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1. Introduction

Fractional differential equations (FDEs) are the
generalized form of classical differential equations
of integer order. Researchers especially in applied
mathematician and physicist became highly inter-
ested in obtaining exact solutions for nonlinear
FDEs in recent decades. Nonlinear FDEs are fre-
quently used to describe many problems of phys-
ical phenomena that may arise in various fields
such as biology, physics, chemistry, engineering,
heat transfer, applied mathematics, control the-
ory, mechanics, signal processing, seismic wave
analysis, finance, and many other fractional dy-
namical systems [1-3].

In the past several decades, new exact solutions
may help to find new phenomena. So, vari-
ety of powerful analytical and numerical meth-
ods for solving differential equations of fractional
order have been suggested such as the adomian

decomposition method, the homotopy perturba-
tion method, the variational iteration method,
the finite difference method, the differential trans-
form method, homotopy perturbation method,
the homotopy analysis method, the sub-equation
method, the first integral method, the (G’/G)-
expansion method, the modified trial equation
method, the functional variable method, the exp-
function method, the simplest equation method,
the exponential rational function method, ansatz
method and others [4-31].

To solve mathematical problems, the transforms
are an important methods. A variety of use-
ful transforms for solving different problems ap-
peared in the literature, such as the traveling wave
transform, the Fourier transform and the others
[32-41]. Recently, Li and He [42] suggested a frac-
tional complex transform to convert FDEs into
ordinary differential equations (ODEs).
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There are different kinds of fractional derivative
operators. The most famous one is the Caputo
definition that the function should be differen-
tiable [43]. Recently, Jumarie derived defini-
tions for the fractional derivative called modified
Riemann–Liouville, which are suitable for contin-
uous and non-differentiable functions. The order
α of Jumarie’s derivative is defined by [44]:

Dα
wf(w) =

{

1
Γ(1−α)

d
dw

∫ w

0
(f(θ)−f(0))
(w−θ)α dθ, 0 < α < 1

(f (ρ)(w))(α−ρ), ρ ≤ α < ρ+ 1, ρ ≥ 1.

(1)

Some properties of the fractional modified RL de-
rivative are [45]

Dα
ww

r =
Γ(1 + r)

Γ(1 + r − α)
wr−α, (2)

Dα
w(c) = 0, (3)

Dα
w{af(w)+bg(w)} = aDα

wf(w)+bDα
wg(w), (4)

where a, b and c are constants.

We take into consideration the following general
nonlinear FDE of the type

H(u,Dα
t u,D

β
xu,D

2α
t u,Dα

t D
β
xu,D

2β
x u, ...) = 0,

(5)

where 0 < α, β < 1, H is a polynomial of u, u
is an unknown function and Dα partial fractional
derivatives of u.

The traveling wave variable

u(x, t) = U(θ),

θ =
εxα

Γ(1 + α)
− τtα

Γ(1 + α)
,

(6)

where τ 6= 0 and ε 6= 0 are constants. Applying
the fractional chain rule

Dα
t u = σt

dU

dξ
Dα

t θ

Dα
xu = σx

dU

dξ
Dα

xθ
(7)

where σt and σx are called the sigma indexes
[46,28] and we can choose σt = σx = L, where
L is a constant.

When we substitute, (6) with (2) and (7) into (5),
we can get Eq.(5) in the following NODE;

Ψ(U,U
′

, U ′′, U ′′′, ..., U (n), ...) = 0, (8)

where U (n) is the nth derivative of U with respect
to θ.

2. Description of the ansatz method for

solving FDEs

For bright solitons, the starting hypothesis is in
the form [47,48]

u(x, t) = A sechp θ (9)

and

θ =
kxα

Γ(1 + α)
− ctα

Γ(1 + α)
(10)

where A, k and c are nonzero constants. From the
ansatz given above with two equalities, it is pos-
sible to obtain necessary derivatives. Then, the
obtained derivatives are substituted in the Eq.(5)
and we collect all terms with the same order of
necessary terms. Then by equating each coeffi-
cient of the resulting polynomial to zero, we ob-
tain a set of algebraic equations for; A, k and c.
Finally solving the system of equations we can get
exact solution of Eq.(5) [49-52].

2.1. Applications of the proposed method

Example 1: The space-time fractional RLW
equation has the form [53]

Dα
t u+ vDα

xu+ auDα
xu− τDα

t D
2α
x u = 0, (11)

where α describing the order of the fractional
derivatives 0 < α ≤ 1 and v, a and τ are all con-
stants that describe the behavior of the undular
bore [54]. The RLW equation is modeled to gov-
ern a large number of physical phenomena such
as nonlinear transverse waves in shallow water,
ion acoustic and magneto hydrodynamic waves in
plasma and phonon packets in nonlinear crystals.
Eq.(11) was first put forward as a model for small
amplitude long waves on the surface of water in
channel by Peregine [55], and later by Benjamin
et al. [56]. This equation is considered as an
alternative to the KdV equation. Abdel-Salam
and Hassan solved Eq.(11) by the fractional auxil-
iary sub-equation expansion method [53]. Abdel-
Salam and Yousif, have obtained abundant types
of exact analytical solutions including general-
ized trigonometric and hyperbolic functions solu-
tions of this equation with the fractional Riccati
expansion method in [57]. Analytical solutions
of fractional RLW equation is very low. When
α = 1, equation (11) is called the RLW equation.
Conversely, many researchers focus on numerical
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methods to obtain approximate solutions of RLW
equation. For example, Esen and Kutluay solved
the equation by a lumped Galerkin method in
[58]. Dag et al. have applied least square qua-
dratic B-spline and cubic B-spline finite element
method to obtain new analytical solutions of RLW
equation in [59,60]. Saka et al. [61,62] solved this
equation by quintic B-spline collocation and B-
spline collocation algorithms methods. In [63],
the variational iteration method successfully ap-
plied to finding the solution of the RLW equation
by Yusufoglu and Bekir.

In order to solve Eq.(11), we use the traveling
wave transformation

u(x, t) = U(θ),

θ =
kxα

Γ(1 + α)
− ctα

Γ(1 + α)
,

(12)

where k 6= 0 and c 6= 0 are constants. When we
substitute (12) with (2) and (6) into (11) and by
integrating once and setting the constants of in-
tegration to be zero, the Eq. (11) can carry to an
ODE

(kv − c)U + ak
2 U2 + τck2L2U ′′ = 0, (13)

where U ′ = dU
dθ

. The solitary wave ansatz for the
bright soliton solution, the hypothesis is (9) and
(10). From (9) and (10), it is possible to get

d2U(θ)

dθ2
= Ap2 sechp θ−Ap(p+1) sechp+2 θ, (14)

and

U2(θ) = A2 sech2p θ. (15)

Thus, substituting the ansatz (14) and (15) into
Eq.(13), yields to

(kv − c)A sechp θ +
ak

2
A2 sech2p θ

+ τck2L2Ap2 sechp θ

− τck2L2Ap(p+ 1) sechp+2 θ = 0. (16)

Now, from (16), equating the exponents p+2 and
2p leads to

p = 2. (17)

From (16), setting the coefficients of sechp+2 θ and
sech2p θ terms to zero, we get

ak

2
A2 − τck2L2Ap(p+ 1) = 0, (18)

by use (17) and after some calculations, we have

A =
12τkcL2

a
, a 6= 0. (19)

We find, from setting the coefficients of sechp θ
terms in Eq.(16) to zero

(kv − c)A+ τck2L2Ap2 = 0, (20)

also we obtain

c =
vk

1− 4τk2L2
. (21)

From (21) it is important to note that

4τk2L2 6= 1. (22)

Thus finally, bright soliton solution of (11) is given
by:

u(x, t) = 12τkcL2

a
×

sech2
(

kxα

Γ(1+α) −
vktα

(1−4τk2L2)Γ(1+α)

)

.

(23)

Example 2: Secondly, we consider the follow-
ing the space-time fractional coupled Nizhnik-
Novikov-Veselov (NNV) equation [64]

Dα
t u−AD3α

x u−BD3α
y u+ 3AuDα

xv
+3AvDα

xu+ 3BuDα
yw + 3BwDα

y u = 0,
Dα

xu−Dα
y v = 0,

Dα
y u−Dα

xw = 0,
(24)

where 0 < α ≤ 1, A and B are given constants
satisfying A+B 6= 0, and u, v and w are the func-
tions of (x, y, t).Yan has found three types of trav-
elling wave solutions of equation (24) by using the
fractional sub-equation method [64]. The (2+1)-
dimensional NNV equation is an isotropic exten-
sion of the well-known (1+1)-dimensional KdV
equation. In recent years, NNV equation have
been studied several areas of physics including
condense matter physics, optics, fluid mechanics,
and plasma physics when α → 1 [65-67]. Darvishi
et al. have applied exp-function method to obtain
exact traveling wave solutions of classical NNV
equation in [68]. Deng solved the equation by
use of the extended hyperbolic function method in
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[69]. In [70], Wazwaz et al. have investigated the
bright soliton solutions with wave ansatz method.

For our goal, we present the following transfor-
mation

u(x, y, t) = U(θ), θ = kxα

Γ(1+α) +
myα

Γ(1+α) −
ntα

Γ(1+α) ,

v(x, y, t) = V (θ), θ = kxα

Γ(1+α) +
myα

Γ(1+α) −
ntα

Γ(1+α) ,

w(x, y, t) = W (θ), θ = kxα

Γ(1+α) +
myα

Γ(1+α) −
ntα

Γ(1+α) ,

(25)

where k 6= 0, m 6= 0 and n 6= 0 are constants.

Then by using of Eq. (25) with (2) and (7),
Eq.(24) can be turned into an ODEs and by inte-
grating once and setting the constants of integra-
tion to be zero, we obtain

(Ak3L2 +Bm3L2)U ′′ − 3kA(UV )
−3mB(UW ) + nU = 0,

kU −mV = 0,
mU − kW = 0,

(26)

where U ′ = dU
dθ

and V ′ = dV
dθ

. In order the start
off with the solution hypothesis, the following
ansatsz is assumed

u(x, y, t) = λ1 sech
p θ, (27)

and

v(x, y, t) = λ2 sech
s θ, (28)

and

w(x, y, t) = λ3 sech
r θ, (29)

where

θ =
kxα

Γ(1 + α)
+

myα

Γ(1 + α)
− ntα

Γ(1 + α)
. (30)

Here in (27)-(30), λ1, λ2, λ3, k and m are the
free parameters of the solitons and n is the ve-
locity of the soliton. The exponents p, s and r
are unknown values will be find later. Now, from
(27)-(29) and (30) it is possible to obtain

(Ak3L2 +Bm3L2)λ1p
2 sechp θ

− (Ak3L2 +Bm3L2)λ1p(p+ 1) sechp+2 θ

− 3kAλ1λ2 sech
p+s θ − 3mBλ1λ3 sech

p+r θ

+ nλ1 sech
p θ = 0, (31)

and

kλ1 sech
p θ −mλ2 sech

s θ = 0, (32)

and

mλ1 sech
p θ − kλ3 sech

r θ = 0. (33)

Now from (32) and (33) equating the exponents
of sech θ functions we have p = s = r. In (32) we
obtain,

λ2 =
kλ1

m
. (34)

Similarly in (34) that gives

λ3 =
mλ1

k
. (35)

Now, equating the exponents of sechp+2 θ or
sechp+s θ and sechp+r θ functions in (31) with
p = s = r, one gets

p+ 2 = p+ s = p+ r, (36)

so that

p = s = r = 2. (37)

Setting the coefficients of sechp+2 θ in (31), to zero
gives

(Ak3L2 +Bm3L2)λ1p(p+ 1) + 3kAλ1λ2

+ 3mBλ1λ3 = 0, (38)

using Eqs. (34), (35), p = 2 and some calculations

λ1 = −2kmL2. (39)

Again from (31), setting the coefficients of sechp θ
terms to zero one obtains,

(Ak3L2 +Bm3L2)λ1p
2 + nλ1 = 0, (40)

which gives

n = −4L2(Ak3 +Bm3). (41)

Lastly, the bright soliton solution for space-time
fractional coupled NNV equation is given by
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u(x, y, t) = λ1 sech
2 θ, (42)

and

v(x, y, t) = λ2 sech
2 θ, (43)

and

w(x, y, t) = λ3 sech
2 θ, (44)

where the velocity of the solitons n is given in
(41), free parameters λ1, λ2 and λ3 are given by
(39), (34) and (35) respectively.

3. Description of the
(

G′

G

)

expansion

method for solving FDEs

Suppose that the solution of ODE (8) can be ex-
pressed by a polynomial in (G′/G) as:

U =
z
∑

i=0

ai

(

G′

G

)i

, az 6= 0, (45)

where G = G(ξ) satisfies the second order LODE
in the form [71]

d2G (ξ)

dξ2
+ λ

dG (ξ)

dξ
+ µG (ξ) = 0, (46)

where a1, ..., az, λ and µ are constants will be de-
termined later, z is the positive integer which can
be determined by the homogeneous balance with
the highest order derivatives and highest order
nonlinear appearing in ODE (8). When we sub-
stitute (45) into (8) and use Eq.(46), we collect
all terms with the same order of (G′/G) together.
When we equate all coefficient of this polynomial
to zero, it gives us a set of algebraic equations for
a1, ..., az, λ, τ, ε and µ by using Maple. Then
substituting a1, ..., az, λ, µ, ε, τ and general so-
lutions of Eq. (46) into (8) we can get a variety
of exact solutions of the FDEs (5).

3.1. Applications of the proposed method

Example 1:

In order to solve Eq.(11) by the (G′/G)−expansion
method, we use the traveling wave transformation
(12) and with a similar approach in section 2, we
get

(kv − c)U + ak
2 U2 + τck2L2U ′′ + ξ0 = 0, (47)

where ”U ′” = dU
dξ

and ξ0 is an integral constant.

Balancing U ′′ with U2 in (47) gives

2z = z + 2,
z = 2.

(48)

Assume that it is possible to express solution of

(47) by a polynomial in
(

G′

G

)

as:

U(ξ) = a0 + a1

(

G′

G

)

+ a2

(

G′

G

)2
, a2 6= 0.

(49)

By using Eq.(46), from Eq.(49) we have

U ′′(ξ) = 6a2

(

G′

G

)4

+ (2a1 + 10a2λ)

(

G′

G

)3

+ (8a2µ+ 3a1λ+ 4a2λ
2)

(

G′

G

)2

+ (6a2λµ+ 2a1µ+ a1λ
2)

(

G′

G

)

+ 2a2µ
2 + a1λµ. (50)

When we substitute Eqs.(49) and (50) into

Eq.(47), collecting the coefficients of
(

G′

G

)i

(i =

0, ..., 4) and set them to zero we get a system. The
solutions of this algebraic equations can be done
by Maple which gives

a0 =
c−vk−τck2L2λ2

−8τck2L2µ
ak

,

a1 = −12λτckL2

a
,

a2 = −12τckL2

a
,

ξ0 =
c2k4τ2L4(8λ2µ−16µ2

−λ4)+c2−2vkc+v2k2

2ak .

(51)

where λ and µ are arbitrary constants. By using
Eq.(51), expression (49) can be written as

U(ξ) = c−vk−τck2L2λ2
−8τck2L2µ

ak

−12λτckL2

a

(

G′

G

)

− 12τckL2

a

(

G′

G

)2
.

(52)

When we substitute general solutions of Eq. (46)
into Eq.(52) we have below travelling wave solu-
tions of the equation as follows:

When λ2 − 4µ > 0,
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U1(ξ) =
c−vk+2τck2L2(λ2

−4µ)
ak

− 3τck2L2(λ2
−4µ)

ak
×

(

C1 sinh
1
2

√
λ2

−4µξ+C2 cosh
1
2

√
λ2

−4µξ

C1 cosh
1
2

√
λ2

−4µξ+C2 sinh
1
2

√
λ2

−4µξ

)2

,

(53)

where ξ = kxα

Γ(1+α) −
ctα

Γ(1+α) .

When λ2 − 4µ < 0,

U2(ξ) =
c−vk+2τck2L2(λ2

−4µ)
ak

+ 3τck2L2(λ2
−4µ)

ak
(

−C1 sin
1
2

√
4µ−λ2ξ+C2 cos

1
2

√
4µ−λ2ξ

C1 cos
1
2

√
4µ−λ2ξ+C2 sin

1
2

√
4µ−λ2ξ

)2

,

(54)

where ξ = kxα

Γ(1+α) −
ctα

Γ(1+α) .

In particular, if C1 6= 0, C2 = 0, λ > 0, µ = 0,
then U1 and U2 become

u1(x, t) =
c−vk+2τck2L2λ2

ak

+ 3τckL2λ2

a
sech2

(

λkxα

2Γ(1+α) −
λctα

2Γ(1+α)

)

. (55)

When λ2 − 4µ = 0, we obtain rational function
solution of Eq. (45)

u2(x, t) =
c−vk
ak

−12τckL2

a

(

C1

C1

(

kxα
−ctα

Γ(1+α)

)

+C2

)2

.

(56)

Example 2:

Similarly, in order to solve Eq. (24) by the pro-
posed method, suppose that the solutions of the
Eq. (26) can be expressed by a polynomial in
(

G′

G

)

as follows:

U(ξ) =
z
∑

i=0

ai

(

G′

G

)i

, az 6= 0, (57)

V (ξ) =
r
∑

i=0

bi

(

G′

G

)i

, br 6= 0, (58)

W (ξ) =

p
∑

i=0

ci

(

G′

G

)i

, cp 6= 0. (59)

By the same procedure as illustrated in example
1, the homogeneous balance between highest or-
der derivatives and non-linear terms in (26) we
get positive integers z = 2, r = 2 and p = 2.
Consequently, we have:

U(ξ) = a0 + a1

(

G′

G

)

+ a2

(

G′

G

)2

, a2 6= 0, (60)

V (ξ) = b0 + b1

(

G′

G

)

+ b2

(

G′

G

)2

, b2 6= 0, (61)

W (ξ) = c0 + c1

(

G′

G

)

+ c2

(

G′

G

)2

, c2 6= 0. (62)

When we substitute Eqs. (50), (60)-(62) into

Eq.(26), collecting the coefficients of
(

G′

G

)i

(i =

0, ..., 3) and apply the same procedure of example
1, we have

Case 1:

a0 = a2µ, a1 = a2λ, a2 = a2,

b0 =
a2
2
µ

2m2L2 , b1 =
a2
2
λ

2m2L2 , b2 =
a2
2

2m2L2 ,

c0 = 2m2L2µ, c1 = 2m2L2λ, c2 = 2m2L2,

k = a2
2mL2 , n =

(4µ−λ2)(Aa3
2
+8Bm6L6)

8m3L4 ,
(63)

where λ and µ are arbitrary constants. Substi-
tuting Eq. (63) into Eqs.(60)-(62) yields

U(ξ) = a2µ+ a2λ

(

G′

G

)

+ a2

(

G′

G

)2

, (64)

V (ξ) =
a22µ

2m2L2
+

a22λ

2m2L2

(

G′

G

)

+
a22

2m2L2

(

G′

G

)2

,

(65)

W (ξ) = 2m2L2µ+2m2L2λ

(

G′

G

)

+2m2L2

(

G′

G

)2

(66)

Then, when we substitute general solutions of
Eq.(46) into Eqs.(64)-(66), we have two types of
solutions of the Eqs.(24) as follows:

When λ2 − 4µ > 0,
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U1(ξ) =
a2
(

4µ− λ2
)

4

(

1− Ω2
1

)

, (67)

V1(ξ) =
a22
(

4µ− λ2
)

8m2L2

(

1− Ω2
1

)

, (68)

W1(ξ) =
m2L2

(

4µ− λ2
)

2

(

1− Ω2
1

)

(69)

where

Ω1 =
K1 sinh

1
2

√
λ2

−4µξ+K2 cosh
1
2

√
λ2

−4µξ

K1 cosh
1
2

√
λ2

−4µξ+K2 sinh
1
2

√
λ2

−4µξ
,

ξ = a2x
α

2mL2Γ(1+α)
+ myα

Γ(1+α) −
(4µ−λ2)(Aa3

2
+8Bm6L6)tα

8m3L4Γ(1+α)

When λ2 − 4µ < 0,

U2(ξ) =
a2
(

4µ− λ2
)

4

(

1 + Ω2
2

)

, (70)

V2(ξ) =
a22
(

4µ− λ2
)

8m2L2

(

1 + Ω2
2

)

, (71)

W2(ξ) =
m2L2

(

4µ− λ2
)

2

(

1 + Ω2
2

)

(72)

where

Ω2 =
−K1 sin

1
2

√
4µ−λ2ξ+K2 cos

1
2

√
4µ−λ2ξ

K1 cos
1
2

√
4µ−λ2ξ+K2 sin

1
2

√
4µ−λ2ξ

In particular, if K1 6= 0, K2 = 0, µ = 0 then
U1(ξ), V1(ξ) and W1(ξ) become

u1(x, y, t) = −λ2a2
4

sech2 (Φ) , (73)

v1(x, y, t) = − λ2a22
8m2L2

sech2 (Φ) , (74)

w1(x, y, t) = −λ2m2L2

2
sech2 (Φ) , (75)

where

Φ = λa2x
α

4mL2Γ(1+α)
+ λmyα

2Γ(1+α) +
λ3(Aa3

2
+8Bm6L6)tα

16m3L4Γ(1+α)

Also if K1 6= 0, K2 = 0, µ = 0 then U2(ξ),
V2(ξ) and W2(ξ) become, u1(x, y, t), v1(x, y, t)
and w1(x, y, t).

Case 2:

a0 =
a2(2µ+λ2)

6 , a1 = a2λ, a2 = a2,

b0 =
a2
2
(2µ+λ2)
12m2L2 , b1 =

a2
2
λ

2m2L2 , b2 =
a2
2

2m2L2 ,

c0 =
2m2L2µ+m2L2λ2

3 , c1 = 2m2L2λ, c2 = 2m2L2,

k = a2
2mL2 , n =

(4µ−λ2)(Aa3
2
+8Bm6L6)

8m3L4 ,
(76)

where λ and µ are arbitrary constants. Substi-
tuting Eq.(76) into Eqs.(60)-(62), yields

U(ξ) = a2(2µ+λ2)
6 + a2λ

(

G′

G

)

+ a2

(

G′

G

)2
, (77)

V (ξ) =
a2
2

2m2L2

(

(2µ+λ2)
6 + λ

(

G′

G

)

+
(

G′

G

)2
)

,

(78)

W (ξ) = m2L2

(

2µ+λ2

3 + 2λ
(

G′

G

)

+ 2
(

G′

G

)2
)

.

(79)

When we substitute general solutions of Eq.(46)
into Eqs.(77)-(79), we deduce the following trav-
eling wave solutions:

When λ2 − 4µ > 0,

U3(ξ) =
a2
(

4µ− λ2
)

4

(

1

3
− Ω2

1

)

, (80)

V3(ξ) =
a22
(

4µ− λ2
)

8m2L2

(

1

3
− Ω2

1

)

, (81)

W3(ξ) =
m2L2

(

4µ− λ2
)

2

(

1

3
− Ω2

1

)

. (82)

When λ2 − 4µ < 0,

U4(ξ) =
a2
(

4µ− λ2
)

4

(

1

3
+ Ω2

2

)

, (83)

V4(ξ) =
a22
(

4µ− λ2
)

8m2L2

(

1

3
+ Ω2

2

)

, (84)

W4(ξ) =
m2L2

(

4µ− λ2
)

2

(

1

3
+ Ω2

2

)

. (85)
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In particular, if K1 6= 0, K2 = 0, µ = 0 then
U3(ξ), V3(ξ) and W3(ξ) become

u2(x, y, t) = −λ2a2
4

(

1

3
− tanh2 (Φ)

)

, (86)

v2(x, y, t) = − a2
2
λ2

8m2L2

(

1

3
− tanh2 (Φ)

)

, (87)

w2(x, y, t) = −m2L2λ2

2

(

1

3
− tanh2 (Φ)

)

. (88)

Also if K1 6= 0, K2 = 0, µ = 0 then U4(ξ),
V4(ξ) and W4(ξ) become, u2(x, y, t), v2(x, y, t)
and w2(x, y, t).

4. Conclusion

The ansatz and the (G′/G) expansion methods
are used in this article to obtain some new ex-
act solutions of the fractional regularized long-
wave equation and the fractional coupled Nizhnik-
Novikov-Veselov equation. The (G′/G) expansion
method is more effective and more general than
the ansatz method because it gives exact solutions
in more general forms. These methods are quite
proficient methods for obtaining new exact solu-
tions of FDEs. The obtained solutions are new
and the methods can be extended to solve prob-
lems of nonlinear FDEs arising in the theory of
solitons and other areas. To our knowledge, these
new solutions have not been reported in former
literature.
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