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In this study, the PID tuning method (controller design scheme) is proposed for
a linear quarter model of active suspension system installed on the vehicles.
The PID tuning scheme is considered as a multiobjective problem which is
solved by converting this multiobjective problem into single objective problem
with the aid of scalarization approaches. In the study, three different scalar-
ization approaches are used and compared to each other. These approaches
are called linear scalarization (weighted sum), epsilon-constraint and Bensons
methods. The objectives of multiobjective optimization are selected from the
time-domain properties of the transient response of the system which are over-
shoot, rise time, peak time and error (in total there are four objectives). The
aim of each objective is to minimize the corresponding property of the time
response of the system. First, these four objective is applied to the scalar-
ization functions and then single objective problem is obtained. Finally, these
single objective problems are solved with the aid of heuristic optimization algo-
rithms. For this purpose, four optimization algorithms are selected, which are
called Particle Swarm Optimization, Differential Evolution, Firefly, and Cul-
tural Algorithms. In total, twelve implementations are evaluated with the same
number of iterations. In this study, the aim is to compare the scalarization
approaches and optimization algorithm on active suspension control problem.
The performance of the corresponding cases (implementations) are numerically
and graphically demonstrated on transient responses of the system.
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1. Introduction

Car suspension system has been installed to the
vehicle for omitting the undesired low-frequency
high magnitude disturbance/vibration due to the
imperfect conditions of the road. The main aims
of the suspension system are to the comfort of
the passengers and absorb the vibrations from
ground to car body. Suspension systems can be
categorized as depended and independent systems
with respect to the connection between suspen-
sion and car body. Depended systems are rela-
tively heavy structures which are generally con-
sidered as the rear suspension system. Left and
right suspensions are (not directly) connected to

each other. Hence change at the dynamics of one
of the suspension has a direct effect on the other
suspension, which causes discomfort to the pas-
sengers. However, since the number of moving
parts are less than independent systems, the life-
time of these systems are longer than independent
systems under the same conditions. Independent
systems are discrete systems. Modern cars prefer
independent suspensions, especially for the front
wheels.

Since there are many different road conditions,
it isn’t possible to mention about single vibration
frequency and magnitude. Therefore, a particular
structure to absorb occurred vibration is needed.
There are three main structures can be proposed;
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which are passive, semi-active and active suspen-
sion systems. Passive systems are pre-design sys-
tems where the conditions (relatively protected
environment) of the road are known. Therefore,
well-designed damper and spring can be answer
the suspension problem. They do not have to in-
terconnected devices such as actuator, pneumat-
ics, and hydraulics related to suspension system.
Semi-active has at least a damper with a narrow
range of variable damping force and damping co-
efficients. They can be changed before the jour-
ney, they don’t have any control actions (may be
a very simple one). Active systems are improved
version of the passive systems with controllable
actuators, which can be activated with current
and/or voltage. In this paper, active independent
suspension system is considered and quarter-car
model is evaluated for this purpose.

The control action of the active suspension can be
produced vary from classical control approaches,
robust control, optimal control, to intelligent
methods. Among them, PID controller is the
simplest and relatively cheaper controller which
is applied to this problem. However, even today
the tuning of PID controller is considered as an
important aspect. Astrom and Hagglund [1] dis-
cussed the future of PID controller in their paper.
It is imposed from the study that since there are
many aspects which are needed to be considered
for tuning, there is a need for design frameworks
(section 4). In this study, the PID coefficients for
the active suspension control problem is tunned
by converting into the multiobjective optimiza-
tion problem.

In literature, there are some attempts for mul-
tiobjective PID tuning problem. In the study
of [2], the authors proposed a niche-based multi-
objective optimization algorithm and Genetic Al-
gorithm (GA) for tuning of PID controller which
is applied to nonlinear MIMO process. As the ob-
jective parameters, settling time, overshoot and
rise time are weighted and summed. In other
words, the authors of that study prefer weighted
sum scalarization method. The results showed
that proposed method presents better perfor-
mance when compared with Ziegler-Nichols. Sim-
ilar results are obtained by Neath et al. [3]. They
applied GA-based PID tuning methodology with
the aid of weighted sum scalarization method (rise
time, settling time and overshoot). In the pa-
per, both simulation and implementation results
are demonstrated, and both showed the perfor-
mance of the tuning method. In [4], Lin et al.
applied similar GA-based multiobjective PID de-
sign ( [5]) method with the aid of weighted sum
scalarization. As a difference three time-domain

specifications are considered as objectives which
are the rise time, overshoot and steady-state er-
ror. A more general contribution of the multi-
objective PID tuning is presented by Reynoso-
Meza et. al. [6]. Both PID and state space
feedback controllers are tunned by using multiob-
jective optimization algorithm. However, instead
of time-domain properties the integral of the ab-
solute value of the derivative the control signal
and integral of the absolute value of the error is
considered as objectives. This idea is applied to
twin rotor MIMO system (as a PI controller tun-
ing algorithm similar study evaluated on [7] and
for aircraft in [8]) and results also support the
better performance of the multiobjective tuning
methodology. Also in [9], two similar objectives
which are integral time absolute error and con-
trol effort is taken to tune PID controller for the
plastic injection molding process, and in [10] same
objectives are evaluated on weighted sum scalar-
ization function. Artificial Bee Colony algorithm
and weighted sum approach was also applied to
load frequency control problem [11], and almost
same improvement was reached. Hung et. al. [12]
presents the same methodology, but on the con-
trary the authors preferred multiobjective simu-
lated annealing algorithm and improved strength
Pareto algorithms. The other difference is the
selection of objective function. In that study,
three objectives are considered which are robust
stability, disturbance attenuation and integral of
square error. Simulation results demonstrate the
high performance of the proposed framework. In
the study of Tseng et al. [13], the sufficient per-
formance of the multiobjective PID control de-
sign in plant uncertainties and under external dis-
turbance, also parametric uncertainties are con-
sidered in [14]. In [15], Tang et al. gives the
multiobjective optimization scheme (multiobjec-
tive generic algorithm (MOGA)) for Fuzzy PID
controller. Liu and Daley [16] proposed a three-
layered study, in a way that first time-domain op-
timal tuning of PID control is presented. Follow-
ing that consequently, frequency-domain optimal-
tuning PID and multiobjective tuning PID con-
trollers are discussed. These PID tuning algo-
rithms are applied to three industrial systems.
Results showed that optimal PID significantly im-
prove performance. In Ayala and Coelho pa-
per [17], a multiobjective optimization algorithm
(NSGA-II) is applied without using scalarization
functions (the similar study is presented in [18]).
The objectives are selected as position error and
torque.

In active suspension problem, the aim is to im-
prove the transient response of the system under
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change in the road profile. At the steady state of
the system, the damper (or spring) in the system
converges/remains in a stable state and this state
is not changed if the road remains the same. How-
ever, if the road is altered due to the imperfect
conditions of the road the suspension system re-
sponse to the change at the road. If this change is
relatively small and the mass differences between
body and suspension system including the spring
property of the tire is large that this change can-
not be perceived. However, if this change is large
enough, then the car body moves upwards, and
oscillation begins. If this oscillation could not be
damped or car body moves too far from the sus-
pension system than safety and comfort of the
passengers is reduced dramatically. Therefore a
control structure is needed to apply a force on
the damper to damp this effect. Hence in this pa-
per, PID controller is applied to the quarter car
suspension model. The PID coefficients are the
key parameters which are the direct effect on the
performance of the system. However, the conven-
tional PID tuning methods could not be applied
due to the not satisfactory performance. Hence,
in this study, a methodology for PID tuning for
active suspension system is proposed. Initially,
the tuning scheme of active suspension control is
converted into the multiobjective problem. How-
ever, since it is desired to get a single solution, in-
stead of multiobjective optimization algorithms,
scalarization approaches are evaluated for this
purpose. Three scalarization methods are applied
in this paper which are Weighted sum method,
Epsilon method, and Benson’s method. As a re-
sult of scalarization, the multiobjective problem is
reduced to single-objective one. Then this prob-
lem is solved by using heuristic optimization algo-
rithms. Four optimization algorithms are applied
to solve the problem, which are Particle Swarm
Optimization, Differential Evolution, Firefly Al-
gorithm and Cultural Algorithm. In total, three
scalarization approaches with four heuristic opti-
mization algorithm are compared to each other.

This paper is organized into five main sections in-
cluding the introduction. After the presentation
of the aim and literature search at the introduc-
tion section, problem definition is given in the sec-
ond section. The mathematical model of the car
suspension system and corresponding controller
algorithm with objectives are also presented in
this section. The third section is written for
briefly explaining the toolsets which are used in
this paper. Two sub-sections are given in this sec-
tion which are scalarization approaches and opti-
mization algorithms. The fourth section is given
for implementation and obtained results. In this

section, all the information explained in the pre-
vious sections are evaluated on the simulation en-
vironment. The last section is the conclusion of
this study.

2. Problem definition

The graphical description of the quarter-car pas-
sive suspension model [19] is illustrated in Figure
1 , and the following equations give the mathe-
matical description of this model [20].

Figure 1. Quarter car suspension system.

M1ÿ = −b(ẏ − ẋ)− k2(y − x)− f +M2g (1)

M2ẍ = −b(ẋ− ẏ)− k2(x− y) (2)

−k1(x− u) + f +M1g

where g is the gravitational constant, f is the force
(control input) at the damper under the car body,
k is the spring constants and b is the damper
constant. The masses m1 and m2 are corre-
sponded to bar body and tire masses. The param-
eters are selected as: m1 = 60kg, m2 = 300kg,
k1 = 160000kg/s, k2 = 16000kg/s, g = 9.8m/s2,
and b = 1400kgm/s2.

2.1. PID controller

In this study, PID controllers are designed and pa-
rameters are optimized [21]. The Laplace trans-
form of the PID controller is given below.

G(s) = KP +
KI

s
+KDs (3)

For proper usage of the PID controller three pa-
rameters (proportional parameter (KP ), integral
term (KI), derivative term (KD)) are needed to
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be optimized for the desired performance. As a
general perspective, KP decreases the rise time
and steady-state error, but for large steady-state
error properly selected KI is needed to eliminate
this large steady-state error.However, this term
increases the overshoot. Generally, the increase
in overshoot and settling time is relatively small
(depended on the structure of the system). If it is
large enough, derivative term KD is added for de-
creasing the overshoot and settling time. In this
study, three values corresponding to these three
parameters are determined with the aid of opti-
mization algorithms.

The framework of the controller system is given in
Figure 2. The PID controller is applied to the ac-
tive suspension system, and the road disturbance
is changes the system dynamic. By collecting
the transient response parameters are converted
into objective functions. Nest, this objective func-
tions is formed to the multiobjective problem and
converted to single objective one with the aid of
scalarization approach. Finally, the optimization
algorithm is applied to this offline PID parameter
tuning framework.

3. Methods and techniques

The study begins with the conversion of the mul-
tiobjective problem which is defined in the pre-
vious section (Problem Definition) into single ob-
jective problem. For this purpose three different
scalarization methods are applied to the multiob-
jective problem. The scalarization methods are
called i) weighted sum, ii) ǫ-constrained, and iii)
Benson’s methods. After conversion to the single-
objective problem, two different optimization al-
gorithms are applied to solve this problem. The
algorithms are called Particle Swarm Optimiza-
tion and Differential Evolution algorithms. At the
next section, the results of these implementations
are compared with each other.

3.1. Scalarization approaches

3.1.1. Weighted sum method

Weighted (linear) sum method is the oldest and
best known approach for solving multiobjective
optimization problems [22]. The scalarization for-
mula of weighted sum method is given at the fol-
lowing equation.

J =
M∑

m=1

(wmfm(x)) (4)

where w are the positive weights of each objec-
tive. It is assumed that the sum of all weight are
equal to one because of the necessity of normalize
values at the objective space.

M∑

m=1

(wm) = 1 (5)

The distribution of the solutions obtained from
optimization algorithm is generally non-uniform.
Also, the weighted sum method can perform bet-
ter in convex regions of the search space. Since
the sum of weights equals to one, wm parame-
ters are selected as equal to each other, which
has the value of wm = 1

m
. In our study there

are four objectives (in the implementation section
these objectives are explained). Therefore all of
the weights are equal to 0.25.

3.1.2. ǫ-constraint Method

This method is proposed to get rid of the con-
vexity problem of the weighted sum method; ǫ-
constrained method was introduced by Haimes et
al. (1971) [23]. The idea is based on minimizing
the single objective while considering the other
objective as constraint in the form of inequality.
The scalarization function is presented below.

J = fn(x)

fm(x) ≤ ǫ, (6)

m = 1, ...,M ;m 6= n

where ǫ is the variable such that with a properly
selected ǫ, feasible solution can be obtained. This
method can be applied for general problems, no
convexity assumption is desired. This scalariza-
tion approach converts the unconstrained multi-
objective problem into a constrained single objec-
tive problem. Therefore, a mechanism is needed
to handle these constrained. For our study, there
are three constrains are defined for this approach
(since we have four objectives). For this purpose
penalty function idea is applied to ǫ-constraint
method. The penalty function definition is given
below.

Definition 1. A function p(x) is said to be
penalty function for the vector x if penalty func-
tion satisfies two conditions where g(x) ≤ 0 is
the constrained i) p(x) = 0 if g(x) ≤ 0 and ii)
p(x) > 0 if g(x) > 0

For this study,
m∑
i=i

max(ǫi, fi(x)) function is se-

lected as penalty function. As a result the overall
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Figure 2. Control structure for quarter car suspension system.

scalarization equation is changed to the following
form.

J = fn(x) +
m∑

i=i

max(ǫi, fi(x)) (7)

3.1.3. Benson’s method

Benson’s method, as one of the scalarization
methods, was introduced by Benson in 1978 [24]
which is an extended and improved version of
their study on vector maximization [25]. In [26], it
is shown that the scalarization method is valid in
general case without convexity assumption if the
reference point is selected properly on the feasi-
ble solution set. The idea is based on the deter-
mination of the properly or improperly efficient
solution, which are defined below.

Definition 2. x0 is said to be efficient solution
if fi(x) > fi(x0) for some x, and there exists at
least one j such that fj(x) < fj(x0).

Definition 3. x0 is said to be properly efficient
solution if it is efficient and if there exist a scalar
named as M > 0, such that for each i, we have

fi(x)− fi(x0)

fj(x0)− fj(x)
≤ M (8)

for some j such that fj(x) < fj(x0) whenever
fi(x) > fi(x0).

Definition 4. x0 is said to be improperly efficient
solution if it is efficient and if there exist a scalar
named as M > 0, such that there is a point x and
an i such that fi(x) > fi(x0) and

fi(x)− fi(x0)

fj(x0)− fj(x)
> M (9)

for all j such that fj(x) < fj(x0).

Since the originally proposed method has draw-
backs against differentiation, Ehrgott [27] was
proposed a modified formulation to make easier
of the differentiation process at classical optimiza-
tion/search algorithms. The scalarization method
is given at the following formula.

J =
M∑

m=1

max(0, (zm − fm(x)))

fm(x) ≤ zm, (10)

m = 1, ...,M ;m 6= n

where z is the chosen solution in the feasible re-
gion. First the nonnegative difference between
each objective value is calculated and summa-
rized. The maximization is similar to find a cube
with the largest perimeter [28]. A set of con-
straints are added to the formulation. similarly to
ǫ-constrained approach, this constraints are han-
dled by using the penalty function.

3.2. Optimization algorithms

In the previous section, scalarization approaches,
which are converted multiobjective PID tuning
problem into the single objective problem; are ex-
plained. In this section, two single objective opti-
mization algorithms are explained, which are Par-
ticle Swarm Optimization (PSO) and Differential
Evolution (DE).

3.2.1. Particle swarm optimization

Particle Swarm Optimization (PSO) is an opti-
mization algorithm which is proposed by Kennedy
and Eberhart [29] in 1995 inspired from the be-
haviors of the animal swarms. Figure 3 graphi-
cally illustrates the idea of the PSO algorithm.
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Figure 3. Flow-diagram of particle
swarm optimization.

Each member of the population has two prop-
erties; position (x1, x2, ..., xD) and velocity
(v1, v2, ..., vD), where D is the dimension of the
search space. At the beginning of the algorithm,
positions are randomly assigned inside the bor-
ders of the search space, and similarly velocities
are taken value inside [0, 1]. At the first phase of
each iteration, objective values of each member in
population is calculated. There are two kinds of
memory defined for each member. The first one is
the best position among the population (gbest).
Same position is recorded for all members at each
iteration. The second one is belongs to the each
member. It stores the best location which has
been ever visited by the corresponding member
(pbest). Therefore, at the second phase of the al-
gorithm these two memories are updated by using
the objective values. Then as the last phase of the
algorithm the position and velocities are updated
by using the equations given below.

vi[k + 1] = vi[k] + c1rand()(pbesti − xi[k])

+c2rand()(gbesti − xi[k]) (11)

xi[k + 1] = xi[k] + vi[k + 1] (12)

where c1 = c2 = 2.05 are the algorithm parame-
ters and rand is the random number generator.
These steps are repeated until the termination
condition is met.

3.2.2. Differential evolution

Differential Evolution (DE) was proposed by
Storn and Price in 1995 [30]. Since DE uses oper-
ators mutation, crossover and selection; it is con-
sidered as a part of evolutionary algorithms. Fig-
ure 4 gives the flow diagram of the DE algorithm.

Figure 4. Flow-diagram of differen-
tial evolution.

The algorithm begins with the randomly initial-
ization of the population (x1, x2, ..., xD) on search
space, where D is the dimension of the problem.
After the initialization of the population is com-
pleted, then as the first operator, Mutation, is
evaluated. The idea of the mutation operator is
to form a new population (v1, v2, ..., vD). One of
the possible mutation operation (also used in this
study) is given below.

vi[k + 1] = xr1 [k] + F (xr2 [k]− xr3 [k]) (13)

where r1, r2, and r3 are the randomly selected in-
dex from the population, and F is the algorithm
coefficient which is selected as F = 0.8.

After the mutation operator is completed, then
Crossover operation is evaluated. By using
this operator a new set of solution is obtained
(u1, u2, ..., uD), by using the formulation (called
binomial operator) given below.

ui[k] = vi[k] if rand < CR

ui[k] = xi[k] otherwise (14)
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where CR is the second algorithm parameter, and
it has the value of CR = 0.9. The final operator
is called the Selection. This operator is just com-
pared the two vector set X and U , and best of
these two sets are selected with respect to the ob-
jective value. This new set survives to the next
iteration.

3.2.3. Firefly algorithm

As a population based optimization algorithm,
Firefly Algorithm (FFA) was proposed by Yang
[31], [32] in 2008. The algorithm is designed based
on the light intensity and attractiveness between
fireflies in their nest. Light intensity of fireflies
gives the warning ability against predators and
attractiveness for mating. The light intensity
is changed with respect to the distance between
light source and fireflies. The algorithm is de-
signed based on light intensity property, where
Figure 5 gives the flow diagram of the FFA algo-
rithm

Figure 5. Flow-diagram of firefly al-
gorithm.

In the FFA perspective, the search space is corre-
sponding to the light distribution. Therefore, ob-
jective value becomes the light distribution. The
performance of the FFA is evaluated on bench-
mark problems in [33]. The results showed that
FFA presents acceptable performance. Then the
algorithm is improved for multimodal problems
[34] and applied to real-world problems [32], [35].
Fireflies in the algorithm assumes to have posi-
tion (x1, x2, ..., xD) on search space. Then, light
intensity is calculated by using the position of the
member and the distance to other firefights as for-
mulated in below.

I(r) = I0e
γr2ij (15)

where γ is the constant light absorption coeffi-
cient, I0 is the initial light intensity at the dis-
tance r, which is defined below.

rij = ‖xi − xj‖ (16)

As the last operator of the algorithm the position
of each firefly is changed by using the light in-
tensity (attractiveness) and a random movement.
Even the algorithm is well organized and proposed
acceptable performance, the number of algorith-
mic control parameters is relatively many in num-
ber. Therefore, in this paper the parameters re-
ported in [31] is preferred.

Figure 6. Flow-diagram of cultural
algorithm.

3.2.4. Cultural algorithm

Cultural Algorithm (CA) is an optimization al-
gorithm based on social learning and evolution.
It was introduced by Reynold [36] and matured
in [37]. The algorithm is successfully applied to
industrial problems [38]. In CA, the population
shares the information pool (in other words belief
space). This space contains normative [39], spa-
tial, temporal [40], domain and exemplar knowl-
edge [37]. In interaction of these knowledge is the
source of the algorithm [41]. Figure 6 gives the
flow diagram of the CA algorithm

In CA, two spaces named as Belief Space and Pop-
ulation space are interacted with each other. The
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members in population space are used to calcu-
late the fitness (cost) functions. Based on the cost
values the individuals are selected to impact (up-
date) the Belief Space. Then beliefs in the Belief
Space have influence the evolution (generation) of
the populations in population space. New mem-
bers are generator with the aid of Belief space and
the best members among the joint space remains
for the next generator.

4. Implementations and results

The purpose of this study is to design PID con-
troller for active suspension control under the
road change. In addition to this purpose, scalar-
ization and heuristic optimization algorithms are
compared with each other. For these purposes,
first it is assumed that the road change is the
step, in other words the disturbance of the sys-
tem is the step input. All of the implementa-
tions are compared with each other with respect
to the time response transient properties numer-
ically. The results are discussed and one of from
each scalarization methods and optimization al-
gorithms are selected. Then, as the second phase
of the study, different road change as ramp input
is applied the same system and the performance
of the proposed method is discussed with a ramp
input, which is applied different ramps.

Initially, the car suspension is controlled under a
rapid change at the contact between road and the
wheel. It is assumed that there is 1m change at
this contact, in other words, a step input is ap-
plied to the system. It is desired that the suspen-
sion is rapidly and smoothly absorb the vibration
and return its equilibrium point. First, the prob-
lem is defined as a multiobjective problem. The
objectives are selected from the time-response of
the system. For using at objectives; overshoot,
rise time, peak time and error are taken as vari-
ables.

Time domain response of the system is divided
into two part. The initial part is called the tran-
sient response and the rest of it is the steady-state
response. For a steady state response the system
output (car body (M1) position change) must be
settled within %2 of the desired output which is
selected as 1 for this study. Since the mechani-
cal properties of the suspension system is based
on damper and springs, it is expected to settle on
a certain level. Therefore, even the steady state
error is important as an objective, it is not neces-
sary to add as a comparison factor.

The time where the output reaches the desired
output (steady state level) for the first time is

called rise time (tr), the time where the response
reaches the peak is called peak time (tp). The
percentage of the maximum value with respect to
the desired response is called overshoot (OS). In
addition to these time properties, also error (e)
(difference between desired level and the output)
is evaluated as the objective, which is important
as an objective (as explained previously). The
mean integral of absolute difference between de-
sired signal and the output (mae) is calculated
and considered as one of the objective.

Corresponding four objectives (fi, i = 1, 2, 3, 4)
are given below;

f1 = min(tr) f2 = min(tp)

f3 = min(OS/100) f4 = min(mae(e)) (17)

As the next step, this four objective problem
is converted into single objective one. Three
scalarization functions are preferred, which are
weighted-sum, ǫ-constrained, and Benson’s meth-
ods. In weighted sum method, all of these objec-
tives are summed to each other since all of the
weights are same with each other. The single ob-
jective of the weighted summethod is given below.

f =
1

4
[tr + tp+ (OS/100) +mae(e)] (18)

Like weighted sum method, ǫ-constrained method
also evaluated for the problem. However, since
this scalarization approach is considered, the con-
strained part of the approach should be evalu-
ated. For this purpose, penalty function is pre-
ferred and constrained problem converted into un-
constrained problem. The final ǫ-constrained ap-
proach formulation is presented below.

f = mae(e) + [max(ǫ1, tr)

+max(ǫ2, tp) +max(ǫ3, OS/100)] (19)

where ǫ1 = 0.05, ǫ2 = 0.05, and ǫ3 = 0.2 are
selected. In other words, (as an example) if the
overshoot is decreased under 20%, it is consid-
ered as the desired performance is reached and
the contribution of this property is becomes zero.
However, if it is larger than 20%, only the over-
shoot value is added to the objective value. If all
of the given values are above the given ǫ values,
than ǫ-constrained method is almost the same as
weighted sum method. Similarly, the overall func-
tion for Benson’s method is given below.
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Table 1. Time response parameter comparison with respect to the step input.

Time Response PSO-WS PSO-Eps PSO-Benson DE-WS DE-Eps DE-Benson
Rise Time 0.1637 0.1624 0.1624 0.1366 0.1368 0.1368

Overshoot (%) 48.03 49.99 49.99 50.04 50.04 50.49
Settling Time 0.4389 0.4585 0.4392 0.3542 0.3542 0.3543

FFA-WS FFA-Eps FFA-Benson CA-WS CA-Eps CA-Benson
Rise Time 0.1376 0.1367 0.1365 0.0458 0.0796 0.0796

Overshoot (%) 49.29 49.58 50 10.81 0.0431 0.0431
Settling Time 0.3539 0.3541 0.3541 0.1 0.1224 0.1224

f = max(0, (z1 −mae(e))) +max(0, (z2 − tr))

+max(0, (z3 − tp)) +max(0, (z4 −OS/100))

+[max(z1,mae(e)) + [max(z2, tr)

+max(z3, tp) +max(z4, OS/100)](20)

where z1 = 10, z2 = 0.5, z3 = 0.5, and z4 = 0.2
are selected. Even this method looks different
from other two scalarization functions, it is al-
most the united version of weighted sum and
ǫ-constrained methods such that last objective
(mae) also considered inside the maximum func-
tion and difference between a reference point and
objective is calculated. This scalarization equa-
tion can be considered as two parts. In the first
part if the obtained property is larger than the
z then first part (max(0, (z − P ))) become zero.
However the second part (the constrained part)
is equals to the properties value. On contrary,
if z is larger that obtained property, than first
part equals to the difference between (z − P )
and the second part equals to z. When com-
pared to the ǫ-constrained method, a residue from
(max(0, (z−P ))) is added, which increases when
the undesired response obtained.

Since the change at the relative position between
ground and car body forms an undesired vibra-
tion on the car body. This vibration continues
at a certain time if any control action didn’t ap-
ply. Figure 7 gives the obtained uncontrolled sig-
nal. This figure also demonstrates the necessity
of the control action. In general, the fastest and
low (preferably zero) overshoot is desired. In real
world application it corresponds to that after the
tire falls into the hole on the road, it is expected
to return the car body to its initial height as fast
as possible. In addition, it is not desired to move
the car body to a higher height of the initial po-
sition.

Figure 7. Change the relative posi-
tion of the car body without control
action.

From this figure, the car body travels almost ×2
(100 %) more than desired level, and it needs al-
most 15sec to absorb and reach to the equilibrium
point. Also from the figure the number of cycles
is more than 10. This figure graphically demon-
strates the necessity of the control algorithm for a
better drive characteristics. As the final step, the
tunned PID controllers are applied to this prob-
lem and tried to get a better response from figure
7.

In this study, at first, three scalarization functions
are evaluated on four optimization algorithms on
car suspension problem which is explained in sec-
tion 2. All of the optimization algorithms are run
100 iterations with 100 members, also a termina-
tion condition is defined to be sure that all of the
optimization algorithms calculate the same num-
ber of functions evaluations. Table 1 presents the
transient response parameters numerically, and
the PID parameters are also reported in Table
2.

The results in Table 1 shows that, PSO, DE and
FFA are both presents almost the same perfor-
mance for different PID parameters (Table 2).
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Table 2. PID controller parameters, where WS: Weighted Sum, and Eps: Epsilon.

PID Parameters PSO-WS PSO-Eps PSO-Benson DE-WS DE-Eps DE-Benson
KP 696 700 701 988 988 987
KI 266 18.85 206 10−3 10−3 498
KD 927 942 942 978 978 970

FFA-WS FFA-Eps FFA-Benson CA-WS CA-Eps CA-Benson
KP 743 995 999 141 439 141
KI 10−3 1.306 748 159 160 159
KD 989 998 996 716 131 716

However, CA gives the best performance with
respect to the transient performance among all
heuristic algorithms. It can be concluded that the
meta-heuristics of PSO, DE and FFA converges to
local optimum, and remains in that solution. It
should be also noted that some mechanisms may
help to move that from local solution. CA gives
the best performance among all other algorithms
such that overshoot is almost 10% which is the
lowest level and presents fastest rise and settling
times. When the results are discussed with re-
spect to the scalarization approaches, it is clear
to see that three scalarization approaches are al-
most similar to each other; however, weighted
sum method can able to give the best result in
overall. But when compared inside CA algorithm
epsilon and Benson’s methods give the best re-
sults. Even there is a very slight difference be-
tween two scalarization methods, it can be seen
that the Benson’s approach perform better that
ǫ-constrained approach.

Table 2 gives the PID parameters obtained from
optimization algorithms. In general, PSO, DE,
FFA and CE gives almost same parameters for
scalarization approaches. For PSO algorithm, KP

and KD are almost same with each other. DE
algorithm seraches the solution especially at the
boarder of the search space such that parameters
are from lower and higher boarder values. Like
PSO, FFA and CA give same values for KD and
KI parameters, respectively.

As the second half of the implementation, the op-
timized PID controller is applied to the system
under ramp input. The ramp input corresponds
to a slightly change at the level of the road. In
real world the roach change may happens rapidly,
like holes at the road. In addition, speed bump
like changes may happen on the road. Therefore,
in this part of the study, the performance of the
controller under speed bump like changes on the
road is investigated. For this purpose, ramp input
at different slopes are applied to the problem and
obtained results are graphically demonstrated in
Figure 8.

Figure 8. Car body position change
for ramp input with different slopes.

Figure 8 gives the transient response of the CA-
optimized PID controller for different slope ramp
input. The figure shows that for slopes 0.1, 0.2,
0.5, and the overshoots becomes 8%, 5%, 2%, and
1.8% respectively. As the slope of the ramp in-
creases, the overshoot and settling time decreases.
In other words, as the change of level of the road is
more slowly, then the response to this change be-
comes much better. Since the same optimized pa-
rameters are preferred for both implementations,
the overall solution also supports the performance
of the CA-based PID tuning methodology.

5. Conclusion

In this paper the active independent quarter-car
suspension problem is solved by using PID con-
troller. The PID parameter tuning is considered
as the multiobjective optimization problem. First
this problem is converted into single objective
problem by using three scalarization approaches
which are weighted sum, ǫ-constrained and Ben-
son’s methods. Then the obtained single objec-
tive problem is solved with four optimization algo-
rithms which are called Particle Swarm Optimiza-
tion (PSO), Differential Evolution (DE), Firefly
Algorithm and Cultural Algorithm.
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There are three aims of this study: i) propose a
multiobjective PID tuning scheme for active inde-
pendent car suspension system ii) compare three
scalarization functions and show the implemen-
tation of these approaches and iii) compare four
optimization algorithms. In total twelve imple-
mentations are made and compared with each
other. The results showed that even the scalar-
ization approaches present similar performances,
among all optimization algorithms, CA gives the
best performance. Also, it can be stated that,
even a slight difference weighted sum still can be
preferred as an efficient scalarization approach.

After CA is selected as the optimizer for PID pa-
rameters, a different input as the road change is
applied. The ramp input with different slopes are
implemented and results are discussed. The re-
sults indicates that as the slope of the ramp in-
creases the transient response performance of the
overall system is also increases due to the slow
change at the level of the road.

In conclusion, CA algorithm presents the best
performance among all other optimization algo-
rithms discussed in this paper. The main rea-
son is the local optimum problem of the other
algorithms for this problem. Also, scalarization
methods can be able to successfully applied to
the PID tuning algorithm to convert the multiob-
jective problem into single objective one. The re-
sults indicate that weighted sum presents the best
performance overall. The ǫ-constrained and Ben-
son’s methods give almost the same performance
as PSO, DE, and FFA with a slight difference. As
the future study, constrained-based scalarization
approaches are deeply investigated with a differ-
ent set of ǫ and reference points.
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