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Numerical calculation of the fractional integrals and derivatives is the code to
search fractional calculus and solve fractional differential equations. The exact
solutions to fractional differential equations are compelling to get in real ap-
plications, due to the nonlocality and complexity of the fractional differential
operators, especially for variable-order fractional differential equations. There-
fore, it is significant to enhance numerical methods for fractional differential
equations. In this work, we consider variable-order fractional differential equa-
tions by reproducing kernel method. There has been much attention in the
use of reproducing kernels for the solutions to many problems in the recent
years. We give an example to demonstrate how efficiently our theory can be
implemented in practice.

Keywords:
Reproducing kernel functions
Series solutions
Variable-order fractional
differential equation

AMS Classification 2010:
47B32, 26A33, 46E22, 74S30

1. Introduction

Fractional differential equations have been stud-
ied by many investigators in recent years. The
notion of a variable order operator is a much more
recent improvement. Different authors have pre-
sented different definitions of variable order differ-
ential operators. The kernel of the variable order
operators is too complex for having a variable-
exponent. Therefore, to get the numerical solu-
tions of variable order fractional differential equa-
tions is quite compelling. There are few stud-
ies of variable order fractional differential equa-
tions. Coimbra [1] applied a consistent approxi-
mation with first-order accurate for the solution
of variable order differential equations. Lin et
al. [2] worked the stability and the convergence of
an explicit finite-difference approximation for the
variable-order fractional diffusion equation with a
nonlinear source term. Zhuang et al. [3] acquired
explicit and implicit Euler approximations for the
fractional advection-diffusion nonlinear equation
of variable-order. For more details see [4–6]. No

one had tried to find the numerical solutions of
the variable order fractional differential equations
by the reproducing kernel method (RKM).

The aim of our work is to investigate the efficiency
of RKM to solve variable-order fractional differ-
ential equations. Let us consider

CD
α(ν)
0,ν u(ν) = f(ν), 0 ≤ ν ≤ T, (1)

and subjected to the initial condition

u(0) = 0, (2)

where CD
α(ν)
0,ν is variable order fractional deriv-

ative of Caputo sense, f(ν) is the known con-
tinuous function, u(ν) is the unknown function,
0 < αmin ≤ α(ν) ≤ αmax < 1.

The theory of reproducing kernels was used for
the first time at the beginning of the 20th century
by Zaremba [7]. Reproducing kernel theory has

*Corresponding Author

112

http://creativecommons.org/licenses/by/4.0/


On solutions of variable-order fractional differential equations 113

considerable implementations in numerical analy-
sis, differential equations, probability and statis-
tics [8–11]. Some authors discussed fractional dif-
ferential equations, nonlinear oscillators with dis-
continuity, singular nonlinear two-point periodic
boundary value problems, integral equations and
nonlinear partial differential equations [7, 12–21].

This paper is arranged as follows. Some defini-
tions and properties of the variable order frac-
tional integrals and derivatives are presented in
Section 2. Section 3 shows some useful repro-
ducing kernel functions. The representation in
W 2

2 [0, 1] and a related linear operator are given in
Section 4. Section 5 gives the main results. Nu-
merical experiments are demonstrated in Section
6. Some conclusions are given in the last section.

2. Some useful definitions

(i) Riemann-Liouville fractional integral of
the first kind with order α(ν) is given
as [22]:

I
α(ν)
a+

u(ν) =
1

Γ(α(ν))

∫ ν

a+
(ν − T )α(ν)−1u(T )dT,

x > 0 [Re(α(ν)) > 0].

(ii) Riemann-Liouville fractional derivative of
the first kind with order α(ν) is presented
by [22]:

D
α(ν)
a+ u(ν) =

dm

Γ(m− α(ν))dνm

∫ ν

a+

u(τ)

(ν − τ)α(ν)−m+1
dτ,

but D
α(ν)
a+ I

α(ν)
a+ u 6= u, (m− 1 ≤ α(ν) < m).

(iii) Caputo’s fractional derivative with order α(ν)
is introduced with [22]:

Dα(ν)u(ν) =
1

Γ(1− α(ν))

∫ ν

0+
(ν − τ)−α(ν)u′(τ)dτ

+
(u(0+)− u(0−))ν−α(ν)

Γ(1− α(ν))
,

where 0 < α(ν) ≤ 1. If the starting time is in
a perfect situation, we obtain the definition as
follows [22]:

Dα(ν)u(ν) =
1

Γ(1− α(ν))

∫ ν

0+
(ν − τ)−α(ν)u′(τ)dτ,

(0 < α(ν) < 1),

with the definition above, we obtain the fol-
lowing formula (0 < α(ν) ≤ 1):

D
α(ν)
∗ xβ =





0, β = 0,

Γ(β+1)
Γ(β+1−α(ν))x

β−α(ν), β = 1, 2, 3, . . . .

(3)

3. Reproducing kernel functions

Definition 1. We define the space G1
2[0, 1] by

G1
2[0, 1] = {u ∈ AC[0, 1] : u′ ∈ L2[0, 1]},

where AC denotes the space of absolutely contin-
uous functions. The inner product and the norm
in G1

2[0, 1] are defined by

〈u, h〉G1
2
= u(0)h(0)+

∫ 1

0

u′(ν)h′(ν)dν, u, h ∈ G1
2[0, 1]

and

‖u‖G1
2
=

√
〈u, u〉G1

2
, u ∈ G1

2[0, 1].

Lemma 1 (See [23, page 17]). The space G1
2[0, 1]

is a reproducing kernel space, and its reproducing
kernel function Qy is given by

Qy(ν) =

{
1 + ν, 0 ≤ ν ≤ y ≤ 1,

1 + y, 0 ≤ y < ν ≤ 1.

Definition 2. We describe the space W 2
2 [0, 1] by

W 2
2 [0, 1] = {u ∈ AC[0, 1] : u′ ∈ AC[0, 1],

u′′ ∈ L2[0, 1], u(0) = 0}.

The inner product and the norm in W 2
2 [0, 1]

are defined by

〈u, h〉W 2
2

=
1∑

i=0

u(i)(0)h(i)(0) +

∫ 1

0
u′′(ν)h′′(ν)dν,

u, h ∈W 2
2 [0, 1]

and

‖u‖W 2
2
=

√
〈u, u〉W 2

2
, u ∈W 2

2 [0, 1].

Lemma 2 (See [23, page 148]). The space
W 2

2 [0, 1] is a reproducing kernel space, and its re-
producing kernel function Ry is given by
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Ry(ν) =





νy + 1
2ν

2y − 1
6ν

3, 0 ≤ ν ≤ y ≤ 1,

yν + 1
2y

2ν − 1
6y

3, 0 ≤ ν < y ≤ 1.

4. Solution representation in W 2
2 [0, 1]

In this section, the solution of (1)–(2) is presented
in the W 2

2 [0, 1]. On defining the linear operator
L :W 2

2 [0, 1] → G1
2[0, 1] by

Lu =C D
α(ν)
0,ν u(ν), 0 ≤ ν ≤ T, u ∈W 2

2 [0, 1],

(4)

model problem (1)–(2) changes to the problem





Lu = f(ν), ν ∈ [0, T ],

u(0) = 0.

(5)

Theorem 1. The linear operator L is a bounded
linear operator.

Proof. We need to show ‖Lu‖2G1
2
≤ M ‖u‖2W 2

2
,

where M > 0 is a positive constant. We get

‖Lu‖2G1
2
= 〈Lu,Lu〉G1

2
= [Lu(0)]2+

∫ 1

0

[
Lu′(ν)

]2
dν.

We obtain

u(ν) = 〈u(·), Rν(·)〉W 2
2
,

and

Lu(ν) = 〈u(·), LRν(·)〉W 2
2
,

by reproducing property. Therefore, we get

|Lu(ν)| ≤ ‖u‖W 2
2
‖LRν‖W 2

2
=M1 ‖u‖W 2

2
,

where M1 > 0. Therefore, we get

[(Lu) (0)]2 ≤M2
1 ‖u‖

2
W 2

2
.

Since

(Lu)′(ν) =
〈
u(·), (LRν)

′(·)
〉
W 2

2

,

then

∣∣(Lu)′(ν)
∣∣ ≤ ‖u‖W 2

2

∥∥(LRν)
′
∥∥
W 2

2

=M2 ‖u‖W 2
2
,

where M2 > 0. Therefore, we obtain

[
(Lu)′(x)

]2
≤M2

2 ‖u‖
2
W 2

2
,

and

∫ 1

0

[
(Lu)′(ν)

]2
dν ≤M2

2 ‖u‖
2
W 2

2
.

Thus, we get

‖Lu‖2G1
2

≤ [(Lu) (0)]2 +

∫ 1

0

([
(Lu)′(ν)

]2)
dν

≤
(
M2

1 +M2
2

)
‖u‖2W 2

2
=M ‖u‖2W 2

2
,

where M = M2
1 + M2

2 > 0 is a positive con-
stant. �

5. The main results

Put ϕi(ν) = Qνi(ν) and ψi(ν) = L∗ϕi(ν), where
L∗ is conjugate operator of L. The orthonormal

system
{
Ψ̂i(ν)

}
∞

i=1
of W 2

2 [0, 1] can be obtained

from Gram-Schmidt orthogonalization process of
{ψi(ν)}

∞

i=1,

ψ̂i(ν) =
i∑

k=1

βikψk(ν), (βii > 0, i = 1, 2, . . .).

(6)

Theorem 2. Let {νi}
∞

i=1 be dense in [0, 1] and
ψi(ν) = LyRν(y)|y=νi

. Then the sequence

{ψi(ν)}
∞

i=1 is a complete system in W 2
2 [0, 1].

Proof. We obtain

ψi(ν) = (L∗ϕi)(ν) = 〈(L∗ϕi)(y), Rν(y)〉

= 〈(ϕi)(y), LyRν(y)〉 = LyRν(y)|y=νi
.

Let 〈u(ν), ψi(ν)〉 = 0, (i = 1, 2, . . .), which means
that,

〈u(ν), (L∗ϕi)(ν)〉 = 〈Lu(·), ϕi(·)〉 = (Lu)(νi) = 0.
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{νi}
∞

i=1 is dense in [0, 1]. Therefore, (Lu)(ν) = 0.
u ≡ 0 by L−1. �

Theorem 3. If u(ν) is the exact solution of (1),
then we obtain

u(ν) =
∞∑

i=1

i∑

k=1

βikf(νk)ψ̂i(ν). (7)

where {νi}
∞

i=1 is dense in [0, 1].

Proof. We obtain

u(ν) =
∞∑

i=1

〈
u(ν), ψ̂i(ν)

〉
W 2

2

ψ̂i(ν)

=
∞∑

i=1

i∑

k=1

βik 〈u(ν), ψk(ν)〉W 2
2
ψ̂i(ν)

=
∞∑

i=1

i∑

k=1

βik 〈u(ν), L
∗ϕk(ν)〉W 2

2
ψ̂i(ν)

=
∞∑

i=1

i∑

k=1

βik 〈Lu(ν), ϕk(ν)〉G1
2
ψ̂i(ν)

=

∞∑

i=1

i∑

k=1

βik 〈f(ν), Qνk〉G1
2

ψ̂i(ν)

=
∞∑

i=1

i∑

k=1

βikf(νk)ψ̂i(ν).

by (6) and uniqueness of solution of (1). This
completes the proof. �

The approximate solution un(ν) can be acquired
as:

un(ν) =
n∑

i=1

i∑

k=1

βikf(νk)Ψ̂i(ν). (8)

6. Numerical results

To prove the efficiency and the practicability of
the RKM, we give an example and find its solu-
tion.

Example 1. Let us consider Eq. (1) at T = 1
with

f(ν) =
3ν1−α(ν)

Γ(2− α(ν))
+

2ν2−α(ν)

Γ(3− α(ν))
(9)

for variable order 0 < α(ν) < 1, one can obtain
the exact solution as u(ν) = 3ν + ν2. Numerical
results are shown in the Table 1.

Table 1. The comparisons between
the RKM and the method given
in [24] at T = 1 with CPU
time(s)=9.469.

α(ν) ν [24] RKM

ν/2 1/4 5.9851e− 003 7.36735e− 005

ν/2 1/8 1.4262e− 003 3.35160e− 006

ν/2 1/16 3.4719e− 004 5.83687e− 005

ν/2 1/32 8.5572e− 005 1.44027e− 004

ν/2 1/64 2.1234e− 005 6.39753e− 004

sin(ν) 1/4 2.4701e− 002 3.34572e− 004

sin(ν) 1/8 5.6021e− 003 1.54293e− 005

sin(ν) 1/16 1.3335e− 003 9.04701e− 005

sin(ν) 1/32 3.2530e− 004 1.70832e− 004

sin(ν) 1/64 8.0317e− 005 6.50846e− 004

7. Conclusion

We used the reproducing kernel method to solve
a class of the variable order fractional differential
equation in this work. We defined the method and
used it in the test example in order to prove its
applicability and validity in comparison with ex-
act and other numerical solutions. The obtained
results are uniformly convergent and the operator
that was used is a bounded linear operator.
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