi}(b-a)}{2^{\alpha+1}} f(b) \right) \frac{1}{\Gamma(\alpha+\beta+1)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)} - f(a) \leq \frac{2^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)} \left(f(a)^{\alpha} + \frac{s_{\varphi}(b-a)}{2^{\alpha+1}} f(b) \right) \frac{1}{\Gamma(\alpha+\beta+1)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)} - f(a) \leq \frac{2^\alpha \Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)} \left(f(a)^{\alpha} + \frac{s_{\varphi}(b-a)}{2^{\alpha+1}} f(b) \right) \frac{1}{\Gamma(\alpha+\beta+1)} \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)} - f(a)
$$

which completes the proof of Theorem.

References

On Hermite-Hadamard type inequalities for S_φ^-preinvex functions by using Riemann-Liouville

Seda Kılınc graduated from Kahramanmaras Sütçü İmam University in 2014. In 2016, she received a master’s degree from Kahramanmaras Sütçü İmam University. In 2017, she started her Doctor of Philosophy (Ph.D) degree programme at Kahramanmaras Sütçü İmam University.

Abdullah Akkurt holds Bachelor of Mathematics and Master of Science degrees from the University of Kahramanmaras Sütçü İmam, Turkey. He is an Research Assistant in the Department of Mathematics in the University of Kahramanmaras Sütçü İmam. His research interests are in special functions and integral inequalities. Presently, he is undertaking his Doctor of Philosophy (Ph.D) degree programme at University of Kahramanmaras Sütçü İmam.

Hüseyin Yıldırım received his BSc (Maths) degree from Atatürk University, Erzurum, Turkey in 1986. He received his M.Sc. degree from Van Yüzüncü Yıl University in 1990. In 1995, he received a PhD (Maths) degrees from Ankara University. At present, he is working as a professor in the Department of Mathematics at Kahramanmaras Sütçü İmam University (Turkey) and is the head of the department. He is the author or coauthor of more than 100 papers in the field of theory of inequalities, potential theory, integral equations and transforms, special functions, time-scales.

An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr)