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 In this article one of the fractional partial differential equations was solved by 

finite difference scheme  based on five point and three point central space 

method with discretization in time. We use between the Caputo and the 

Riemann-Liouville derivative definition and the Grünwald-Letnikov operator for 

the fractional calculus. The stability analysis of this scheme is examined by using 

von-Neumann method. A comparison between exact solutions and numerical 

solutions is made. Some figures and tables are included. 
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1. Introduction 

Anomalous equation is a diffusion process with a non-

linear relationship to time contrary to typical diffusion 

process, connected with the interactions within the 

complex and non- homogeneous background. In 

contrast to typical diffusion, anomalous diffusion is 

described by a power law [1]. Anomalous diffusion 

has an important role in the literature to describe many 

physical phenomena, crowded systems or diffusion 

through porous media. On the other hand this 

phenomena is observed in heat baths [2], diffusion 

through also porous material [3,4], nuclear magnetic 

resonance diffusometry in disordered materials [4],  

behaviour of polymers in a glass transition [5,6]and 

also particle dynamics inside polymer network 

[7].Fractional order linear and nonlinear differential 

equations were examined by some researchers by 

using different methods [8-12]. In this study we 

consider the fractional subdiffusion equation in the 

following form [13]: 
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   0,  ,   0, , t T x L  

where 0 1   ,  ,U x t is a field variable 

(probability density of diffusive displacements x in a 

time t), K
is the diffusion coefficient, 0

c

tD
 is the  

fractional derivative in the Caputo sense, α is a real 

order of this operator and  ,f x t   is a suitable right 

hand side function. The time fractional subdiffusion 

equation has been obtained by replacing the time 

derivative in ordinary diffusion by a fractional order. 

In a typical diffusion process 1  ,  if 0 1     the 

particle undergoes subdiffusion, if 1 2     the 

phenomena is called super diffusion equation. 

Recently, because of their practical applications, 

anomalous subdiffusion equation has received much 

attention. The common methods for solving 

fractional-order equations are purely mathematical 

[14], in terms of  Mittag Lefler function [15], Green’s 

function solution [16], numerical methods [17], 

variational iteration method [18] and differential 

transformations [19]. In the present work we 

concentrate on one of the numerical methods which is 

fractional finite difference method for solutions of 

equation  (1). 

In section 2, we give some information about 

fractional calculus, some definition of fractional 

derivative which are used in the next sections. We talk 

about finite difference method, stability of this explicit 

scheme and calculate the maximum absolute error (

maxE ) at the time t  and the root mean square error 

RMSE at the same time in section 3. In the last section 

4, we apply the method to fractional diffusion 

equation with the given initial and boundary 

conditions and compared the numerical solutions with 

the exact results. 

http://www.ams.org/msc/msc2010.html
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2. Basic concepts of fractional calculus 

In this paper we consider the fractional partial 

differential Eq.(1), with the boundary and initial-value 

conditions: 

   00,U t g t ,       ,   LU L t g t ,                                                          

   0, 0U x p x .                                                      (2) 

Fractional calculus includes different definition of 

fractional derivative operator such as Riemann-

Liouville derivative, the Caputo derivative, the 

Grünvald Letnikov derivative, the Riesz derivative 

and also the Weyl-Marchaud derivative. 

We introduced the definition of Caputo operator [1], 
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,  N  m   , .  denotes an integer part of a real 

number. The operator        

0 tD  is defined in the 

Riemann-Liouville sense as [1], 
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According to fractional calculus between the Caputo 

and the Riemann-Liouville derivative is following 

form [1], 
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We divide the spatial domain  0, L   into the uniform 

mesh with N  subintervals. 
ix i x  ,  x h  , for 

0, ,i N   where, L
h

N
 . The time interval  0,T  is 

divided into M subintervals, where the subinterval 

length equals to  T
k

M
 ,   

jt j t   , ( )t k   , for   

0, , .j M   We mention another definition of the 

fractional derivative which is Grünwald-Letnikov 

sense as the following [1]: 
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This definition is equivalent to the Riemann-Liouville 

definition (3). However the Grünwald-Letnikov 

operator is more suitable and more obvious in 

numerical calculations. 

The Grünwald-Letnikov operator Eq.(6) is 

approximated with the interval [0,T] with the 

subinterval length t   as [1], 
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where      1
j

jc t
j

   
    

 

  for  0,1,j   . 

By using the recurrence relationship we obtain, 
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These coefficients come from the generating function 

[22],                 
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If we put Eq.(7) in place of  0 ,tD U x t
 operator in 

Eq.(5),  we obtain the following equation,
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  (10) 

We will use this fractional derivative definition for the 

left-side of Eq (1). 

3. Finite difference scheme of the fractional 

diffusion equation 

In this work we take initial value conditions as in the 

Eq.(2). If we consider them as discrete forms 
ix x  ,  

1, , 1i N      and 
jt t  ,  0, ,j m      we obtain 

,    0 0,iu x t p ih . The second derivative at the 

space in the right side of Eq.(1) in terms of 5-point 

central differences can be written as,  
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for 2, ,8i   . 

In case of 1i   and 9i   for the second derivative at 

the space we can use the following 3-point central 

difference formula, 
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Assuming 1jt t   and substituting Eq.(10) and 

Eq.(11)  into Eq. (1) we obtain, 

   
 

 
q α

j 

0 0

2 12

1 1 1

1 1 2 1

t
,

Γ q α 1

1
( ( , )

12

16 ( , ) 30 ( , )

16 ( , ) ( , )) ( , ).







 

 

  

   


 

 

 

  

 
j m

w i j w q i

w q

i j

i j i j

i j i j i j

c u x t p x

u x t
h

u x t u x t

u x t u x t f x t

       (13) 

Disintegrating partially into terms the first sum in 

Eq.(13) we have, 
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If we write more clearly, 
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Denoting   ,,i j i ju x t u ,   ,q i q ip x p and  

  ,,i j i jf x t f  and we have,  
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for 2, , 2i N    ,  1, ,j M   . 

To obtain the formula of ,i ju for 1  and   9i i   , we 

have to use 3-point central differences. Substituting 

Eq.(10) and Eq.(12)  into Eq.(1) we obtain, 
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Disintegrating partially into terms the first sum in 

Eq.(17)  and forming we obtain the following 

equation; 
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and we have, 
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Denoting   ,,i j i ju x t u  ,   ,q i q ip x p  and  

  ,,i j i jf x t f  ,we have,  
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for 1  and   9i i   , 1, ,j M   . 

As usual for explicit methods, the present explicit 

difference schemes Eq.(16) and Eq.(20) is not 

unconditionally stable. Therefore it is important to 

determine the conditions under which these schemes 

are stable.  

3.1. Stability of method  

The present explicit difference schemes, Eq.(16) and 

Eq.(20) is not unconditionally stable. Therefore it is 

important to determine the conditions under which the 

method is stable. We will employ that fractional von 

Neumann stability (or Fourier stability) analysis put 

forward in  [22]. We start by assuming a solution of 

our problem with the form   ( )j q i ph

iu e   , where q  is 

a real spatial number. Inserting this expression into 

Eq.(16) we get, 
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In this study, because of the order of fractional 

differential equation 0m   then, 
0

jp and  the source 

term is neglected (  ,f x t =0) and the stability of the 

process is determined by the behaviour of 
q . 

Writing 
1 ,q q   (22) 

and assuming   is independent of time , we get, 
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If 1   for some q , the temporal factor of the 

solution grows to infinity according to Eq.(22) and the 

mode is unstable. Considering the extreme value 

1   , we obtain from               Eq.(23)  the   

following stability bound on S [22]:
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x

jS approaches limx x

j
j
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  . The value of  
xS  can be 

concluded from Eq.(24)  by taking into consideration 

that [23], 
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and since 
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     (28) 

we use  the sufficient condition for the present method 

to be stable is 
xS S  [22]. Therefore one is inside 

the stable region and gets reasonable numerical 

solution.  

To verify the numerical accuracy in the event of initial 

value problems on the time interval  0,T   we 

calculate the 
maxE  at the time 

' ,t T  [20], 
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i N
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and the corresponding RMS error, 
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In this work 10N   , take ' 0.5t T    and by the 

end of calculations we have, 

max 0.0020   and   0.0024RMSE E  . 

3.2. Numerical example     

Let us consider the fractional subdiffusion equation 

(1) with the boundary conditions             

 0, 0U t  ,     0,1 ,t                                       (29) 

 1, 0U t   ,     0,1 ,t  

and the following initial conditions 

   ,0 2sinU x x  ,  0,1x  .                    (30) 

The exact solution of this problem is given by [8],                                         

     2, 2 sinU x t t t x     .                    (31) 

For computational work, we have taken  0.1h x  
,  0.001k t    , 0.9   and choosen the suitable 

right-hand side function  ,f x t  such as,  
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Different appropriate functions  ( , )f x t  for each 

different alpha value are found by using the Maple 

algebraic system. 

 

 
Table 1. Numerical results for  0.85  . 

 

 

 

 

 

 

 

 
 

 

 

 
 

In Table 1, we show exact and  numerical solutions of 

fractional subdiffusion Eq.1 and we compare exact 

and numerical solution using absolute error  at 0.5t   

for  0.85  , 0.1,  0.001.x t     

 

 

 

 

 

 

 

 

 

0.85   

x Exact 

Solution 

Numerical 

Solution 
Error 

0.0 

0.1 

0 

0.8154 

0 

0.8165 

0 

0.0011 

0.2 

0.3 

1.5510 

2.1348 

1.5523 

2.1367 

0.0013 

0.0019 

0.4 

0.5 

2.5095 

2.6387 

2.5118 

2.6408 

0.0023 

0.0021 

0.6 

0.7 

2.5095 

2.1348 

2.5118 

2.1366 

0.0023 

0.0018 

0.8 

0.9 

1.5509 

0.8155 

1.5519 

0.8163 

0.0010 

0.0008 

1.0 0 0 0 
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Table 2. Numerical results for  0.90  . 

 

 

In Table2 we observe exact and  numerical solutions 

of fractional subdiffusion Eq.1 and absolute error  at 

0.5t   for  0.90  , 0.1,  0.001.x t     

 

 Table 3. Numerical results for  0.95  . 

 

In Table 3 we can see exact and  numerical solutions 

of fractional subdiffusion Eq.1 and absolute error  at 

0.5t   for  0.95  , 0.1,  0.001.x t     
 

Table 4. Numerical results for  0.90   at different times. 

 

 

In the above table exact and numerical solutions of 

fractional subdiffusion Eq.1 and absolute error for 

different times  for 0.90  , 0.1,  0.001.x t     

 

 
Figure 1. Numerical solution of Eq.(1) for various values of 

t . 

 
In Figure1 we observe numerical solutions of 

fractional diffusion equation (Eq.1) at different times 

0,  0.05,  0.5t t t   for 0.90  , 

0.1,  0.001.x t     

. 

 

 
Figure 2. Numerical solution of Eq.(1) for various values of 

t . 

 

In Fig.2 we observe numerical solutions of fractional 

diffusion equation (Eq.1) at different times 

0.1,  0.2t t  for 0.90  , 0.1,  0.001.x t   

These solutions given by Table 4. 

 

 
Figure 3. Numerical solution of Eq.(1) for various values of 

 . 

 

In Figure 3 we observe numerical solutions of 

fractional diffusion equation (Eq.(1)) for different 

orders 0.85  , 0.90   and 0.95  at 0.5t   

where 0.1,  0.001.x t     The numerical solutions 

given by Table 1-3. 

0.90   

x Exact 

Solution 

Numerical 

Solution 
Error 

0.0 

0.1 

0 

0.8139 

0 

0.8149 

0 

0.0010 

0.2 

0.3 

1.5482 

2.1310 

1.5475 

2.1316 

0.0007 

0.0006 

0.4 

0.5 

2.5051 

2.6340 

2.5043 

2.6360 

0.0008 

0.0020 

0.6 

0.7 

2.5050 

2.1310 

2.5040 

2.1301 

0.0010 

0.0009 

0.8 

0.9 

1.5482 

0.8140 

1.5477 

0.8138 

0.0005 

0.0002 

1.0 0 0 0 

0.95   

x Exact 

Solution 

Numerical 

Solution 
Error 

0.0 

0.1 

0 

0.8125 

0 

0.8136 

0 

0.0011 

0.2 

0.3 

1.5455 

2.1272 

1.5468 

2.1293 

0.0013 

0.0021 

0.4 

0.5 

2.5007 

2.6294 

2.5024 

2.6317 

0.0017 

0.0023 

0.6 

0.7 

2.5007 

2.1273 

2.5021 

2.1291 

0.0014 

0.0018 

0.8 

0.9 

1.5455 

0.8126 

1.5464 

0.8134 

0.0009 

0.0008 

1.0 0 0 0 

 0.1t   0.2t   
x Exact 

Solution 

Numerical 

Solution 
Error 

Exact 

Solution 

Numerical 

Solution 
Error 

0.0 

0.1 

0 

0.6827 

0 

0.6839 

0 

0.0012 

0 

0.6493 

0 

0.6510            

0 

0.0017 

0.2 

0.3 

1.2987 

1.7874 

1.3008 

1.7898 

0.0021 

0.0024 

1.2351 

1.7000 

1.2378 

1.7037 

0.0027 

0.0037 

0.4 

0.5 

2.1012 

2.2094 

2.1043 

2.2120 

0.0031 

0.0026 

1.9984 

2.1013 

2.0026 

2.1054 

0.0042 

0.0041 

0.6 

0.7 

2.1012 

1.7875 

2.1041 

1.7899 

0.0029 

0.0024 

1.9984 

1.7000 

2.0029 

1.7034 

0.0045 

0.0034 

0.8 

0.9 

1.2986 

0.6828 

1.3009 

0.6840 

0.0023 

0.0012 

1.2351 

0.6494 

1.2377 

0.6510 

0.0026 

0.0016 

1.0 0 0 0 0 0 0 
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Figure 4. Absolute errors for various values of  . 

 

In Figure 4 we observe absolute errors of the 

numerical method for the Eq.(1) at 0.5t   , for 

different orders 0.85  , 0.90   and  0.95   

where 0.1,  0.001.x t     

4. Conclusion 

We introduced numerical schemes for solving time 

fractional diffusion equation a new finite difference 

method which is an explicit method. This method 

involves fractional Riemann-Liouville derivatives, 

which were used with Grünwald Letnikov formula.  In 

this study, we have used 5-point and 3-point 

difference scheme while discretizing of equation. For 

the all numerical algorithm we used Maple 15 

algebraic system with acceptable CPU time and  for 

the graphics of the solution Matlab 2009 has been 

used. On the other hand it was also used that a 

fractional von-Neumann stability analysis which leads 

to correct estimate of the stability conditions for 

diffusion equations. According to this analysis we 

found a stability bound on   2
12htS


 . 

Furthermore we investigated absolute and RMS 

errors, they are compatible. The numerical and exact 

solutions of Eq.(1) at several times and for different 

orders have been shown in tables and solutions were 

supported by the graphics. These results show that the 

present method gives us new solutions in agreement 

with the analytical solutions. Hence, we conclude that 

the proposed approach is very powerful and efficient 

to investigate fractional differential equation 

numerically. 
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